// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sergey.vfx@gmail.com (Sergey Sharybin) // mierle@gmail.com (Keir Mierle) // sameeragarwal@google.com (Sameer Agarwal) #ifndef CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_ #define CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_ #include "ceres/internal/autodiff.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/local_parameterization.h" namespace ceres { // Create local parameterization with Jacobians computed via automatic // differentiation. For more information on local parameterizations, // see include/ceres/local_parameterization.h // // To get an auto differentiated local parameterization, you must define // a class with a templated operator() (a functor) that computes // // x_plus_delta = Plus(x, delta); // // the template parameter T. The autodiff framework substitutes appropriate // "Jet" objects for T in order to compute the derivative when necessary, but // this is hidden, and you should write the function as if T were a scalar type // (e.g. a double-precision floating point number). // // The function must write the computed value in the last argument (the only // non-const one) and return true to indicate success. // // For example, Quaternions have a three dimensional local // parameterization. It's plus operation can be implemented as (taken // from internal/ceres/auto_diff_local_parameterization_test.cc) // // struct QuaternionPlus { // template<typename T> // bool operator()(const T* x, const T* delta, T* x_plus_delta) const { // const T squared_norm_delta = // delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; // // T q_delta[4]; // if (squared_norm_delta > T(0.0)) { // T norm_delta = sqrt(squared_norm_delta); // const T sin_delta_by_delta = sin(norm_delta) / norm_delta; // q_delta[0] = cos(norm_delta); // q_delta[1] = sin_delta_by_delta * delta[0]; // q_delta[2] = sin_delta_by_delta * delta[1]; // q_delta[3] = sin_delta_by_delta * delta[2]; // } else { // // We do not just use q_delta = [1,0,0,0] here because that is a // // constant and when used for automatic differentiation will // // lead to a zero derivative. Instead we take a first order // // approximation and evaluate it at zero. // q_delta[0] = T(1.0); // q_delta[1] = delta[0]; // q_delta[2] = delta[1]; // q_delta[3] = delta[2]; // } // // QuaternionProduct(q_delta, x, x_plus_delta); // return true; // } // }; // // Then given this struct, the auto differentiated local // parameterization can now be constructed as // // LocalParameterization* local_parameterization = // new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>; // | | // Global Size ---------------+ | // Local Size -------------------+ // // WARNING: Since the functor will get instantiated with different types for // T, you must to convert from other numeric types to T before mixing // computations with other variables of type T. In the example above, this is // seen where instead of using k_ directly, k_ is wrapped with T(k_). template <typename Functor, int kGlobalSize, int kLocalSize> class AutoDiffLocalParameterization : public LocalParameterization { public: AutoDiffLocalParameterization() : functor_(new Functor()) {} // Takes ownership of functor. explicit AutoDiffLocalParameterization(Functor* functor) : functor_(functor) {} virtual ~AutoDiffLocalParameterization() {} virtual bool Plus(const double* x, const double* delta, double* x_plus_delta) const { return (*functor_)(x, delta, x_plus_delta); } virtual bool ComputeJacobian(const double* x, double* jacobian) const { double zero_delta[kLocalSize]; for (int i = 0; i < kLocalSize; ++i) { zero_delta[i] = 0.0; } double x_plus_delta[kGlobalSize]; for (int i = 0; i < kGlobalSize; ++i) { x_plus_delta[i] = 0.0; } const double* parameter_ptrs[2] = {x, zero_delta}; double* jacobian_ptrs[2] = { NULL, jacobian }; return internal::AutoDiff<Functor, double, kGlobalSize, kLocalSize> ::Differentiate(*functor_, parameter_ptrs, kGlobalSize, x_plus_delta, jacobian_ptrs); } virtual int GlobalSize() const { return kGlobalSize; } virtual int LocalSize() const { return kLocalSize; } private: internal::scoped_ptr<Functor> functor_; }; } // namespace ceres #endif // CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_