/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <errno.h> #include <libgen.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/statfs.h> #include <sys/types.h> #include <fcntl.h> #include <unistd.h> #include <stdbool.h> #include "mincrypt/sha.h" #include "applypatch.h" #include "mtdutils/mtdutils.h" #include "edify/expr.h" static int LoadPartitionContents(const char* filename, FileContents* file); static ssize_t FileSink(const unsigned char* data, ssize_t len, void* token); static int GenerateTarget(FileContents* source_file, const Value* source_patch_value, FileContents* copy_file, const Value* copy_patch_value, const char* source_filename, const char* target_filename, const uint8_t target_sha1[SHA_DIGEST_SIZE], size_t target_size, const Value* bonus_data); static int mtd_partitions_scanned = 0; // Read a file into memory; store the file contents and associated // metadata in *file. // // Return 0 on success. int LoadFileContents(const char* filename, FileContents* file) { file->data = NULL; // A special 'filename' beginning with "MTD:" or "EMMC:" means to // load the contents of a partition. if (strncmp(filename, "MTD:", 4) == 0 || strncmp(filename, "EMMC:", 5) == 0) { return LoadPartitionContents(filename, file); } if (stat(filename, &file->st) != 0) { printf("failed to stat \"%s\": %s\n", filename, strerror(errno)); return -1; } file->size = file->st.st_size; file->data = malloc(file->size); FILE* f = fopen(filename, "rb"); if (f == NULL) { printf("failed to open \"%s\": %s\n", filename, strerror(errno)); free(file->data); file->data = NULL; return -1; } ssize_t bytes_read = fread(file->data, 1, file->size, f); if (bytes_read != file->size) { printf("short read of \"%s\" (%ld bytes of %ld)\n", filename, (long)bytes_read, (long)file->size); free(file->data); file->data = NULL; return -1; } fclose(f); SHA_hash(file->data, file->size, file->sha1); return 0; } static size_t* size_array; // comparison function for qsort()ing an int array of indexes into // size_array[]. static int compare_size_indices(const void* a, const void* b) { int aa = *(int*)a; int bb = *(int*)b; if (size_array[aa] < size_array[bb]) { return -1; } else if (size_array[aa] > size_array[bb]) { return 1; } else { return 0; } } // Load the contents of an MTD or EMMC partition into the provided // FileContents. filename should be a string of the form // "MTD:<partition_name>:<size_1>:<sha1_1>:<size_2>:<sha1_2>:..." (or // "EMMC:<partition_device>:..."). The smallest size_n bytes for // which that prefix of the partition contents has the corresponding // sha1 hash will be loaded. It is acceptable for a size value to be // repeated with different sha1s. Will return 0 on success. // // This complexity is needed because if an OTA installation is // interrupted, the partition might contain either the source or the // target data, which might be of different lengths. We need to know // the length in order to read from a partition (there is no // "end-of-file" marker), so the caller must specify the possible // lengths and the hash of the data, and we'll do the load expecting // to find one of those hashes. enum PartitionType { MTD, EMMC }; static int LoadPartitionContents(const char* filename, FileContents* file) { char* copy = strdup(filename); const char* magic = strtok(copy, ":"); enum PartitionType type; if (strcmp(magic, "MTD") == 0) { type = MTD; } else if (strcmp(magic, "EMMC") == 0) { type = EMMC; } else { printf("LoadPartitionContents called with bad filename (%s)\n", filename); return -1; } const char* partition = strtok(NULL, ":"); int i; int colons = 0; for (i = 0; filename[i] != '\0'; ++i) { if (filename[i] == ':') { ++colons; } } if (colons < 3 || colons%2 == 0) { printf("LoadPartitionContents called with bad filename (%s)\n", filename); } int pairs = (colons-1)/2; // # of (size,sha1) pairs in filename int* index = malloc(pairs * sizeof(int)); size_t* size = malloc(pairs * sizeof(size_t)); char** sha1sum = malloc(pairs * sizeof(char*)); for (i = 0; i < pairs; ++i) { const char* size_str = strtok(NULL, ":"); size[i] = strtol(size_str, NULL, 10); if (size[i] == 0) { printf("LoadPartitionContents called with bad size (%s)\n", filename); return -1; } sha1sum[i] = strtok(NULL, ":"); index[i] = i; } // sort the index[] array so it indexes the pairs in order of // increasing size. size_array = size; qsort(index, pairs, sizeof(int), compare_size_indices); MtdReadContext* ctx = NULL; FILE* dev = NULL; switch (type) { case MTD: if (!mtd_partitions_scanned) { mtd_scan_partitions(); mtd_partitions_scanned = 1; } const MtdPartition* mtd = mtd_find_partition_by_name(partition); if (mtd == NULL) { printf("mtd partition \"%s\" not found (loading %s)\n", partition, filename); return -1; } ctx = mtd_read_partition(mtd); if (ctx == NULL) { printf("failed to initialize read of mtd partition \"%s\"\n", partition); return -1; } break; case EMMC: dev = fopen(partition, "rb"); if (dev == NULL) { printf("failed to open emmc partition \"%s\": %s\n", partition, strerror(errno)); return -1; } } SHA_CTX sha_ctx; SHA_init(&sha_ctx); uint8_t parsed_sha[SHA_DIGEST_SIZE]; // allocate enough memory to hold the largest size. file->data = malloc(size[index[pairs-1]]); char* p = (char*)file->data; file->size = 0; // # bytes read so far for (i = 0; i < pairs; ++i) { // Read enough additional bytes to get us up to the next size // (again, we're trying the possibilities in order of increasing // size). size_t next = size[index[i]] - file->size; size_t read = 0; if (next > 0) { switch (type) { case MTD: read = mtd_read_data(ctx, p, next); break; case EMMC: read = fread(p, 1, next, dev); break; } if (next != read) { printf("short read (%zu bytes of %zu) for partition \"%s\"\n", read, next, partition); free(file->data); file->data = NULL; return -1; } SHA_update(&sha_ctx, p, read); file->size += read; } // Duplicate the SHA context and finalize the duplicate so we can // check it against this pair's expected hash. SHA_CTX temp_ctx; memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX)); const uint8_t* sha_so_far = SHA_final(&temp_ctx); if (ParseSha1(sha1sum[index[i]], parsed_sha) != 0) { printf("failed to parse sha1 %s in %s\n", sha1sum[index[i]], filename); free(file->data); file->data = NULL; return -1; } if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_SIZE) == 0) { // we have a match. stop reading the partition; we'll return // the data we've read so far. printf("partition read matched size %zu sha %s\n", size[index[i]], sha1sum[index[i]]); break; } p += read; } switch (type) { case MTD: mtd_read_close(ctx); break; case EMMC: fclose(dev); break; } if (i == pairs) { // Ran off the end of the list of (size,sha1) pairs without // finding a match. printf("contents of partition \"%s\" didn't match %s\n", partition, filename); free(file->data); file->data = NULL; return -1; } const uint8_t* sha_final = SHA_final(&sha_ctx); for (i = 0; i < SHA_DIGEST_SIZE; ++i) { file->sha1[i] = sha_final[i]; } // Fake some stat() info. file->st.st_mode = 0644; file->st.st_uid = 0; file->st.st_gid = 0; free(copy); free(index); free(size); free(sha1sum); return 0; } // Save the contents of the given FileContents object under the given // filename. Return 0 on success. int SaveFileContents(const char* filename, const FileContents* file) { int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR); if (fd < 0) { printf("failed to open \"%s\" for write: %s\n", filename, strerror(errno)); return -1; } ssize_t bytes_written = FileSink(file->data, file->size, &fd); if (bytes_written != file->size) { printf("short write of \"%s\" (%ld bytes of %ld) (%s)\n", filename, (long)bytes_written, (long)file->size, strerror(errno)); close(fd); return -1; } if (fsync(fd) != 0) { printf("fsync of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } if (close(fd) != 0) { printf("close of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } if (chmod(filename, file->st.st_mode) != 0) { printf("chmod of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } if (chown(filename, file->st.st_uid, file->st.st_gid) != 0) { printf("chown of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } return 0; } // Write a memory buffer to 'target' partition, a string of the form // "MTD:<partition>[:...]" or "EMMC:<partition_device>:". Return 0 on // success. int WriteToPartition(unsigned char* data, size_t len, const char* target) { char* copy = strdup(target); const char* magic = strtok(copy, ":"); enum PartitionType type; if (strcmp(magic, "MTD") == 0) { type = MTD; } else if (strcmp(magic, "EMMC") == 0) { type = EMMC; } else { printf("WriteToPartition called with bad target (%s)\n", target); return -1; } const char* partition = strtok(NULL, ":"); if (partition == NULL) { printf("bad partition target name \"%s\"\n", target); return -1; } switch (type) { case MTD: if (!mtd_partitions_scanned) { mtd_scan_partitions(); mtd_partitions_scanned = 1; } const MtdPartition* mtd = mtd_find_partition_by_name(partition); if (mtd == NULL) { printf("mtd partition \"%s\" not found for writing\n", partition); return -1; } MtdWriteContext* ctx = mtd_write_partition(mtd); if (ctx == NULL) { printf("failed to init mtd partition \"%s\" for writing\n", partition); return -1; } size_t written = mtd_write_data(ctx, (char*)data, len); if (written != len) { printf("only wrote %zu of %zu bytes to MTD %s\n", written, len, partition); mtd_write_close(ctx); return -1; } if (mtd_erase_blocks(ctx, -1) < 0) { printf("error finishing mtd write of %s\n", partition); mtd_write_close(ctx); return -1; } if (mtd_write_close(ctx)) { printf("error closing mtd write of %s\n", partition); return -1; } break; case EMMC: { size_t start = 0; int success = 0; int fd = open(partition, O_RDWR | O_SYNC); if (fd < 0) { printf("failed to open %s: %s\n", partition, strerror(errno)); return -1; } int attempt; for (attempt = 0; attempt < 2; ++attempt) { if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) { printf("failed seek on %s: %s\n", partition, strerror(errno)); return -1; } while (start < len) { size_t to_write = len - start; if (to_write > 1<<20) to_write = 1<<20; ssize_t written = TEMP_FAILURE_RETRY(write(fd, data+start, to_write)); if (written == -1) { printf("failed write writing to %s: %s\n", partition, strerror(errno)); return -1; } start += written; } if (fsync(fd) != 0) { printf("failed to sync to %s (%s)\n", partition, strerror(errno)); return -1; } if (close(fd) != 0) { printf("failed to close %s (%s)\n", partition, strerror(errno)); return -1; } fd = open(partition, O_RDONLY); if (fd < 0) { printf("failed to reopen %s for verify (%s)\n", partition, strerror(errno)); return -1; } // drop caches so our subsequent verification read // won't just be reading the cache. sync(); int dc = open("/proc/sys/vm/drop_caches", O_WRONLY); if (TEMP_FAILURE_RETRY(write(dc, "3\n", 2)) == -1) { printf("write to /proc/sys/vm/drop_caches failed: %s\n", strerror(errno)); } else { printf(" caches dropped\n"); } close(dc); sleep(1); // verify if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) { printf("failed to seek back to beginning of %s: %s\n", partition, strerror(errno)); return -1; } unsigned char buffer[4096]; start = len; size_t p; for (p = 0; p < len; p += sizeof(buffer)) { size_t to_read = len - p; if (to_read > sizeof(buffer)) to_read = sizeof(buffer); size_t so_far = 0; while (so_far < to_read) { ssize_t read_count = TEMP_FAILURE_RETRY(read(fd, buffer+so_far, to_read-so_far)); if (read_count == -1) { printf("verify read error %s at %zu: %s\n", partition, p, strerror(errno)); return -1; } if ((size_t)read_count < to_read) { printf("short verify read %s at %zu: %zd %zu %s\n", partition, p, read_count, to_read, strerror(errno)); } so_far += read_count; } if (memcmp(buffer, data+p, to_read)) { printf("verification failed starting at %zu\n", p); start = p; break; } } if (start == len) { printf("verification read succeeded (attempt %d)\n", attempt+1); success = true; break; } } if (!success) { printf("failed to verify after all attempts\n"); return -1; } if (close(fd) != 0) { printf("error closing %s (%s)\n", partition, strerror(errno)); return -1; } sync(); break; } } free(copy); return 0; } // Take a string 'str' of 40 hex digits and parse it into the 20 // byte array 'digest'. 'str' may contain only the digest or be of // the form "<digest>:<anything>". Return 0 on success, -1 on any // error. int ParseSha1(const char* str, uint8_t* digest) { int i; const char* ps = str; uint8_t* pd = digest; for (i = 0; i < SHA_DIGEST_SIZE * 2; ++i, ++ps) { int digit; if (*ps >= '0' && *ps <= '9') { digit = *ps - '0'; } else if (*ps >= 'a' && *ps <= 'f') { digit = *ps - 'a' + 10; } else if (*ps >= 'A' && *ps <= 'F') { digit = *ps - 'A' + 10; } else { return -1; } if (i % 2 == 0) { *pd = digit << 4; } else { *pd |= digit; ++pd; } } if (*ps != '\0') return -1; return 0; } // Search an array of sha1 strings for one matching the given sha1. // Return the index of the match on success, or -1 if no match is // found. int FindMatchingPatch(uint8_t* sha1, char* const * const patch_sha1_str, int num_patches) { int i; uint8_t patch_sha1[SHA_DIGEST_SIZE]; for (i = 0; i < num_patches; ++i) { if (ParseSha1(patch_sha1_str[i], patch_sha1) == 0 && memcmp(patch_sha1, sha1, SHA_DIGEST_SIZE) == 0) { return i; } } return -1; } // Returns 0 if the contents of the file (argv[2]) or the cached file // match any of the sha1's on the command line (argv[3:]). Returns // nonzero otherwise. int applypatch_check(const char* filename, int num_patches, char** const patch_sha1_str) { FileContents file; file.data = NULL; // It's okay to specify no sha1s; the check will pass if the // LoadFileContents is successful. (Useful for reading // partitions, where the filename encodes the sha1s; no need to // check them twice.) if (LoadFileContents(filename, &file) != 0 || (num_patches > 0 && FindMatchingPatch(file.sha1, patch_sha1_str, num_patches) < 0)) { printf("file \"%s\" doesn't have any of expected " "sha1 sums; checking cache\n", filename); free(file.data); file.data = NULL; // If the source file is missing or corrupted, it might be because // we were killed in the middle of patching it. A copy of it // should have been made in CACHE_TEMP_SOURCE. If that file // exists and matches the sha1 we're looking for, the check still // passes. if (LoadFileContents(CACHE_TEMP_SOURCE, &file) != 0) { printf("failed to load cache file\n"); return 1; } if (FindMatchingPatch(file.sha1, patch_sha1_str, num_patches) < 0) { printf("cache bits don't match any sha1 for \"%s\"\n", filename); free(file.data); return 1; } } free(file.data); return 0; } int ShowLicenses() { ShowBSDiffLicense(); return 0; } ssize_t FileSink(const unsigned char* data, ssize_t len, void* token) { int fd = *(int *)token; ssize_t done = 0; ssize_t wrote; while (done < (ssize_t) len) { wrote = TEMP_FAILURE_RETRY(write(fd, data+done, len-done)); if (wrote == -1) { printf("error writing %d bytes: %s\n", (int)(len-done), strerror(errno)); return done; } done += wrote; } return done; } typedef struct { unsigned char* buffer; ssize_t size; ssize_t pos; } MemorySinkInfo; ssize_t MemorySink(const unsigned char* data, ssize_t len, void* token) { MemorySinkInfo* msi = (MemorySinkInfo*)token; if (msi->size - msi->pos < len) { return -1; } memcpy(msi->buffer + msi->pos, data, len); msi->pos += len; return len; } // Return the amount of free space (in bytes) on the filesystem // containing filename. filename must exist. Return -1 on error. size_t FreeSpaceForFile(const char* filename) { struct statfs sf; if (statfs(filename, &sf) != 0) { printf("failed to statfs %s: %s\n", filename, strerror(errno)); return -1; } return sf.f_bsize * sf.f_bavail; } int CacheSizeCheck(size_t bytes) { if (MakeFreeSpaceOnCache(bytes) < 0) { printf("unable to make %ld bytes available on /cache\n", (long)bytes); return 1; } else { return 0; } } static void print_short_sha1(const uint8_t sha1[SHA_DIGEST_SIZE]) { int i; const char* hex = "0123456789abcdef"; for (i = 0; i < 4; ++i) { putchar(hex[(sha1[i]>>4) & 0xf]); putchar(hex[sha1[i] & 0xf]); } } // This function applies binary patches to files in a way that is safe // (the original file is not touched until we have the desired // replacement for it) and idempotent (it's okay to run this program // multiple times). // // - if the sha1 hash of <target_filename> is <target_sha1_string>, // does nothing and exits successfully. // // - otherwise, if the sha1 hash of <source_filename> is one of the // entries in <patch_sha1_str>, the corresponding patch from // <patch_data> (which must be a VAL_BLOB) is applied to produce a // new file (the type of patch is automatically detected from the // blob daat). If that new file has sha1 hash <target_sha1_str>, // moves it to replace <target_filename>, and exits successfully. // Note that if <source_filename> and <target_filename> are not the // same, <source_filename> is NOT deleted on success. // <target_filename> may be the string "-" to mean "the same as // source_filename". // // - otherwise, or if any error is encountered, exits with non-zero // status. // // <source_filename> may refer to a partition to read the source data. // See the comments for the LoadPartition Contents() function above // for the format of such a filename. int applypatch(const char* source_filename, const char* target_filename, const char* target_sha1_str, size_t target_size, int num_patches, char** const patch_sha1_str, Value** patch_data, Value* bonus_data) { printf("patch %s: ", source_filename); if (target_filename[0] == '-' && target_filename[1] == '\0') { target_filename = source_filename; } uint8_t target_sha1[SHA_DIGEST_SIZE]; if (ParseSha1(target_sha1_str, target_sha1) != 0) { printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str); return 1; } FileContents copy_file; FileContents source_file; copy_file.data = NULL; source_file.data = NULL; const Value* source_patch_value = NULL; const Value* copy_patch_value = NULL; // We try to load the target file into the source_file object. if (LoadFileContents(target_filename, &source_file) == 0) { if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_SIZE) == 0) { // The early-exit case: the patch was already applied, this file // has the desired hash, nothing for us to do. printf("already "); print_short_sha1(target_sha1); putchar('\n'); free(source_file.data); return 0; } } if (source_file.data == NULL || (target_filename != source_filename && strcmp(target_filename, source_filename) != 0)) { // Need to load the source file: either we failed to load the // target file, or we did but it's different from the source file. free(source_file.data); source_file.data = NULL; LoadFileContents(source_filename, &source_file); } if (source_file.data != NULL) { int to_use = FindMatchingPatch(source_file.sha1, patch_sha1_str, num_patches); if (to_use >= 0) { source_patch_value = patch_data[to_use]; } } if (source_patch_value == NULL) { free(source_file.data); source_file.data = NULL; printf("source file is bad; trying copy\n"); if (LoadFileContents(CACHE_TEMP_SOURCE, ©_file) < 0) { // fail. printf("failed to read copy file\n"); return 1; } int to_use = FindMatchingPatch(copy_file.sha1, patch_sha1_str, num_patches); if (to_use >= 0) { copy_patch_value = patch_data[to_use]; } if (copy_patch_value == NULL) { // fail. printf("copy file doesn't match source SHA-1s either\n"); free(copy_file.data); return 1; } } int result = GenerateTarget(&source_file, source_patch_value, ©_file, copy_patch_value, source_filename, target_filename, target_sha1, target_size, bonus_data); free(source_file.data); free(copy_file.data); return result; } static int GenerateTarget(FileContents* source_file, const Value* source_patch_value, FileContents* copy_file, const Value* copy_patch_value, const char* source_filename, const char* target_filename, const uint8_t target_sha1[SHA_DIGEST_SIZE], size_t target_size, const Value* bonus_data) { int retry = 1; SHA_CTX ctx; int output; MemorySinkInfo msi; FileContents* source_to_use; char* outname; int made_copy = 0; // assume that target_filename (eg "/system/app/Foo.apk") is located // on the same filesystem as its top-level directory ("/system"). // We need something that exists for calling statfs(). char target_fs[strlen(target_filename)+1]; char* slash = strchr(target_filename+1, '/'); if (slash != NULL) { int count = slash - target_filename; strncpy(target_fs, target_filename, count); target_fs[count] = '\0'; } else { strcpy(target_fs, target_filename); } do { // Is there enough room in the target filesystem to hold the patched // file? if (strncmp(target_filename, "MTD:", 4) == 0 || strncmp(target_filename, "EMMC:", 5) == 0) { // If the target is a partition, we're actually going to // write the output to /tmp and then copy it to the // partition. statfs() always returns 0 blocks free for // /tmp, so instead we'll just assume that /tmp has enough // space to hold the file. // We still write the original source to cache, in case // the partition write is interrupted. if (MakeFreeSpaceOnCache(source_file->size) < 0) { printf("not enough free space on /cache\n"); return 1; } if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) { printf("failed to back up source file\n"); return 1; } made_copy = 1; retry = 0; } else { int enough_space = 0; if (retry > 0) { size_t free_space = FreeSpaceForFile(target_fs); enough_space = (free_space > (256 << 10)) && // 256k (two-block) minimum (free_space > (target_size * 3 / 2)); // 50% margin of error if (!enough_space) { printf("target %ld bytes; free space %ld bytes; retry %d; enough %d\n", (long)target_size, (long)free_space, retry, enough_space); } } if (!enough_space) { retry = 0; } if (!enough_space && source_patch_value != NULL) { // Using the original source, but not enough free space. First // copy the source file to cache, then delete it from the original // location. if (strncmp(source_filename, "MTD:", 4) == 0 || strncmp(source_filename, "EMMC:", 5) == 0) { // It's impossible to free space on the target filesystem by // deleting the source if the source is a partition. If // we're ever in a state where we need to do this, fail. printf("not enough free space for target but source " "is partition\n"); return 1; } if (MakeFreeSpaceOnCache(source_file->size) < 0) { printf("not enough free space on /cache\n"); return 1; } if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) { printf("failed to back up source file\n"); return 1; } made_copy = 1; unlink(source_filename); size_t free_space = FreeSpaceForFile(target_fs); printf("(now %ld bytes free for target) ", (long)free_space); } } const Value* patch; if (source_patch_value != NULL) { source_to_use = source_file; patch = source_patch_value; } else { source_to_use = copy_file; patch = copy_patch_value; } if (patch->type != VAL_BLOB) { printf("patch is not a blob\n"); return 1; } SinkFn sink = NULL; void* token = NULL; output = -1; outname = NULL; if (strncmp(target_filename, "MTD:", 4) == 0 || strncmp(target_filename, "EMMC:", 5) == 0) { // We store the decoded output in memory. msi.buffer = malloc(target_size); if (msi.buffer == NULL) { printf("failed to alloc %ld bytes for output\n", (long)target_size); return 1; } msi.pos = 0; msi.size = target_size; sink = MemorySink; token = &msi; } else { // We write the decoded output to "<tgt-file>.patch". outname = (char*)malloc(strlen(target_filename) + 10); strcpy(outname, target_filename); strcat(outname, ".patch"); output = open(outname, O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR); if (output < 0) { printf("failed to open output file %s: %s\n", outname, strerror(errno)); return 1; } sink = FileSink; token = &output; } char* header = patch->data; ssize_t header_bytes_read = patch->size; SHA_init(&ctx); int result; if (header_bytes_read >= 8 && memcmp(header, "BSDIFF40", 8) == 0) { result = ApplyBSDiffPatch(source_to_use->data, source_to_use->size, patch, 0, sink, token, &ctx); } else if (header_bytes_read >= 8 && memcmp(header, "IMGDIFF2", 8) == 0) { result = ApplyImagePatch(source_to_use->data, source_to_use->size, patch, sink, token, &ctx, bonus_data); } else { printf("Unknown patch file format\n"); return 1; } if (output >= 0) { if (fsync(output) != 0) { printf("failed to fsync file \"%s\" (%s)\n", outname, strerror(errno)); result = 1; } if (close(output) != 0) { printf("failed to close file \"%s\" (%s)\n", outname, strerror(errno)); result = 1; } } if (result != 0) { if (retry == 0) { printf("applying patch failed\n"); return result != 0; } else { printf("applying patch failed; retrying\n"); } if (outname != NULL) { unlink(outname); } } else { // succeeded; no need to retry break; } } while (retry-- > 0); const uint8_t* current_target_sha1 = SHA_final(&ctx); if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_SIZE) != 0) { printf("patch did not produce expected sha1\n"); return 1; } else { printf("now "); print_short_sha1(target_sha1); putchar('\n'); } if (output < 0) { // Copy the temp file to the partition. if (WriteToPartition(msi.buffer, msi.pos, target_filename) != 0) { printf("write of patched data to %s failed\n", target_filename); return 1; } free(msi.buffer); } else { // Give the .patch file the same owner, group, and mode of the // original source file. if (chmod(outname, source_to_use->st.st_mode) != 0) { printf("chmod of \"%s\" failed: %s\n", outname, strerror(errno)); return 1; } if (chown(outname, source_to_use->st.st_uid, source_to_use->st.st_gid) != 0) { printf("chown of \"%s\" failed: %s\n", outname, strerror(errno)); return 1; } // Finally, rename the .patch file to replace the target file. if (rename(outname, target_filename) != 0) { printf("rename of .patch to \"%s\" failed: %s\n", target_filename, strerror(errno)); return 1; } } // If this run of applypatch created the copy, and we're here, we // can delete it. if (made_copy) unlink(CACHE_TEMP_SOURCE); // Success! return 0; }