/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "card_table.h" #include "base/logging.h" #include "card_table-inl.h" #include "gc/heap.h" #include "gc/space/space.h" #include "heap_bitmap.h" #include "mem_map.h" #include "runtime.h" #include "utils.h" namespace art { namespace gc { namespace accounting { constexpr size_t CardTable::kCardShift; constexpr size_t CardTable::kCardSize; constexpr uint8_t CardTable::kCardClean; constexpr uint8_t CardTable::kCardDirty; /* * Maintain a card table from the write barrier. All writes of * non-null values to heap addresses should go through an entry in * WriteBarrier, and from there to here. * * The heap is divided into "cards" of GC_CARD_SIZE bytes, as * determined by GC_CARD_SHIFT. The card table contains one byte of * data per card, to be used by the GC. The value of the byte will be * one of GC_CARD_CLEAN or GC_CARD_DIRTY. * * After any store of a non-null object pointer into a heap object, * code is obliged to mark the card dirty. The setters in * object.h [such as SetFieldObject] do this for you. The * compiler also contains code to mark cards as dirty. * * The card table's base [the "biased card table"] gets set to a * rather strange value. In order to keep the JIT from having to * fabricate or load GC_DIRTY_CARD to store into the card table, * biased base is within the mmap allocation at a point where its low * byte is equal to GC_DIRTY_CARD. See CardTable::Create for details. */ CardTable* CardTable::Create(const uint8_t* heap_begin, size_t heap_capacity) { /* Set up the card table */ size_t capacity = heap_capacity / kCardSize; /* Allocate an extra 256 bytes to allow fixed low-byte of base */ std::string error_msg; std::unique_ptr<MemMap> mem_map( MemMap::MapAnonymous("card table", nullptr, capacity + 256, PROT_READ | PROT_WRITE, false, false, &error_msg)); CHECK(mem_map.get() != nullptr) << "couldn't allocate card table: " << error_msg; // All zeros is the correct initial value; all clean. Anonymous mmaps are initialized to zero, we // don't clear the card table to avoid unnecessary pages being allocated static_assert(kCardClean == 0, "kCardClean must be 0"); uint8_t* cardtable_begin = mem_map->Begin(); CHECK(cardtable_begin != nullptr); // We allocated up to a bytes worth of extra space to allow biased_begin's byte value to equal // kCardDirty, compute a offset value to make this the case size_t offset = 0; uint8_t* biased_begin = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(cardtable_begin) - (reinterpret_cast<uintptr_t>(heap_begin) >> kCardShift)); uintptr_t biased_byte = reinterpret_cast<uintptr_t>(biased_begin) & 0xff; if (biased_byte != kCardDirty) { int delta = kCardDirty - biased_byte; offset = delta + (delta < 0 ? 0x100 : 0); biased_begin += offset; } CHECK_EQ(reinterpret_cast<uintptr_t>(biased_begin) & 0xff, kCardDirty); return new CardTable(mem_map.release(), biased_begin, offset); } CardTable::CardTable(MemMap* mem_map, uint8_t* biased_begin, size_t offset) : mem_map_(mem_map), biased_begin_(biased_begin), offset_(offset) { } CardTable::~CardTable() { // Destroys MemMap via std::unique_ptr<>. } void CardTable::ClearSpaceCards(space::ContinuousSpace* space) { // TODO: clear just the range of the table that has been modified uint8_t* card_start = CardFromAddr(space->Begin()); uint8_t* card_end = CardFromAddr(space->End()); // Make sure to round up. memset(reinterpret_cast<void*>(card_start), kCardClean, card_end - card_start); } void CardTable::ClearCardTable() { static_assert(kCardClean == 0, "kCardClean must be 0"); mem_map_->MadviseDontNeedAndZero(); } void CardTable::ClearCardRange(uint8_t* start, uint8_t* end) { if (!kMadviseZeroes) { memset(start, 0, end - start); return; } CHECK_ALIGNED(reinterpret_cast<uintptr_t>(start), kCardSize); CHECK_ALIGNED(reinterpret_cast<uintptr_t>(end), kCardSize); static_assert(kCardClean == 0, "kCardClean must be 0"); uint8_t* start_card = CardFromAddr(start); uint8_t* end_card = CardFromAddr(end); uint8_t* round_start = AlignUp(start_card, kPageSize); uint8_t* round_end = AlignDown(end_card, kPageSize); if (round_start < round_end) { madvise(round_start, round_end - round_start, MADV_DONTNEED); } // Handle unaligned regions at start / end. memset(start_card, 0, std::min(round_start, end_card) - start_card); memset(std::max(round_end, start_card), 0, end_card - std::max(round_end, start_card)); } bool CardTable::AddrIsInCardTable(const void* addr) const { return IsValidCard(biased_begin_ + ((uintptr_t)addr >> kCardShift)); } void CardTable::CheckAddrIsInCardTable(const uint8_t* addr) const { uint8_t* card_addr = biased_begin_ + ((uintptr_t)addr >> kCardShift); uint8_t* begin = mem_map_->Begin() + offset_; uint8_t* end = mem_map_->End(); CHECK(AddrIsInCardTable(addr)) << "Card table " << this << " begin: " << reinterpret_cast<void*>(begin) << " end: " << reinterpret_cast<void*>(end) << " card_addr: " << reinterpret_cast<void*>(card_addr) << " heap begin: " << AddrFromCard(begin) << " heap end: " << AddrFromCard(end) << " addr: " << reinterpret_cast<const void*>(addr); } void CardTable::VerifyCardTable() { UNIMPLEMENTED(WARNING) << "Card table verification"; } } // namespace accounting } // namespace gc } // namespace art