// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: mierle@gmail.com (Keir Mierle) #include "ceres/c_api.h" #include <cmath> #include "glog/logging.h" #include "gtest/gtest.h" // Duplicated from curve_fitting.cc. int num_observations = 67; double data[] = { 0.000000e+00, 1.133898e+00, 7.500000e-02, 1.334902e+00, 1.500000e-01, 1.213546e+00, 2.250000e-01, 1.252016e+00, 3.000000e-01, 1.392265e+00, 3.750000e-01, 1.314458e+00, 4.500000e-01, 1.472541e+00, 5.250000e-01, 1.536218e+00, 6.000000e-01, 1.355679e+00, 6.750000e-01, 1.463566e+00, 7.500000e-01, 1.490201e+00, 8.250000e-01, 1.658699e+00, 9.000000e-01, 1.067574e+00, 9.750000e-01, 1.464629e+00, 1.050000e+00, 1.402653e+00, 1.125000e+00, 1.713141e+00, 1.200000e+00, 1.527021e+00, 1.275000e+00, 1.702632e+00, 1.350000e+00, 1.423899e+00, 1.425000e+00, 1.543078e+00, 1.500000e+00, 1.664015e+00, 1.575000e+00, 1.732484e+00, 1.650000e+00, 1.543296e+00, 1.725000e+00, 1.959523e+00, 1.800000e+00, 1.685132e+00, 1.875000e+00, 1.951791e+00, 1.950000e+00, 2.095346e+00, 2.025000e+00, 2.361460e+00, 2.100000e+00, 2.169119e+00, 2.175000e+00, 2.061745e+00, 2.250000e+00, 2.178641e+00, 2.325000e+00, 2.104346e+00, 2.400000e+00, 2.584470e+00, 2.475000e+00, 1.914158e+00, 2.550000e+00, 2.368375e+00, 2.625000e+00, 2.686125e+00, 2.700000e+00, 2.712395e+00, 2.775000e+00, 2.499511e+00, 2.850000e+00, 2.558897e+00, 2.925000e+00, 2.309154e+00, 3.000000e+00, 2.869503e+00, 3.075000e+00, 3.116645e+00, 3.150000e+00, 3.094907e+00, 3.225000e+00, 2.471759e+00, 3.300000e+00, 3.017131e+00, 3.375000e+00, 3.232381e+00, 3.450000e+00, 2.944596e+00, 3.525000e+00, 3.385343e+00, 3.600000e+00, 3.199826e+00, 3.675000e+00, 3.423039e+00, 3.750000e+00, 3.621552e+00, 3.825000e+00, 3.559255e+00, 3.900000e+00, 3.530713e+00, 3.975000e+00, 3.561766e+00, 4.050000e+00, 3.544574e+00, 4.125000e+00, 3.867945e+00, 4.200000e+00, 4.049776e+00, 4.275000e+00, 3.885601e+00, 4.350000e+00, 4.110505e+00, 4.425000e+00, 4.345320e+00, 4.500000e+00, 4.161241e+00, 4.575000e+00, 4.363407e+00, 4.650000e+00, 4.161576e+00, 4.725000e+00, 4.619728e+00, 4.800000e+00, 4.737410e+00, 4.875000e+00, 4.727863e+00, 4.950000e+00, 4.669206e+00, }; // A test cost function, similar to the one in curve_fitting.c. int exponential_residual(void* user_data, double** parameters, double* residuals, double** jacobians) { double* measurement = (double*) user_data; double x = measurement[0]; double y = measurement[1]; double m = parameters[0][0]; double c = parameters[1][0]; residuals[0] = y - exp(m * x + c); if (jacobians == NULL) { return 1; } if (jacobians[0] != NULL) { jacobians[0][0] = - x * exp(m * x + c); // dr/dm } if (jacobians[1] != NULL) { jacobians[1][0] = - exp(m * x + c); // dr/dc } return 1; } namespace ceres { namespace internal { TEST(C_API, SimpleEndToEndTest) { double m = 0.0; double c = 0.0; double *parameter_pointers[] = { &m, &c }; int parameter_sizes[] = { 1, 1 }; ceres_problem_t* problem = ceres_create_problem(); for (int i = 0; i < num_observations; ++i) { ceres_problem_add_residual_block( problem, exponential_residual, // Cost function &data[2 * i], // Points to the (x,y) measurement NULL, // Loss function NULL, // Loss function user data 1, // Number of residuals 2, // Number of parameter blocks parameter_sizes, parameter_pointers); } ceres_solve(problem); EXPECT_NEAR(0.3, m, 0.02); EXPECT_NEAR(0.1, c, 0.04); ceres_free_problem(problem); } template<typename T> class ScopedSetValue { public: ScopedSetValue(T* variable, T new_value) : variable_(variable), old_value_(*variable) { *variable = new_value; } ~ScopedSetValue() { *variable_ = old_value_; } private: T* variable_; T old_value_; }; TEST(C_API, LossFunctions) { double m = 0.2; double c = 0.03; double *parameter_pointers[] = { &m, &c }; int parameter_sizes[] = { 1, 1 }; // Create two outliers, but be careful to leave the data intact. ScopedSetValue<double> outlier1x(&data[12], 2.5); ScopedSetValue<double> outlier1y(&data[13], 1.0e3); ScopedSetValue<double> outlier2x(&data[14], 3.2); ScopedSetValue<double> outlier2y(&data[15], 30e3); // Create a cauchy cost function, and reuse it many times. void* cauchy_loss_data = ceres_create_cauchy_loss_function_data(5.0); ceres_problem_t* problem = ceres_create_problem(); for (int i = 0; i < num_observations; ++i) { ceres_problem_add_residual_block( problem, exponential_residual, // Cost function &data[2 * i], // Points to the (x,y) measurement ceres_stock_loss_function, cauchy_loss_data, // Loss function user data 1, // Number of residuals 2, // Number of parameter blocks parameter_sizes, parameter_pointers); } ceres_solve(problem); EXPECT_NEAR(0.3, m, 0.02); EXPECT_NEAR(0.1, c, 0.04); ceres_free_stock_loss_function_data(cauchy_loss_data); ceres_free_problem(problem); } } // namespace internal } // namespace ceres