// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/compressed_col_sparse_matrix_utils.h" #include <vector> #include <algorithm> #include "ceres/internal/port.h" #include "glog/logging.h" namespace ceres { namespace internal { void CompressedColumnScalarMatrixToBlockMatrix(const int* scalar_rows, const int* scalar_cols, const vector<int>& row_blocks, const vector<int>& col_blocks, vector<int>* block_rows, vector<int>* block_cols) { CHECK_NOTNULL(block_rows)->clear(); CHECK_NOTNULL(block_cols)->clear(); const int num_row_blocks = row_blocks.size(); const int num_col_blocks = col_blocks.size(); vector<int> row_block_starts(num_row_blocks); for (int i = 0, cursor = 0; i < num_row_blocks; ++i) { row_block_starts[i] = cursor; cursor += row_blocks[i]; } // This loop extracts the block sparsity of the scalar sparse matrix // It does so by iterating over the columns, but only considering // the columns corresponding to the first element of each column // block. Within each column, the inner loop iterates over the rows, // and detects the presence of a row block by checking for the // presence of a non-zero entry corresponding to its first element. block_cols->push_back(0); int c = 0; for (int col_block = 0; col_block < num_col_blocks; ++col_block) { int column_size = 0; for (int idx = scalar_cols[c]; idx < scalar_cols[c + 1]; ++idx) { vector<int>::const_iterator it = lower_bound(row_block_starts.begin(), row_block_starts.end(), scalar_rows[idx]); // Since we are using lower_bound, it will return the row id // where the row block starts. For everything but the first row // of the block, where these values will be the same, we can // skip, as we only need the first row to detect the presence of // the block. // // For rows all but the first row in the last row block, // lower_bound will return row_block_starts.end(), but those can // be skipped like the rows in other row blocks too. if (it == row_block_starts.end() || *it != scalar_rows[idx]) { continue; } block_rows->push_back(it - row_block_starts.begin()); ++column_size; } block_cols->push_back(block_cols->back() + column_size); c += col_blocks[col_block]; } } void BlockOrderingToScalarOrdering(const vector<int>& blocks, const vector<int>& block_ordering, vector<int>* scalar_ordering) { CHECK_EQ(blocks.size(), block_ordering.size()); const int num_blocks = blocks.size(); // block_starts = [0, block1, block1 + block2 ..] vector<int> block_starts(num_blocks); for (int i = 0, cursor = 0; i < num_blocks ; ++i) { block_starts[i] = cursor; cursor += blocks[i]; } scalar_ordering->resize(block_starts.back() + blocks.back()); int cursor = 0; for (int i = 0; i < num_blocks; ++i) { const int block_id = block_ordering[i]; const int block_size = blocks[block_id]; int block_position = block_starts[block_id]; for (int j = 0; j < block_size; ++j) { (*scalar_ordering)[cursor++] = block_position++; } } } } // namespace internal } // namespace ceres