/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 1999. */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include <openssl/pkcs8.h> #include <assert.h> #include <limits.h> #include <string.h> #include <openssl/asn1.h> #include <openssl/bn.h> #include <openssl/buf.h> #include <openssl/cipher.h> #include <openssl/digest.h> #include <openssl/err.h> #include <openssl/hmac.h> #include <openssl/mem.h> #include <openssl/x509.h> #include "../bytestring/internal.h" #include "../evp/internal.h" #define PKCS12_KEY_ID 1 #define PKCS12_IV_ID 2 #define PKCS12_MAC_ID 3 static int ascii_to_ucs2(const char *ascii, size_t ascii_len, uint8_t **out, size_t *out_len) { uint8_t *unitmp; size_t ulen, i; ulen = ascii_len * 2 + 2; if (ulen < ascii_len) { return 0; } unitmp = OPENSSL_malloc(ulen); if (unitmp == NULL) { return 0; } for (i = 0; i < ulen - 2; i += 2) { unitmp[i] = 0; unitmp[i + 1] = ascii[i >> 1]; } /* Make result double null terminated */ unitmp[ulen - 2] = 0; unitmp[ulen - 1] = 0; *out_len = ulen; *out = unitmp; return 1; } static int pkcs12_key_gen_raw(const uint8_t *pass_raw, size_t pass_raw_len, const uint8_t *salt, size_t salt_len, int id, int iterations, size_t out_len, uint8_t *out, const EVP_MD *md_type) { uint8_t *B, *D, *I, *p, *Ai; int Slen, Plen, Ilen, Ijlen; int i, j, v; size_t u; int ret = 0; BIGNUM *Ij, *Bpl1; /* These hold Ij and B + 1 */ EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); v = EVP_MD_block_size(md_type); u = EVP_MD_size(md_type); D = OPENSSL_malloc(v); Ai = OPENSSL_malloc(u); B = OPENSSL_malloc(v + 1); Slen = v * ((salt_len + v - 1) / v); if (pass_raw_len) { Plen = v * ((pass_raw_len + v - 1) / v); } else { Plen = 0; } Ilen = Slen + Plen; I = OPENSSL_malloc(Ilen); Ij = BN_new(); Bpl1 = BN_new(); if (!D || !Ai || !B || !I || !Ij || !Bpl1) { goto err; } for (i = 0; i < v; i++) { D[i] = id; } p = I; for (i = 0; i < Slen; i++) { *p++ = salt[i % salt_len]; } for (i = 0; i < Plen; i++) { *p++ = pass_raw[i % pass_raw_len]; } for (;;) { if (!EVP_DigestInit_ex(&ctx, md_type, NULL) || !EVP_DigestUpdate(&ctx, D, v) || !EVP_DigestUpdate(&ctx, I, Ilen) || !EVP_DigestFinal_ex(&ctx, Ai, NULL)) { goto err; } for (j = 1; j < iterations; j++) { if (!EVP_DigestInit_ex(&ctx, md_type, NULL) || !EVP_DigestUpdate(&ctx, Ai, u) || !EVP_DigestFinal_ex(&ctx, Ai, NULL)) { goto err; } } memcpy(out, Ai, out_len < u ? out_len : u); if (u >= out_len) { ret = 1; goto end; } out_len -= u; out += u; for (j = 0; j < v; j++) { B[j] = Ai[j % u]; } /* Work out B + 1 first then can use B as tmp space */ if (!BN_bin2bn(B, v, Bpl1) || !BN_add_word(Bpl1, 1)) { goto err; } for (j = 0; j < Ilen; j += v) { if (!BN_bin2bn(I + j, v, Ij) || !BN_add(Ij, Ij, Bpl1) || !BN_bn2bin(Ij, B)) { goto err; } Ijlen = BN_num_bytes(Ij); /* If more than 2^(v*8) - 1 cut off MSB */ if (Ijlen > v) { if (!BN_bn2bin(Ij, B)) { goto err; } memcpy(I + j, B + 1, v); /* If less than v bytes pad with zeroes */ } else if (Ijlen < v) { memset(I + j, 0, v - Ijlen); if (!BN_bn2bin(Ij, I + j + v - Ijlen)) { goto err; } } else if (!BN_bn2bin(Ij, I + j)) { goto err; } } } err: OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_raw, ERR_R_MALLOC_FAILURE); end: OPENSSL_free(Ai); OPENSSL_free(B); OPENSSL_free(D); OPENSSL_free(I); BN_free(Ij); BN_free(Bpl1); EVP_MD_CTX_cleanup(&ctx); return ret; } static int pkcs12_pbe_keyivgen(EVP_CIPHER_CTX *ctx, const uint8_t *pass_raw, size_t pass_raw_len, ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_MD *md, int is_encrypt) { PBEPARAM *pbe; int salt_len, iterations, ret; uint8_t *salt; const uint8_t *pbuf; uint8_t key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH]; /* Extract useful info from parameter */ if (param == NULL || param->type != V_ASN1_SEQUENCE || param->value.sequence == NULL) { OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR); return 0; } pbuf = param->value.sequence->data; pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length); if (pbe == NULL) { OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR); return 0; } if (!pbe->iter) { iterations = 1; } else { iterations = ASN1_INTEGER_get(pbe->iter); } salt = pbe->salt->data; salt_len = pbe->salt->length; if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt, salt_len, PKCS12_KEY_ID, iterations, EVP_CIPHER_key_length(cipher), key, md)) { OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR); PBEPARAM_free(pbe); return 0; } if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt, salt_len, PKCS12_IV_ID, iterations, EVP_CIPHER_iv_length(cipher), iv, md)) { OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR); PBEPARAM_free(pbe); return 0; } PBEPARAM_free(pbe); ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); return ret; } typedef int (*keygen_func)(EVP_CIPHER_CTX *ctx, const uint8_t *pass_raw, size_t pass_raw_len, ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_MD *md, int is_encrypt); struct pbe_suite { int pbe_nid; const EVP_CIPHER* (*cipher_func)(void); const EVP_MD* (*md_func)(void); keygen_func keygen; }; static const struct pbe_suite kBuiltinPBE[] = { { NID_pbe_WithSHA1And40BitRC2_CBC, EVP_rc2_40_cbc, EVP_sha1, pkcs12_pbe_keyivgen, }, { NID_pbe_WithSHA1And128BitRC4, EVP_rc4, EVP_sha1, pkcs12_pbe_keyivgen, }, { NID_pbe_WithSHA1And3_Key_TripleDES_CBC, EVP_des_ede3_cbc, EVP_sha1, pkcs12_pbe_keyivgen, }, }; static int pbe_cipher_init(ASN1_OBJECT *pbe_obj, const uint8_t *pass_raw, size_t pass_raw_len, ASN1_TYPE *param, EVP_CIPHER_CTX *ctx, int is_encrypt) { const EVP_CIPHER *cipher; const EVP_MD *md; unsigned i; const struct pbe_suite *suite = NULL; const int pbe_nid = OBJ_obj2nid(pbe_obj); for (i = 0; i < sizeof(kBuiltinPBE) / sizeof(struct pbe_suite); i++) { if (kBuiltinPBE[i].pbe_nid == pbe_nid) { suite = &kBuiltinPBE[i]; break; } } if (suite == NULL) { char obj_str[80]; OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_ALGORITHM); if (!pbe_obj) { strncpy(obj_str, "NULL", sizeof(obj_str)); } else { i2t_ASN1_OBJECT(obj_str, sizeof(obj_str), pbe_obj); } ERR_add_error_data(2, "TYPE=", obj_str); return 0; } if (suite->cipher_func == NULL) { cipher = NULL; } else { cipher = suite->cipher_func(); if (!cipher) { OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_CIPHER); return 0; } } if (suite->md_func == NULL) { md = NULL; } else { md = suite->md_func(); if (!md) { OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_DIGEST); return 0; } } if (!suite->keygen(ctx, pass_raw, pass_raw_len, param, cipher, md, is_encrypt)) { OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_KEYGEN_FAILURE); return 0; } return 1; } static int pbe_crypt(const X509_ALGOR *algor, const uint8_t *pass_raw, size_t pass_raw_len, const uint8_t *in, size_t in_len, uint8_t **out, size_t *out_len, int is_encrypt) { uint8_t *buf; int n, ret = 0; EVP_CIPHER_CTX ctx; unsigned block_size; EVP_CIPHER_CTX_init(&ctx); if (!pbe_cipher_init(algor->algorithm, pass_raw, pass_raw_len, algor->parameter, &ctx, is_encrypt)) { OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_UNKNOWN_CIPHER_ALGORITHM); return 0; } block_size = EVP_CIPHER_CTX_block_size(&ctx); if (in_len + block_size < in_len) { OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_TOO_LONG); goto err; } buf = OPENSSL_malloc(in_len + block_size); if (buf == NULL) { OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_MALLOC_FAILURE); goto err; } if (!EVP_CipherUpdate(&ctx, buf, &n, in, in_len)) { OPENSSL_free(buf); OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB); goto err; } *out_len = n; if (!EVP_CipherFinal_ex(&ctx, buf + n, &n)) { OPENSSL_free(buf); OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB); goto err; } *out_len += n; *out = buf; ret = 1; err: EVP_CIPHER_CTX_cleanup(&ctx); return ret; } static void *pkcs12_item_decrypt_d2i(X509_ALGOR *algor, const ASN1_ITEM *it, const uint8_t *pass_raw, size_t pass_raw_len, ASN1_OCTET_STRING *oct) { uint8_t *out; const uint8_t *p; void *ret; size_t out_len; if (!pbe_crypt(algor, pass_raw, pass_raw_len, oct->data, oct->length, &out, &out_len, 0 /* decrypt */)) { OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_CRYPT_ERROR); return NULL; } p = out; ret = ASN1_item_d2i(NULL, &p, out_len, it); OPENSSL_cleanse(out, out_len); if (!ret) { OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_DECODE_ERROR); } OPENSSL_free(out); return ret; } PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, int pass_len) { uint8_t *pass_raw = NULL; size_t pass_raw_len = 0; PKCS8_PRIV_KEY_INFO *ret; if (pass) { if (pass_len == -1) { pass_len = strlen(pass); } if (!ascii_to_ucs2(pass, pass_len, &pass_raw, &pass_raw_len)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_decrypt, PKCS8_R_DECODE_ERROR); return NULL; } } ret = PKCS8_decrypt_pbe(pkcs8, pass_raw, pass_raw_len); if (pass_raw) { OPENSSL_cleanse(pass_raw, pass_raw_len); OPENSSL_free(pass_raw); } return ret; } PKCS8_PRIV_KEY_INFO *PKCS8_decrypt_pbe(X509_SIG *pkcs8, const uint8_t *pass_raw, size_t pass_raw_len) { return pkcs12_item_decrypt_d2i(pkcs8->algor, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass_raw, pass_raw_len, pkcs8->digest); } static ASN1_OCTET_STRING *pkcs12_item_i2d_encrypt(X509_ALGOR *algor, const ASN1_ITEM *it, const uint8_t *pass_raw, size_t pass_raw_len, void *obj) { ASN1_OCTET_STRING *oct; uint8_t *in = NULL; int in_len; size_t crypt_len; oct = M_ASN1_OCTET_STRING_new(); if (oct == NULL) { OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, ERR_R_MALLOC_FAILURE); return NULL; } in_len = ASN1_item_i2d(obj, &in, it); if (!in) { OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCODE_ERROR); return NULL; } if (!pbe_crypt(algor, pass_raw, pass_raw_len, in, in_len, &oct->data, &crypt_len, 1 /* encrypt */)) { OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCRYPT_ERROR); OPENSSL_free(in); return NULL; } oct->length = crypt_len; OPENSSL_cleanse(in, in_len); OPENSSL_free(in); return oct; } X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, int pass_len, uint8_t *salt, size_t salt_len, int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { uint8_t *pass_raw = NULL; size_t pass_raw_len = 0; X509_SIG *ret; if (pass) { if (pass_len == -1) { pass_len = strlen(pass); } if (!ascii_to_ucs2(pass, pass_len, &pass_raw, &pass_raw_len)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, PKCS8_R_DECODE_ERROR); return NULL; } } ret = PKCS8_encrypt_pbe(pbe_nid, pass_raw, pass_raw_len, salt, salt_len, iterations, p8inf); if (pass_raw) { OPENSSL_cleanse(pass_raw, pass_raw_len); OPENSSL_free(pass_raw); } return ret; } X509_SIG *PKCS8_encrypt_pbe(int pbe_nid, const uint8_t *pass_raw, size_t pass_raw_len, uint8_t *salt, size_t salt_len, int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { X509_SIG *pkcs8 = NULL; X509_ALGOR *pbe; pkcs8 = X509_SIG_new(); if (pkcs8 == NULL) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt_pbe, ERR_R_MALLOC_FAILURE); goto err; } pbe = PKCS5_pbe_set(pbe_nid, iterations, salt, salt_len); if (!pbe) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt_pbe, ERR_R_ASN1_LIB); goto err; } X509_ALGOR_free(pkcs8->algor); pkcs8->algor = pbe; M_ASN1_OCTET_STRING_free(pkcs8->digest); pkcs8->digest = pkcs12_item_i2d_encrypt( pbe, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass_raw, pass_raw_len, p8inf); if (!pkcs8->digest) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt_pbe, PKCS8_R_ENCRYPT_ERROR); goto err; } return pkcs8; err: X509_SIG_free(pkcs8); return NULL; } EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { EVP_PKEY *pkey = NULL; ASN1_OBJECT *algoid; char obj_tmp[80]; if (!PKCS8_pkey_get0(&algoid, NULL, NULL, NULL, p8)) { return NULL; } pkey = EVP_PKEY_new(); if (pkey == NULL) { OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, ERR_R_MALLOC_FAILURE); return NULL; } if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(algoid))) { OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); i2t_ASN1_OBJECT(obj_tmp, 80, algoid); ERR_add_error_data(2, "TYPE=", obj_tmp); goto error; } if (pkey->ameth->priv_decode) { if (!pkey->ameth->priv_decode(pkey, p8)) { OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_PRIVATE_KEY_DECODE_ERROR); goto error; } } else { OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_METHOD_NOT_SUPPORTED); goto error; } return pkey; error: EVP_PKEY_free(pkey); return NULL; } PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { PKCS8_PRIV_KEY_INFO *p8; p8 = PKCS8_PRIV_KEY_INFO_new(); if (p8 == NULL) { OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, ERR_R_MALLOC_FAILURE); return NULL; } p8->broken = PKCS8_OK; if (pkey->ameth) { if (pkey->ameth->priv_encode) { if (!pkey->ameth->priv_encode(p8, pkey)) { OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, PKCS8_R_PRIVATE_KEY_ENCODE_ERROR); goto error; } } else { OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, PKCS8_R_METHOD_NOT_SUPPORTED); goto error; } } else { OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); goto error; } return p8; error: PKCS8_PRIV_KEY_INFO_free(p8); return NULL; } struct pkcs12_context { EVP_PKEY **out_key; STACK_OF(X509) *out_certs; uint8_t *password; size_t password_len; }; static int PKCS12_handle_content_info(CBS *content_info, unsigned depth, struct pkcs12_context *ctx); /* PKCS12_handle_content_infos parses a series of PKCS#7 ContentInfos in a * SEQUENCE. */ static int PKCS12_handle_content_infos(CBS *content_infos, unsigned depth, struct pkcs12_context *ctx) { uint8_t *der_bytes = NULL; size_t der_len; CBS in; int ret = 0; /* Generally we only expect depths 0 (the top level, with a * pkcs7-encryptedData and a pkcs7-data) and depth 1 (the various PKCS#12 * bags). */ if (depth > 3) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_infos, PKCS8_R_PKCS12_TOO_DEEPLY_NESTED); return 0; } /* Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, * the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the * conversion cannot see through those wrappings. So each time we step * through one we need to convert to DER again. */ if (!CBS_asn1_ber_to_der(content_infos, &der_bytes, &der_len)) { return 0; } if (der_bytes != NULL) { CBS_init(&in, der_bytes, der_len); } else { CBS_init(&in, CBS_data(content_infos), CBS_len(content_infos)); } if (!CBS_get_asn1(&in, &in, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_infos, PKCS8_R_BAD_PKCS12_DATA); goto err; } while (CBS_len(&in) > 0) { CBS content_info; if (!CBS_get_asn1(&in, &content_info, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_infos, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (!PKCS12_handle_content_info(&content_info, depth + 1, ctx)) { goto err; } } /* NSS includes additional data after the SEQUENCE, but it's an (unwrapped) * copy of the same encrypted private key (with the same IV and * ciphertext)! */ ret = 1; err: OPENSSL_free(der_bytes); return ret; } /* PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a * PKCS#12 structure. */ static int PKCS12_handle_content_info(CBS *content_info, unsigned depth, struct pkcs12_context *ctx) { CBS content_type, wrapped_contents, contents, content_infos; int nid, ret = 0; if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) || !CBS_get_asn1(content_info, &wrapped_contents, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); goto err; } nid = OBJ_cbs2nid(&content_type); if (nid == NID_pkcs7_encrypted) { /* See https://tools.ietf.org/html/rfc2315#section-13. * * PKCS#7 encrypted data inside a PKCS#12 structure is generally an * encrypted certificate bag and it's generally encrypted with 40-bit * RC2-CBC. */ CBS version_bytes, eci, contents_type, ai, encrypted_contents; X509_ALGOR *algor = NULL; const uint8_t *inp; uint8_t *out; size_t out_len; if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) || /* EncryptedContentInfo, see * https://tools.ietf.org/html/rfc2315#section-10.1 */ !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) || /* AlgorithmIdentifier, see * https://tools.ietf.org/html/rfc5280#section-4.1.1.2 */ !CBS_get_asn1_element(&eci, &ai, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&eci, &encrypted_contents, CBS_ASN1_CONTEXT_SPECIFIC | 0)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (OBJ_cbs2nid(&contents_type) != NID_pkcs7_data) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); goto err; } inp = CBS_data(&ai); algor = d2i_X509_ALGOR(NULL, &inp, CBS_len(&ai)); if (algor == NULL) { goto err; } if (inp != CBS_data(&ai) + CBS_len(&ai)) { X509_ALGOR_free(algor); OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (!pbe_crypt(algor, ctx->password, ctx->password_len, CBS_data(&encrypted_contents), CBS_len(&encrypted_contents), &out, &out_len, 0 /* decrypt */)) { X509_ALGOR_free(algor); goto err; } X509_ALGOR_free(algor); CBS_init(&content_infos, out, out_len); ret = PKCS12_handle_content_infos(&content_infos, depth + 1, ctx); OPENSSL_free(out); } else if (nid == NID_pkcs7_data) { CBS octet_string_contents; if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); goto err; } ret = PKCS12_handle_content_infos(&octet_string_contents, depth + 1, ctx); } else if (nid == NID_pkcs8ShroudedKeyBag) { /* See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section * 4.2.2. */ const uint8_t *inp = CBS_data(&wrapped_contents); PKCS8_PRIV_KEY_INFO *pki = NULL; X509_SIG *encrypted = NULL; if (*ctx->out_key) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); goto err; } /* encrypted isn't actually an X.509 signature, but it has the same * structure as one and so |X509_SIG| is reused to store it. */ encrypted = d2i_X509_SIG(NULL, &inp, CBS_len(&wrapped_contents)); if (encrypted == NULL) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (inp != CBS_data(&wrapped_contents) + CBS_len(&wrapped_contents)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); X509_SIG_free(encrypted); goto err; } pki = PKCS8_decrypt_pbe(encrypted, ctx->password, ctx->password_len); X509_SIG_free(encrypted); if (pki == NULL) { goto err; } *ctx->out_key = EVP_PKCS82PKEY(pki); PKCS8_PRIV_KEY_INFO_free(pki); if (ctx->out_key == NULL) { goto err; } ret = 1; } else if (nid == NID_certBag) { CBS cert_bag, cert_type, wrapped_cert, cert; if (!CBS_get_asn1(&wrapped_contents, &cert_bag, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || !CBS_get_asn1(&cert_bag, &wrapped_cert, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (OBJ_cbs2nid(&cert_type) == NID_x509Certificate) { const uint8_t *inp = CBS_data(&cert); X509 *x509 = d2i_X509(NULL, &inp, CBS_len(&cert)); if (!x509) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (inp != CBS_data(&cert) + CBS_len(&cert)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, PKCS8_R_BAD_PKCS12_DATA); X509_free(x509); goto err; } if (0 == sk_X509_push(ctx->out_certs, x509)) { X509_free(x509); goto err; } } ret = 1; } else { /* Unknown element type - ignore it. */ ret = 1; } err: return ret; } int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, CBS *ber_in, const char *password) { uint8_t *der_bytes = NULL; size_t der_len; CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; uint64_t version; int ret = 0; struct pkcs12_context ctx; const size_t original_out_certs_len = sk_X509_num(out_certs); /* The input may be in BER format. */ if (!CBS_asn1_ber_to_der(ber_in, &der_bytes, &der_len)) { return 0; } if (der_bytes != NULL) { CBS_init(&in, der_bytes, der_len); } else { CBS_init(&in, CBS_data(ber_in), CBS_len(ber_in)); } *out_key = NULL; memset(&ctx, 0, sizeof(ctx)); /* See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section * four. */ if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) || CBS_len(&in) != 0 || !CBS_get_asn1_uint64(&pfx, &version)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (version < 3) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_VERSION); goto err; } if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (CBS_len(&pfx) == 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_MISSING_MAC); goto err; } if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); goto err; } /* authsafe is a PKCS#7 ContentInfo. See * https://tools.ietf.org/html/rfc2315#section-7. */ if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) || !CBS_get_asn1(&authsafe, &wrapped_authsafes, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); goto err; } /* The content type can either be |NID_pkcs7_data| or |NID_pkcs7_signed|. The * latter indicates that it's signed by a public key, which isn't * supported. */ if (OBJ_cbs2nid(&content_type) != NID_pkcs7_data) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); goto err; } if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); goto err; } ctx.out_key = out_key; ctx.out_certs = out_certs; if (!ascii_to_ucs2(password, strlen(password), &ctx.password, &ctx.password_len)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_DECODE_ERROR); goto err; } /* Verify the MAC. */ { CBS mac, hash_type_seq, hash_oid, salt, expected_mac; uint64_t iterations; int hash_nid; const EVP_MD *md; uint8_t hmac_key[EVP_MAX_MD_SIZE]; uint8_t hmac[EVP_MAX_MD_SIZE]; unsigned hmac_len; if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&mac, &hash_type_seq, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&hash_type_seq, &hash_oid, CBS_ASN1_OBJECT) || !CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) || !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); goto err; } /* The iteration count is optional and the default is one. */ iterations = 1; if (CBS_len(&mac_data) > 0) { if (!CBS_get_asn1_uint64(&mac_data, &iterations) || iterations > INT_MAX) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); goto err; } } hash_nid = OBJ_cbs2nid(&hash_oid); if (hash_nid == NID_undef || (md = EVP_get_digestbynid(hash_nid)) == NULL) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_UNKNOWN_HASH); goto err; } if (!pkcs12_key_gen_raw(ctx.password, ctx.password_len, CBS_data(&salt), CBS_len(&salt), PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key, md)) { goto err; } if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(&authsafes), CBS_len(&authsafes), hmac, &hmac_len)) { goto err; } if (!CBS_mem_equal(&expected_mac, hmac, hmac_len)) { OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_INCORRECT_PASSWORD); goto err; } } /* authsafes contains a series of PKCS#7 ContentInfos. */ if (!PKCS12_handle_content_infos(&authsafes, 0, &ctx)) { goto err; } ret = 1; err: OPENSSL_free(ctx.password); OPENSSL_free(der_bytes); if (!ret) { EVP_PKEY_free(*out_key); *out_key = NULL; while (sk_X509_num(out_certs) > original_out_certs_len) { X509 *x509 = sk_X509_pop(out_certs); X509_free(x509); } } return ret; } void PKCS12_PBE_add(void) {} struct pkcs12_st { uint8_t *ber_bytes; size_t ber_len; }; PKCS12* d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, size_t ber_len) { PKCS12 *p12; /* out_p12 must be NULL because we don't export the PKCS12 structure. */ assert(out_p12 == NULL); p12 = OPENSSL_malloc(sizeof(PKCS12)); if (!p12) { return NULL; } p12->ber_bytes = OPENSSL_malloc(ber_len); if (!p12->ber_bytes) { OPENSSL_free(p12); return NULL; } memcpy(p12->ber_bytes, *ber_bytes, ber_len); p12->ber_len = ber_len; *ber_bytes += ber_len; return p12; } PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { size_t used = 0; BUF_MEM *buf; const uint8_t *dummy; static const size_t kMaxSize = 256 * 1024; PKCS12 *ret = NULL; buf = BUF_MEM_new(); if (buf == NULL) { return NULL; } if (BUF_MEM_grow(buf, 8192) == 0) { goto out; } for (;;) { int n = BIO_read(bio, &buf->data[used], buf->length - used); if (n < 0) { goto out; } if (n == 0) { break; } used += n; if (used < buf->length) { continue; } if (buf->length > kMaxSize || BUF_MEM_grow(buf, buf->length * 2) == 0) { goto out; } } dummy = (uint8_t*) buf->data; ret = d2i_PKCS12(out_p12, &dummy, used); out: BUF_MEM_free(buf); return ret; } PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { BIO *bio; PKCS12 *ret; bio = BIO_new_fp(fp, 0 /* don't take ownership */); if (!bio) { return NULL; } ret = d2i_PKCS12_bio(bio, out_p12); BIO_free(bio); return ret; } int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, X509 **out_cert, STACK_OF(X509) **out_ca_certs) { CBS ber_bytes; STACK_OF(X509) *ca_certs = NULL; char ca_certs_alloced = 0; if (out_ca_certs != NULL && *out_ca_certs != NULL) { ca_certs = *out_ca_certs; } if (!ca_certs) { ca_certs = sk_X509_new_null(); if (ca_certs == NULL) { return 0; } ca_certs_alloced = 1; } CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len); if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) { if (ca_certs_alloced) { sk_X509_free(ca_certs); } return 0; } *out_cert = NULL; if (sk_X509_num(ca_certs) > 0) { *out_cert = sk_X509_shift(ca_certs); } if (out_ca_certs) { *out_ca_certs = ca_certs; } else { sk_X509_pop_free(ca_certs, X509_free); } return 1; } void PKCS12_free(PKCS12 *p12) { OPENSSL_free(p12->ber_bytes); OPENSSL_free(p12); }