/* ====================================================================
 * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==================================================================== */

#include <openssl/modes.h>

#include <assert.h>
#include <string.h>

#include <openssl/mem.h>
#include <openssl/cpu.h>

#include "internal.h"
#include "../internal.h"


#if !defined(OPENSSL_NO_ASM) &&                         \
    (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
     defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
#define GHASH_ASM
#endif

#if defined(BSWAP4) && STRICT_ALIGNMENT == 1
/* redefine, because alignment is ensured */
#undef GETU32
#define GETU32(p) BSWAP4(*(const uint32_t *)(p))
#undef PUTU32
#define PUTU32(p, v) *(uint32_t *)(p) = BSWAP4(v)
#endif

#define PACK(s) ((size_t)(s) << (sizeof(size_t) * 8 - 16))
#define REDUCE1BIT(V)                                                  \
  do {                                                                 \
    if (sizeof(size_t) == 8) {                                         \
      uint64_t T = OPENSSL_U64(0xe100000000000000) & (0 - (V.lo & 1)); \
      V.lo = (V.hi << 63) | (V.lo >> 1);                               \
      V.hi = (V.hi >> 1) ^ T;                                          \
    } else {                                                           \
      uint32_t T = 0xe1000000U & (0 - (uint32_t)(V.lo & 1));           \
      V.lo = (V.hi << 63) | (V.lo >> 1);                               \
      V.hi = (V.hi >> 1) ^ ((uint64_t)T << 32);                        \
    }                                                                  \
  } while (0)


static void gcm_init_4bit(u128 Htable[16], uint64_t H[2]) {
  u128 V;

  Htable[0].hi = 0;
  Htable[0].lo = 0;
  V.hi = H[0];
  V.lo = H[1];

  Htable[8] = V;
  REDUCE1BIT(V);
  Htable[4] = V;
  REDUCE1BIT(V);
  Htable[2] = V;
  REDUCE1BIT(V);
  Htable[1] = V;
  Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
  V = Htable[4];
  Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
  Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
  Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
  V = Htable[8];
  Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
  Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
  Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
  Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
  Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
  Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
  Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;

#if defined(GHASH_ASM) && defined(OPENSSL_ARM)
  /* ARM assembler expects specific dword order in Htable. */
  {
    int j;
    const union {
      long one;
      char little;
    } is_endian = {1};

    if (is_endian.little) {
      for (j = 0; j < 16; ++j) {
        V = Htable[j];
        Htable[j].hi = V.lo;
        Htable[j].lo = V.hi;
      }
    } else {
      for (j = 0; j < 16; ++j) {
        V = Htable[j];
        Htable[j].hi = V.lo << 32 | V.lo >> 32;
        Htable[j].lo = V.hi << 32 | V.hi >> 32;
      }
    }
  }
#endif
}

#if !defined(GHASH_ASM) || defined(OPENSSL_AARCH64)
static const size_t rem_4bit[16] = {
    PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
    PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
    PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
    PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)};

static void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]) {
  u128 Z;
  int cnt = 15;
  size_t rem, nlo, nhi;
  const union {
    long one;
    char little;
  } is_endian = {1};

  nlo = ((const uint8_t *)Xi)[15];
  nhi = nlo >> 4;
  nlo &= 0xf;

  Z.hi = Htable[nlo].hi;
  Z.lo = Htable[nlo].lo;

  while (1) {
    rem = (size_t)Z.lo & 0xf;
    Z.lo = (Z.hi << 60) | (Z.lo >> 4);
    Z.hi = (Z.hi >> 4);
    if (sizeof(size_t) == 8) {
      Z.hi ^= rem_4bit[rem];
    } else {
      Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
    }

    Z.hi ^= Htable[nhi].hi;
    Z.lo ^= Htable[nhi].lo;

    if (--cnt < 0) {
      break;
    }

    nlo = ((const uint8_t *)Xi)[cnt];
    nhi = nlo >> 4;
    nlo &= 0xf;

    rem = (size_t)Z.lo & 0xf;
    Z.lo = (Z.hi << 60) | (Z.lo >> 4);
    Z.hi = (Z.hi >> 4);
    if (sizeof(size_t) == 8) {
      Z.hi ^= rem_4bit[rem];
    } else {
      Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
    }

    Z.hi ^= Htable[nlo].hi;
    Z.lo ^= Htable[nlo].lo;
  }

  if (is_endian.little) {
#ifdef BSWAP8
    Xi[0] = BSWAP8(Z.hi);
    Xi[1] = BSWAP8(Z.lo);
#else
    uint8_t *p = (uint8_t *)Xi;
    uint32_t v;
    v = (uint32_t)(Z.hi >> 32);
    PUTU32(p, v);
    v = (uint32_t)(Z.hi);
    PUTU32(p + 4, v);
    v = (uint32_t)(Z.lo >> 32);
    PUTU32(p + 8, v);
    v = (uint32_t)(Z.lo);
    PUTU32(p + 12, v);
#endif
  } else {
    Xi[0] = Z.hi;
    Xi[1] = Z.lo;
  }
}

/* Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
 * details... Compiler-generated code doesn't seem to give any
 * performance improvement, at least not on x86[_64]. It's here
 * mostly as reference and a placeholder for possible future
 * non-trivial optimization[s]... */
static void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                           size_t len) {
  u128 Z;
  int cnt;
  size_t rem, nlo, nhi;
  const union {
    long one;
    char little;
  } is_endian = {1};

  do {
    cnt = 15;
    nlo = ((const uint8_t *)Xi)[15];
    nlo ^= inp[15];
    nhi = nlo >> 4;
    nlo &= 0xf;

    Z.hi = Htable[nlo].hi;
    Z.lo = Htable[nlo].lo;

    while (1) {
      rem = (size_t)Z.lo & 0xf;
      Z.lo = (Z.hi << 60) | (Z.lo >> 4);
      Z.hi = (Z.hi >> 4);
      if (sizeof(size_t) == 8) {
        Z.hi ^= rem_4bit[rem];
      } else {
        Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
      }

      Z.hi ^= Htable[nhi].hi;
      Z.lo ^= Htable[nhi].lo;

      if (--cnt < 0) {
        break;
      }

      nlo = ((const uint8_t *)Xi)[cnt];
      nlo ^= inp[cnt];
      nhi = nlo >> 4;
      nlo &= 0xf;

      rem = (size_t)Z.lo & 0xf;
      Z.lo = (Z.hi << 60) | (Z.lo >> 4);
      Z.hi = (Z.hi >> 4);
      if (sizeof(size_t) == 8) {
        Z.hi ^= rem_4bit[rem];
      } else {
        Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
      }

      Z.hi ^= Htable[nlo].hi;
      Z.lo ^= Htable[nlo].lo;
    }

    if (is_endian.little) {
#ifdef BSWAP8
      Xi[0] = BSWAP8(Z.hi);
      Xi[1] = BSWAP8(Z.lo);
#else
      uint8_t *p = (uint8_t *)Xi;
      uint32_t v;
      v = (uint32_t)(Z.hi >> 32);
      PUTU32(p, v);
      v = (uint32_t)(Z.hi);
      PUTU32(p + 4, v);
      v = (uint32_t)(Z.lo >> 32);
      PUTU32(p + 8, v);
      v = (uint32_t)(Z.lo);
      PUTU32(p + 12, v);
#endif
    } else {
      Xi[0] = Z.hi;
      Xi[1] = Z.lo;
    }
  } while (inp += 16, len -= 16);
}
#else /* GHASH_ASM */
void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                    size_t len);
#endif

#define GCM_MUL(ctx, Xi) gcm_gmult_4bit(ctx->Xi.u, ctx->Htable)
#if defined(GHASH_ASM)
#define GHASH(ctx, in, len) gcm_ghash_4bit((ctx)->Xi.u, (ctx)->Htable, in, len)
/* GHASH_CHUNK is "stride parameter" missioned to mitigate cache
 * trashing effect. In other words idea is to hash data while it's
 * still in L1 cache after encryption pass... */
#define GHASH_CHUNK (3 * 1024)
#endif


#if defined(GHASH_ASM)
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
#define GHASH_ASM_X86_OR_64
#define GCM_FUNCREF_4BIT
void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                     size_t len);

#if defined(OPENSSL_X86)
#define gcm_init_avx gcm_init_clmul
#define gcm_gmult_avx gcm_gmult_clmul
#define gcm_ghash_avx gcm_ghash_clmul
#else
void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len);
#endif

#if defined(OPENSSL_X86)
#define GHASH_ASM_X86
void gcm_gmult_4bit_mmx(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_4bit_mmx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                        size_t len);

void gcm_gmult_4bit_x86(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_4bit_x86(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                        size_t len);
#endif
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
#include "../arm_arch.h"
#if __ARM_ARCH__ >= 7
#define GHASH_ASM_ARM
#define GCM_FUNCREF_4BIT

static int pmull_capable() {
  return (OPENSSL_armcap_P & ARMV8_PMULL) != 0;
}

void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                  size_t len);

#if defined(OPENSSL_ARM)
/* 32-bit ARM also has support for doing GCM with NEON instructions. */
static int neon_capable() {
  return CRYPTO_is_NEON_capable();
}

void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                    size_t len);
#else
/* AArch64 only has the ARMv8 versions of functions. */
static int neon_capable() {
  return 0;
}
void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]) {
  abort();
}
void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]) {
  abort();
}
void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                    size_t len) {
  abort();
}
#endif

#endif
#endif
#endif

#ifdef GCM_FUNCREF_4BIT
#undef GCM_MUL
#define GCM_MUL(ctx, Xi) (*gcm_gmult_p)(ctx->Xi.u, ctx->Htable)
#ifdef GHASH
#undef GHASH
#define GHASH(ctx, in, len) (*gcm_ghash_p)(ctx->Xi.u, ctx->Htable, in, len)
#endif
#endif

GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) {
  GCM128_CONTEXT *ret;

  ret = (GCM128_CONTEXT *)OPENSSL_malloc(sizeof(GCM128_CONTEXT));
  if (ret != NULL) {
    CRYPTO_gcm128_init(ret, key, block);
  }

  return ret;
}

void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) {
  const union {
    long one;
    char little;
  } is_endian = {1};

  memset(ctx, 0, sizeof(*ctx));
  ctx->block = block;
  ctx->key = key;

  (*block)(ctx->H.c, ctx->H.c, key);

  if (is_endian.little) {
/* H is stored in host byte order */
#ifdef BSWAP8
    ctx->H.u[0] = BSWAP8(ctx->H.u[0]);
    ctx->H.u[1] = BSWAP8(ctx->H.u[1]);
#else
    uint8_t *p = ctx->H.c;
    uint64_t hi, lo;
    hi = (uint64_t)GETU32(p) << 32 | GETU32(p + 4);
    lo = (uint64_t)GETU32(p + 8) << 32 | GETU32(p + 12);
    ctx->H.u[0] = hi;
    ctx->H.u[1] = lo;
#endif
  }

#if defined(GHASH_ASM_X86_OR_64)
  if (crypto_gcm_clmul_enabled()) {
    if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */
      gcm_init_avx(ctx->Htable, ctx->H.u);
      ctx->gmult = gcm_gmult_avx;
      ctx->ghash = gcm_ghash_avx;
    } else {
      gcm_init_clmul(ctx->Htable, ctx->H.u);
      ctx->gmult = gcm_gmult_clmul;
      ctx->ghash = gcm_ghash_clmul;
    }
    return;
  }
  gcm_init_4bit(ctx->Htable, ctx->H.u);
#if defined(GHASH_ASM_X86) /* x86 only */
  if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */
    ctx->gmult = gcm_gmult_4bit_mmx;
    ctx->ghash = gcm_ghash_4bit_mmx;
  } else {
    ctx->gmult = gcm_gmult_4bit_x86;
    ctx->ghash = gcm_ghash_4bit_x86;
  }
#else
  ctx->gmult = gcm_gmult_4bit;
  ctx->ghash = gcm_ghash_4bit;
#endif
#elif defined(GHASH_ASM_ARM)
  if (pmull_capable()) {
    gcm_init_v8(ctx->Htable, ctx->H.u);
    ctx->gmult = gcm_gmult_v8;
    ctx->ghash = gcm_ghash_v8;
  } else if (neon_capable()) {
    gcm_init_neon(ctx->Htable,ctx->H.u);
    ctx->gmult = gcm_gmult_neon;
    ctx->ghash = gcm_ghash_neon;
  } else {
    gcm_init_4bit(ctx->Htable, ctx->H.u);
    ctx->gmult = gcm_gmult_4bit;
    ctx->ghash = gcm_ghash_4bit;
  }
#else
  gcm_init_4bit(ctx->Htable, ctx->H.u);
  ctx->gmult = gcm_gmult_4bit;
  ctx->ghash = gcm_ghash_4bit;
#endif
}

void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const uint8_t *iv, size_t len) {
  const union {
    long one;
    char little;
  } is_endian = {1};
  unsigned int ctr;
#ifdef GCM_FUNCREF_4BIT
  void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#endif

  ctx->Yi.u[0] = 0;
  ctx->Yi.u[1] = 0;
  ctx->Xi.u[0] = 0;
  ctx->Xi.u[1] = 0;
  ctx->len.u[0] = 0; /* AAD length */
  ctx->len.u[1] = 0; /* message length */
  ctx->ares = 0;
  ctx->mres = 0;

  if (len == 12) {
    memcpy(ctx->Yi.c, iv, 12);
    ctx->Yi.c[15] = 1;
    ctr = 1;
  } else {
    size_t i;
    uint64_t len0 = len;

    while (len >= 16) {
      for (i = 0; i < 16; ++i) {
        ctx->Yi.c[i] ^= iv[i];
      }
      GCM_MUL(ctx, Yi);
      iv += 16;
      len -= 16;
    }
    if (len) {
      for (i = 0; i < len; ++i) {
        ctx->Yi.c[i] ^= iv[i];
      }
      GCM_MUL(ctx, Yi);
    }
    len0 <<= 3;
    if (is_endian.little) {
#ifdef BSWAP8
      ctx->Yi.u[1] ^= BSWAP8(len0);
#else
      ctx->Yi.c[8] ^= (uint8_t)(len0 >> 56);
      ctx->Yi.c[9] ^= (uint8_t)(len0 >> 48);
      ctx->Yi.c[10] ^= (uint8_t)(len0 >> 40);
      ctx->Yi.c[11] ^= (uint8_t)(len0 >> 32);
      ctx->Yi.c[12] ^= (uint8_t)(len0 >> 24);
      ctx->Yi.c[13] ^= (uint8_t)(len0 >> 16);
      ctx->Yi.c[14] ^= (uint8_t)(len0 >> 8);
      ctx->Yi.c[15] ^= (uint8_t)(len0);
#endif
    } else {
      ctx->Yi.u[1] ^= len0;
    }

    GCM_MUL(ctx, Yi);

    if (is_endian.little) {
      ctr = GETU32(ctx->Yi.c + 12);
    } else {
      ctr = ctx->Yi.d[3];
    }
  }

  (*ctx->block)(ctx->Yi.c, ctx->EK0.c, ctx->key);
  ++ctr;
  if (is_endian.little) {
    PUTU32(ctx->Yi.c + 12, ctr);
  } else {
    ctx->Yi.d[3] = ctr;
  }
}

int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) {
  size_t i;
  unsigned int n;
  uint64_t alen = ctx->len.u[0];
#ifdef GCM_FUNCREF_4BIT
  void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
  void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                      size_t len) = ctx->ghash;
#endif
#endif

  if (ctx->len.u[1]) {
    return 0;
  }

  alen += len;
  if (alen > (OPENSSL_U64(1) << 61) || (sizeof(len) == 8 && alen < len)) {
    return 0;
  }
  ctx->len.u[0] = alen;

  n = ctx->ares;
  if (n) {
    while (n && len) {
      ctx->Xi.c[n] ^= *(aad++);
      --len;
      n = (n + 1) % 16;
    }
    if (n == 0) {
      GCM_MUL(ctx, Xi);
    } else {
      ctx->ares = n;
      return 1;
    }
  }

#ifdef GHASH
  if ((i = (len & (size_t) - 16))) {
    GHASH(ctx, aad, i);
    aad += i;
    len -= i;
  }
#else
  while (len >= 16) {
    for (i = 0; i < 16; ++i) {
      ctx->Xi.c[i] ^= aad[i];
    }
    GCM_MUL(ctx, Xi);
    aad += 16;
    len -= 16;
  }
#endif
  if (len) {
    n = (unsigned int)len;
    for (i = 0; i < len; ++i) {
      ctx->Xi.c[i] ^= aad[i];
    }
  }

  ctx->ares = n;
  return 1;
}

int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const unsigned char *in,
                          unsigned char *out, size_t len) {
  const union {
    long one;
    char little;
  } is_endian = {1};
  unsigned int n, ctr;
  size_t i;
  uint64_t mlen = ctx->len.u[1];
  block128_f block = ctx->block;
  void *key = ctx->key;
#ifdef GCM_FUNCREF_4BIT
  void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
  void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                      size_t len) = ctx->ghash;
#endif
#endif

  mlen += len;
  if (mlen > ((OPENSSL_U64(1) << 36) - 32) ||
      (sizeof(len) == 8 && mlen < len)) {
    return 0;
  }
  ctx->len.u[1] = mlen;

  if (ctx->ares) {
    /* First call to encrypt finalizes GHASH(AAD) */
    GCM_MUL(ctx, Xi);
    ctx->ares = 0;
  }

  if (is_endian.little) {
    ctr = GETU32(ctx->Yi.c + 12);
  } else {
    ctr = ctx->Yi.d[3];
  }

  n = ctx->mres;
  if (n) {
    while (n && len) {
      ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
      --len;
      n = (n + 1) % 16;
    }
    if (n == 0) {
      GCM_MUL(ctx, Xi);
    } else {
      ctx->mres = n;
      return 1;
    }
  }
  if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out) % sizeof(size_t) != 0) {
    for (i = 0; i < len; ++i) {
      if (n == 0) {
        (*block)(ctx->Yi.c, ctx->EKi.c, key);
        ++ctr;
        if (is_endian.little) {
          PUTU32(ctx->Yi.c + 12, ctr);
        } else {
          ctx->Yi.d[3] = ctr;
        }
      }
      ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n];
      n = (n + 1) % 16;
      if (n == 0) {
        GCM_MUL(ctx, Xi);
      }
    }

    ctx->mres = n;
    return 1;
  }
#if defined(GHASH) && defined(GHASH_CHUNK)
  while (len >= GHASH_CHUNK) {
    size_t j = GHASH_CHUNK;

    while (j) {
      size_t *out_t = (size_t *)out;
      const size_t *in_t = (const size_t *)in;

      (*block)(ctx->Yi.c, ctx->EKi.c, key);
      ++ctr;
      if (is_endian.little) {
        PUTU32(ctx->Yi.c + 12, ctr);
      } else {
        ctx->Yi.d[3] = ctr;
      }
      for (i = 0; i < 16 / sizeof(size_t); ++i) {
        out_t[i] = in_t[i] ^ ctx->EKi.t[i];
      }
      out += 16;
      in += 16;
      j -= 16;
    }
    GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);
    len -= GHASH_CHUNK;
  }
  if ((i = (len & (size_t) - 16))) {
    size_t j = i;

    while (len >= 16) {
      size_t *out_t = (size_t *)out;
      const size_t *in_t = (const size_t *)in;

      (*block)(ctx->Yi.c, ctx->EKi.c, key);
      ++ctr;
      if (is_endian.little) {
        PUTU32(ctx->Yi.c + 12, ctr);
      } else {
        ctx->Yi.d[3] = ctr;
      }
      for (i = 0; i < 16 / sizeof(size_t); ++i) {
        out_t[i] = in_t[i] ^ ctx->EKi.t[i];
      }
      out += 16;
      in += 16;
      len -= 16;
    }
    GHASH(ctx, out - j, j);
  }
#else
  while (len >= 16) {
    size_t *out_t = (size_t *)out;
    const size_t *in_t = (const size_t *)in;

    (*block)(ctx->Yi.c, ctx->EKi.c, key);
    ++ctr;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    for (i = 0; i < 16 / sizeof(size_t); ++i) {
      ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i];
    }
    GCM_MUL(ctx, Xi);
    out += 16;
    in += 16;
    len -= 16;
  }
#endif
  if (len) {
    (*block)(ctx->Yi.c, ctx->EKi.c, key);
    ++ctr;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    while (len--) {
      ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
      ++n;
    }
  }

  ctx->mres = n;
  return 1;
}

int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const unsigned char *in,
                          unsigned char *out, size_t len) {
  const union {
    long one;
    char little;
  } is_endian = {1};
  unsigned int n, ctr;
  size_t i;
  uint64_t mlen = ctx->len.u[1];
  block128_f block = ctx->block;
  void *key = ctx->key;
#ifdef GCM_FUNCREF_4BIT
  void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
  void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                      size_t len) = ctx->ghash;
#endif
#endif

  mlen += len;
  if (mlen > ((OPENSSL_U64(1) << 36) - 32) ||
      (sizeof(len) == 8 && mlen < len)) {
    return 0;
  }
  ctx->len.u[1] = mlen;

  if (ctx->ares) {
    /* First call to decrypt finalizes GHASH(AAD) */
    GCM_MUL(ctx, Xi);
    ctx->ares = 0;
  }

  if (is_endian.little) {
    ctr = GETU32(ctx->Yi.c + 12);
  } else {
    ctr = ctx->Yi.d[3];
  }

  n = ctx->mres;
  if (n) {
    while (n && len) {
      uint8_t c = *(in++);
      *(out++) = c ^ ctx->EKi.c[n];
      ctx->Xi.c[n] ^= c;
      --len;
      n = (n + 1) % 16;
    }
    if (n == 0) {
      GCM_MUL(ctx, Xi);
    } else {
      ctx->mres = n;
      return 1;
    }
  }
  if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out) % sizeof(size_t) != 0) {
    for (i = 0; i < len; ++i) {
      uint8_t c;
      if (n == 0) {
        (*block)(ctx->Yi.c, ctx->EKi.c, key);
        ++ctr;
        if (is_endian.little) {
          PUTU32(ctx->Yi.c + 12, ctr);
        } else {
          ctx->Yi.d[3] = ctr;
        }
      }
      c = in[i];
      out[i] = c ^ ctx->EKi.c[n];
      ctx->Xi.c[n] ^= c;
      n = (n + 1) % 16;
      if (n == 0) {
        GCM_MUL(ctx, Xi);
      }
    }

    ctx->mres = n;
    return 1;
  }
#if defined(GHASH) && defined(GHASH_CHUNK)
  while (len >= GHASH_CHUNK) {
    size_t j = GHASH_CHUNK;

    GHASH(ctx, in, GHASH_CHUNK);
    while (j) {
      size_t *out_t = (size_t *)out;
      const size_t *in_t = (const size_t *)in;

      (*block)(ctx->Yi.c, ctx->EKi.c, key);
      ++ctr;
      if (is_endian.little) {
        PUTU32(ctx->Yi.c + 12, ctr);
      } else {
        ctx->Yi.d[3] = ctr;
      }
      for (i = 0; i < 16 / sizeof(size_t); ++i) {
        out_t[i] = in_t[i] ^ ctx->EKi.t[i];
      }
      out += 16;
      in += 16;
      j -= 16;
    }
    len -= GHASH_CHUNK;
  }
  if ((i = (len & (size_t) - 16))) {
    GHASH(ctx, in, i);
    while (len >= 16) {
      size_t *out_t = (size_t *)out;
      const size_t *in_t = (const size_t *)in;

      (*block)(ctx->Yi.c, ctx->EKi.c, key);
      ++ctr;
      if (is_endian.little) {
        PUTU32(ctx->Yi.c + 12, ctr);
      } else {
        ctx->Yi.d[3] = ctr;
      }
      for (i = 0; i < 16 / sizeof(size_t); ++i) {
        out_t[i] = in_t[i] ^ ctx->EKi.t[i];
      }
      out += 16;
      in += 16;
      len -= 16;
    }
  }
#else
  while (len >= 16) {
    size_t *out_t = (size_t *)out;
    const size_t *in_t = (const size_t *)in;

    (*block)(ctx->Yi.c, ctx->EKi.c, key);
    ++ctr;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    for (i = 0; i < 16 / sizeof(size_t); ++i) {
      size_t c = in_t[i];
      out_t[i] = c ^ ctx->EKi.t[i];
      ctx->Xi.t[i] ^= c;
    }
    GCM_MUL(ctx, Xi);
    out += 16;
    in += 16;
    len -= 16;
  }
#endif
  if (len) {
    (*block)(ctx->Yi.c, ctx->EKi.c, key);
    ++ctr;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    while (len--) {
      uint8_t c = in[n];
      ctx->Xi.c[n] ^= c;
      out[n] = c ^ ctx->EKi.c[n];
      ++n;
    }
  }

  ctx->mres = n;
  return 1;
}

int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const uint8_t *in,
                                uint8_t *out, size_t len, ctr128_f stream) {
  const union {
    long one;
    char little;
  } is_endian = {1};
  unsigned int n, ctr;
  size_t i;
  uint64_t mlen = ctx->len.u[1];
  void *key = ctx->key;
#ifdef GCM_FUNCREF_4BIT
  void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
  void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                      size_t len) = ctx->ghash;
#endif
#endif

  mlen += len;
  if (mlen > ((OPENSSL_U64(1) << 36) - 32) ||
      (sizeof(len) == 8 && mlen < len)) {
    return 0;
  }
  ctx->len.u[1] = mlen;

  if (ctx->ares) {
    /* First call to encrypt finalizes GHASH(AAD) */
    GCM_MUL(ctx, Xi);
    ctx->ares = 0;
  }

  if (is_endian.little) {
    ctr = GETU32(ctx->Yi.c + 12);
  } else {
    ctr = ctx->Yi.d[3];
  }

  n = ctx->mres;
  if (n) {
    while (n && len) {
      ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
      --len;
      n = (n + 1) % 16;
    }
    if (n == 0) {
      GCM_MUL(ctx, Xi);
    } else {
      ctx->mres = n;
      return 1;
    }
  }
#if defined(GHASH)
  while (len >= GHASH_CHUNK) {
    (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
    ctr += GHASH_CHUNK / 16;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    GHASH(ctx, out, GHASH_CHUNK);
    out += GHASH_CHUNK;
    in += GHASH_CHUNK;
    len -= GHASH_CHUNK;
  }
#endif
  if ((i = (len & (size_t) - 16))) {
    size_t j = i / 16;

    (*stream)(in, out, j, key, ctx->Yi.c);
    ctr += (unsigned int)j;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    in += i;
    len -= i;
#if defined(GHASH)
    GHASH(ctx, out, i);
    out += i;
#else
    while (j--) {
      for (i = 0; i < 16; ++i) {
        ctx->Xi.c[i] ^= out[i];
      }
      GCM_MUL(ctx, Xi);
      out += 16;
    }
#endif
  }
  if (len) {
    (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key);
    ++ctr;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    while (len--) {
      ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
      ++n;
    }
  }

  ctx->mres = n;
  return 1;
}

int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const uint8_t *in,
                                uint8_t *out, size_t len,
                                ctr128_f stream) {
  const union {
    long one;
    char little;
  } is_endian = {1};
  unsigned int n, ctr;
  size_t i;
  uint64_t mlen = ctx->len.u[1];
  void *key = ctx->key;
#ifdef GCM_FUNCREF_4BIT
  void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
  void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
                      size_t len) = ctx->ghash;
#endif
#endif

  mlen += len;
  if (mlen > ((OPENSSL_U64(1) << 36) - 32) ||
      (sizeof(len) == 8 && mlen < len)) {
    return 0;
  }
  ctx->len.u[1] = mlen;

  if (ctx->ares) {
    /* First call to decrypt finalizes GHASH(AAD) */
    GCM_MUL(ctx, Xi);
    ctx->ares = 0;
  }

  if (is_endian.little) {
    ctr = GETU32(ctx->Yi.c + 12);
  } else {
    ctr = ctx->Yi.d[3];
  }

  n = ctx->mres;
  if (n) {
    while (n && len) {
      uint8_t c = *(in++);
      *(out++) = c ^ ctx->EKi.c[n];
      ctx->Xi.c[n] ^= c;
      --len;
      n = (n + 1) % 16;
    }
    if (n == 0) {
      GCM_MUL(ctx, Xi);
    } else {
      ctx->mres = n;
      return 1;
    }
  }
#if defined(GHASH)
  while (len >= GHASH_CHUNK) {
    GHASH(ctx, in, GHASH_CHUNK);
    (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
    ctr += GHASH_CHUNK / 16;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    out += GHASH_CHUNK;
    in += GHASH_CHUNK;
    len -= GHASH_CHUNK;
  }
#endif
  if ((i = (len & (size_t) - 16))) {
    size_t j = i / 16;

#if defined(GHASH)
    GHASH(ctx, in, i);
#else
    while (j--) {
      size_t k;
      for (k = 0; k < 16; ++k) {
        ctx->Xi.c[k] ^= in[k];
      }
      GCM_MUL(ctx, Xi);
      in += 16;
    }
    j = i / 16;
    in -= i;
#endif
    (*stream)(in, out, j, key, ctx->Yi.c);
    ctr += (unsigned int)j;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    out += i;
    in += i;
    len -= i;
  }
  if (len) {
    (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key);
    ++ctr;
    if (is_endian.little) {
      PUTU32(ctx->Yi.c + 12, ctr);
    } else {
      ctx->Yi.d[3] = ctr;
    }
    while (len--) {
      uint8_t c = in[n];
      ctx->Xi.c[n] ^= c;
      out[n] = c ^ ctx->EKi.c[n];
      ++n;
    }
  }

  ctx->mres = n;
  return 1;
}

int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) {
  const union {
    long one;
    char little;
  } is_endian = {1};
  uint64_t alen = ctx->len.u[0] << 3;
  uint64_t clen = ctx->len.u[1] << 3;
#ifdef GCM_FUNCREF_4BIT
  void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#endif

  if (ctx->mres || ctx->ares) {
    GCM_MUL(ctx, Xi);
  }

  if (is_endian.little) {
#ifdef BSWAP8
    alen = BSWAP8(alen);
    clen = BSWAP8(clen);
#else
    uint8_t *p = ctx->len.c;

    ctx->len.u[0] = alen;
    ctx->len.u[1] = clen;

    alen = (uint64_t)GETU32(p) << 32 | GETU32(p + 4);
    clen = (uint64_t)GETU32(p + 8) << 32 | GETU32(p + 12);
#endif
  }

  ctx->Xi.u[0] ^= alen;
  ctx->Xi.u[1] ^= clen;
  GCM_MUL(ctx, Xi);

  ctx->Xi.u[0] ^= ctx->EK0.u[0];
  ctx->Xi.u[1] ^= ctx->EK0.u[1];

  if (tag && len <= sizeof(ctx->Xi)) {
    return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0;
  } else {
    return 0;
  }
}

void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) {
  CRYPTO_gcm128_finish(ctx, NULL, 0);
  memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c));
}

void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) {
  if (ctx) {
    OPENSSL_cleanse(ctx, sizeof(*ctx));
    OPENSSL_free(ctx);
  }
}

#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
int crypto_gcm_clmul_enabled(void) {
#ifdef GHASH_ASM
  return OPENSSL_ia32cap_P[0] & (1 << 24) &&  /* check FXSR bit */
    OPENSSL_ia32cap_P[1] & (1 << 1);  /* check PCLMULQDQ bit */
#else
  return 0;
#endif
}
#endif