/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_x86_64.h" #include "base/casts.h" #include "entrypoints/quick/quick_entrypoints.h" #include "memory_region.h" #include "thread.h" namespace art { namespace x86_64 { std::ostream& operator<<(std::ostream& os, const CpuRegister& reg) { return os << reg.AsRegister(); } std::ostream& operator<<(std::ostream& os, const XmmRegister& reg) { return os << reg.AsFloatRegister(); } std::ostream& operator<<(std::ostream& os, const X87Register& reg) { return os << "ST" << static_cast<int>(reg); } void X86_64Assembler::call(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xFF); EmitRegisterOperand(2, reg.LowBits()); } void X86_64Assembler::call(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xFF); EmitOperand(2, address); } void X86_64Assembler::call(Label* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xE8); static const int kSize = 5; // Offset by one because we already have emitted the opcode. EmitLabel(label, kSize - 1); } void X86_64Assembler::pushq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0x50 + reg.LowBits()); } void X86_64Assembler::pushq(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xFF); EmitOperand(6, address); } void X86_64Assembler::pushq(const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // pushq only supports 32b immediate. if (imm.is_int8()) { EmitUint8(0x6A); EmitUint8(imm.value() & 0xFF); } else { EmitUint8(0x68); EmitImmediate(imm); } } void X86_64Assembler::popq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0x58 + reg.LowBits()); } void X86_64Assembler::popq(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0x8F); EmitOperand(0, address); } void X86_64Assembler::movq(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (imm.is_int32()) { // 32 bit. Note: sign-extends. EmitRex64(dst); EmitUint8(0xC7); EmitRegisterOperand(0, dst.LowBits()); EmitInt32(static_cast<int32_t>(imm.value())); } else { EmitRex64(dst); EmitUint8(0xB8 + dst.LowBits()); EmitInt64(imm.value()); } } void X86_64Assembler::movl(CpuRegister dst, const Immediate& imm) { CHECK(imm.is_int32()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitUint8(0xB8 + dst.LowBits()); EmitImmediate(imm); } void X86_64Assembler::movq(const Address& dst, const Immediate& imm) { CHECK(imm.is_int32()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst); EmitUint8(0xC7); EmitOperand(0, dst); EmitImmediate(imm); } void X86_64Assembler::movq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // 0x89 is movq r/m64 <- r64, with op1 in r/m and op2 in reg: so reverse EmitRex64 EmitRex64(src, dst); EmitUint8(0x89); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::movl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x8B); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x8B); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movl(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x8B); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movq(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(src, dst); EmitUint8(0x89); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movl(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(src, dst); EmitUint8(0x89); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movl(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitUint8(0xC7); EmitOperand(0, dst); EmitImmediate(imm); } void X86_64Assembler::cmov(Condition c, CpuRegister dst, CpuRegister src) { cmov(c, dst, src, true); } void X86_64Assembler::cmov(Condition c, CpuRegister dst, CpuRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex(false, is64bit, dst.NeedsRex(), false, src.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x40 + c); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movzxb(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB6); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movzxb(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // Byte register is only in the source register form, so we don't use // EmitOptionalByteRegNormalizingRex32(dst, src); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB6); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movsxb(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBE); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movsxb(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // Byte register is only in the source register form, so we don't use // EmitOptionalByteRegNormalizingRex32(dst, src); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBE); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movb(CpuRegister /*dst*/, const Address& /*src*/) { LOG(FATAL) << "Use movzxb or movsxb instead."; } void X86_64Assembler::movb(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(src, dst); EmitUint8(0x88); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movb(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitUint8(0xC6); EmitOperand(Register::RAX, dst); CHECK(imm.is_int8()); EmitUint8(imm.value() & 0xFF); } void X86_64Assembler::movzxw(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB7); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movzxw(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB7); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movsxw(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBF); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movsxw(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBF); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movw(CpuRegister /*dst*/, const Address& /*src*/) { LOG(FATAL) << "Use movzxw or movsxw instead."; } void X86_64Assembler::movw(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitOptionalRex32(src, dst); EmitUint8(0x89); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movw(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitOptionalRex32(dst); EmitUint8(0xC7); EmitOperand(Register::RAX, dst); CHECK(imm.is_uint16() || imm.is_int16()); EmitUint8(imm.value() & 0xFF); EmitUint8(imm.value() >> 8); } void X86_64Assembler::leaq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x8D); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::leal(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x8D); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movaps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x28); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::movss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x10); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movss(const Address& dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x11); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(src, dst); // Movss is MR encoding instead of the usual RM. EmitUint8(0x0F); EmitUint8(0x11); EmitXmmRegisterOperand(src.LowBits(), dst); } void X86_64Assembler::movsxd(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x63); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movsxd(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x63); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movd(XmmRegister dst, CpuRegister src) { movd(dst, src, true); } void X86_64Assembler::movd(CpuRegister dst, XmmRegister src) { movd(dst, src, true); } void X86_64Assembler::movd(XmmRegister dst, CpuRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, is64bit, dst.NeedsRex(), false, src.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x6E); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::movd(CpuRegister dst, XmmRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, is64bit, src.NeedsRex(), false, dst.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x7E); EmitOperand(src.LowBits(), Operand(dst)); } void X86_64Assembler::addss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::addss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::subss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::subss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::mulss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::mulss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::divss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::divss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::flds(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(0, src); } void X86_64Assembler::fsts(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(2, dst); } void X86_64Assembler::fstps(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(3, dst); } void X86_64Assembler::movsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x10); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movsd(const Address& dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x11); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(src, dst); // Movsd is MR encoding instead of the usual RM. EmitUint8(0x0F); EmitUint8(0x11); EmitXmmRegisterOperand(src.LowBits(), dst); } void X86_64Assembler::addsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::addsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::subsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::subsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::mulsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::mulsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::divsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::divsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsi2ss(XmmRegister dst, CpuRegister src) { cvtsi2ss(dst, src, false); } void X86_64Assembler::cvtsi2ss(XmmRegister dst, CpuRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::cvtsi2ss(XmmRegister dst, const Address& src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsi2sd(XmmRegister dst, CpuRegister src) { cvtsi2sd(dst, src, false); } void X86_64Assembler::cvtsi2sd(XmmRegister dst, CpuRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::cvtsi2sd(XmmRegister dst, const Address& src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::cvtss2si(CpuRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x2D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtss2sd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5A); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtss2sd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5A); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsd2si(CpuRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x2D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvttss2si(CpuRegister dst, XmmRegister src) { cvttss2si(dst, src, false); } void X86_64Assembler::cvttss2si(CpuRegister dst, XmmRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvttsd2si(CpuRegister dst, XmmRegister src) { cvttsd2si(dst, src, false); } void X86_64Assembler::cvttsd2si(CpuRegister dst, XmmRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsd2ss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5A); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsd2ss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5A); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::cvtdq2pd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xE6); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::comiss(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2F); EmitXmmRegisterOperand(a.LowBits(), b); } void X86_64Assembler::comiss(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2F); EmitOperand(a.LowBits(), b); } void X86_64Assembler::comisd(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2F); EmitXmmRegisterOperand(a.LowBits(), b); } void X86_64Assembler::comisd(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2F); EmitOperand(a.LowBits(), b); } void X86_64Assembler::ucomiss(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2E); EmitXmmRegisterOperand(a.LowBits(), b); } void X86_64Assembler::ucomiss(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2E); EmitOperand(a.LowBits(), b); } void X86_64Assembler::ucomisd(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2E); EmitXmmRegisterOperand(a.LowBits(), b); } void X86_64Assembler::ucomisd(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2E); EmitOperand(a.LowBits(), b); } void X86_64Assembler::roundsd(XmmRegister dst, XmmRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x3A); EmitUint8(0x0B); EmitXmmRegisterOperand(dst.LowBits(), src); EmitUint8(imm.value()); } void X86_64Assembler::roundss(XmmRegister dst, XmmRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x3A); EmitUint8(0x0A); EmitXmmRegisterOperand(dst.LowBits(), src); EmitUint8(imm.value()); } void X86_64Assembler::sqrtsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x51); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::sqrtss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x51); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::xorpd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x57); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::xorpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x57); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::xorps(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x57); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::xorps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x57); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::andpd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x54); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::andpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x54); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::andps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x54); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::orpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x56); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::orps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x56); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::fldl(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitOperand(0, src); } void X86_64Assembler::fstl(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitOperand(2, dst); } void X86_64Assembler::fstpl(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitOperand(3, dst); } void X86_64Assembler::fstsw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x9B); EmitUint8(0xDF); EmitUint8(0xE0); } void X86_64Assembler::fnstcw(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(7, dst); } void X86_64Assembler::fldcw(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(5, src); } void X86_64Assembler::fistpl(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDF); EmitOperand(7, dst); } void X86_64Assembler::fistps(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDB); EmitOperand(3, dst); } void X86_64Assembler::fildl(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDF); EmitOperand(5, src); } void X86_64Assembler::filds(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDB); EmitOperand(0, src); } void X86_64Assembler::fincstp() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xF7); } void X86_64Assembler::ffree(const Immediate& index) { CHECK_LT(index.value(), 7); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitUint8(0xC0 + index.value()); } void X86_64Assembler::fsin() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xFE); } void X86_64Assembler::fcos() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xFF); } void X86_64Assembler::fptan() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xF2); } void X86_64Assembler::fucompp() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDA); EmitUint8(0xE9); } void X86_64Assembler::fprem() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xF8); } void X86_64Assembler::xchgl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // There is a short version for rax. // It's a bit awkward, as CpuRegister has a const field, so assignment and thus swapping doesn't // work. const bool src_rax = src.AsRegister() == RAX; const bool dst_rax = dst.AsRegister() == RAX; if (src_rax || dst_rax) { EmitOptionalRex32(src_rax ? dst : src); EmitUint8(0x90 + (src_rax ? dst.LowBits() : src.LowBits())); return; } // General case. EmitOptionalRex32(src, dst); EmitUint8(0x87); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::xchgq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // There is a short version for rax. // It's a bit awkward, as CpuRegister has a const field, so assignment and thus swapping doesn't // work. const bool src_rax = src.AsRegister() == RAX; const bool dst_rax = dst.AsRegister() == RAX; if (src_rax || dst_rax) { // If src == target, emit a nop instead. if (src_rax && dst_rax) { EmitUint8(0x90); } else { EmitRex64(src_rax ? dst : src); EmitUint8(0x90 + (src_rax ? dst.LowBits() : src.LowBits())); } return; } // General case. EmitRex64(src, dst); EmitUint8(0x87); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::xchgl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x87); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpw(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0x66); EmitComplex(7, address, imm); } void X86_64Assembler::cmpl(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitComplex(7, Operand(reg), imm); } void X86_64Assembler::cmpl(CpuRegister reg0, CpuRegister reg1) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg0, reg1); EmitUint8(0x3B); EmitOperand(reg0.LowBits(), Operand(reg1)); } void X86_64Assembler::cmpl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x3B); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpl(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x39); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpl(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitComplex(7, address, imm); } void X86_64Assembler::cmpq(CpuRegister reg0, CpuRegister reg1) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg0, reg1); EmitUint8(0x3B); EmitOperand(reg0.LowBits(), Operand(reg1)); } void X86_64Assembler::cmpq(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // cmpq only supports 32b immediate. EmitRex64(reg); EmitComplex(7, Operand(reg), imm); } void X86_64Assembler::cmpq(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x3B); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpq(const Address& address, const Immediate& imm) { CHECK(imm.is_int32()); // cmpq only supports 32b immediate. AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(address); EmitComplex(7, address, imm); } void X86_64Assembler::addl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x03); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::addl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x03); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::testl(CpuRegister reg1, CpuRegister reg2) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg1, reg2); EmitUint8(0x85); EmitRegisterOperand(reg1.LowBits(), reg2.LowBits()); } void X86_64Assembler::testl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x85); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::testl(CpuRegister reg, const Immediate& immediate) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // For registers that have a byte variant (RAX, RBX, RCX, and RDX) // we only test the byte CpuRegister to keep the encoding short. if (immediate.is_uint8() && reg.AsRegister() < 4) { // Use zero-extended 8-bit immediate. if (reg.AsRegister() == RAX) { EmitUint8(0xA8); } else { EmitUint8(0xF6); EmitUint8(0xC0 + reg.AsRegister()); } EmitUint8(immediate.value() & 0xFF); } else if (reg.AsRegister() == RAX) { // Use short form if the destination is RAX. EmitUint8(0xA9); EmitImmediate(immediate); } else { EmitOptionalRex32(reg); EmitUint8(0xF7); EmitOperand(0, Operand(reg)); EmitImmediate(immediate); } } void X86_64Assembler::testq(CpuRegister reg1, CpuRegister reg2) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg1, reg2); EmitUint8(0x85); EmitRegisterOperand(reg1.LowBits(), reg2.LowBits()); } void X86_64Assembler::testq(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x85); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::andl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x23); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::andl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x23); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::andl(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitComplex(4, Operand(dst), imm); } void X86_64Assembler::andq(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // andq only supports 32b immediate. EmitRex64(reg); EmitComplex(4, Operand(reg), imm); } void X86_64Assembler::andq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x23); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::andq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x23); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::orl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0B); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::orl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x0B); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::orl(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitComplex(1, Operand(dst), imm); } void X86_64Assembler::orq(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // orq only supports 32b immediate. EmitRex64(dst); EmitComplex(1, Operand(dst), imm); } void X86_64Assembler::orq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0B); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::orq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0B); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::xorl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x33); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::xorl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x33); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::xorl(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitComplex(6, Operand(dst), imm); } void X86_64Assembler::xorq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x33); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::xorq(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // xorq only supports 32b immediate. EmitRex64(dst); EmitComplex(6, Operand(dst), imm); } void X86_64Assembler::xorq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x33); EmitOperand(dst.LowBits(), src); } #if 0 void X86_64Assembler::rex(bool force, bool w, Register* r, Register* x, Register* b) { // REX.WRXB // W - 64-bit operand // R - MODRM.reg // X - SIB.index // B - MODRM.rm/SIB.base uint8_t rex = force ? 0x40 : 0; if (w) { rex |= 0x48; // REX.W000 } if (r != nullptr && *r >= Register::R8 && *r < Register::kNumberOfCpuRegisters) { rex |= 0x44; // REX.0R00 *r = static_cast<Register>(*r - 8); } if (x != nullptr && *x >= Register::R8 && *x < Register::kNumberOfCpuRegisters) { rex |= 0x42; // REX.00X0 *x = static_cast<Register>(*x - 8); } if (b != nullptr && *b >= Register::R8 && *b < Register::kNumberOfCpuRegisters) { rex |= 0x41; // REX.000B *b = static_cast<Register>(*b - 8); } if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::rex_reg_mem(bool force, bool w, Register* dst, const Address& mem) { // REX.WRXB // W - 64-bit operand // R - MODRM.reg // X - SIB.index // B - MODRM.rm/SIB.base uint8_t rex = mem->rex(); if (force) { rex |= 0x40; // REX.0000 } if (w) { rex |= 0x48; // REX.W000 } if (dst != nullptr && *dst >= Register::R8 && *dst < Register::kNumberOfCpuRegisters) { rex |= 0x44; // REX.0R00 *dst = static_cast<Register>(*dst - 8); } if (rex != 0) { EmitUint8(rex); } } void rex_mem_reg(bool force, bool w, Address* mem, Register* src); #endif void X86_64Assembler::addl(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitComplex(0, Operand(reg), imm); } void X86_64Assembler::addq(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // addq only supports 32b immediate. EmitRex64(reg); EmitComplex(0, Operand(reg), imm); } void X86_64Assembler::addq(CpuRegister dst, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, address); EmitUint8(0x03); EmitOperand(dst.LowBits(), address); } void X86_64Assembler::addq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // 0x01 is addq r/m64 <- r/m64 + r64, with op1 in r/m and op2 in reg: so reverse EmitRex64 EmitRex64(src, dst); EmitUint8(0x01); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::addl(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x01); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::addl(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitComplex(0, address, imm); } void X86_64Assembler::subl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x2B); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::subl(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitComplex(5, Operand(reg), imm); } void X86_64Assembler::subq(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // subq only supports 32b immediate. EmitRex64(reg); EmitComplex(5, Operand(reg), imm); } void X86_64Assembler::subq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x2B); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::subq(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x2B); EmitOperand(reg.LowBits() & 7, address); } void X86_64Assembler::subl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x2B); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cdq() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x99); } void X86_64Assembler::cqo() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(); EmitUint8(0x99); } void X86_64Assembler::idivl(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitUint8(0xF8 | reg.LowBits()); } void X86_64Assembler::idivq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg); EmitUint8(0xF7); EmitUint8(0xF8 | reg.LowBits()); } void X86_64Assembler::imull(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xAF); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::imull(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // imull only supports 32b immediate. EmitOptionalRex32(reg, reg); // See whether imm can be represented as a sign-extended 8bit value. int32_t v32 = static_cast<int32_t>(imm.value()); if (IsInt<8>(v32)) { // Sign-extension works. EmitUint8(0x6B); EmitOperand(reg.LowBits(), Operand(reg)); EmitUint8(static_cast<uint8_t>(v32 & 0xFF)); } else { // Not representable, use full immediate. EmitUint8(0x69); EmitOperand(reg.LowBits(), Operand(reg)); EmitImmediate(imm); } } void X86_64Assembler::imull(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x0F); EmitUint8(0xAF); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::imulq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0F); EmitUint8(0xAF); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::imulq(CpuRegister reg, const Immediate& imm) { imulq(reg, reg, imm); } void X86_64Assembler::imulq(CpuRegister dst, CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // imulq only supports 32b immediate. EmitRex64(dst, reg); // See whether imm can be represented as a sign-extended 8bit value. int64_t v64 = imm.value(); if (IsInt<8>(v64)) { // Sign-extension works. EmitUint8(0x6B); EmitOperand(dst.LowBits(), Operand(reg)); EmitUint8(static_cast<uint8_t>(v64 & 0xFF)); } else { // Not representable, use full immediate. EmitUint8(0x69); EmitOperand(dst.LowBits(), Operand(reg)); EmitImmediate(imm); } } void X86_64Assembler::imulq(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x0F); EmitUint8(0xAF); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::imull(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitOperand(5, Operand(reg)); } void X86_64Assembler::imulq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg); EmitUint8(0xF7); EmitOperand(5, Operand(reg)); } void X86_64Assembler::imull(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xF7); EmitOperand(5, address); } void X86_64Assembler::mull(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitOperand(4, Operand(reg)); } void X86_64Assembler::mull(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xF7); EmitOperand(4, address); } void X86_64Assembler::shll(CpuRegister reg, const Immediate& imm) { EmitGenericShift(false, 4, reg, imm); } void X86_64Assembler::shlq(CpuRegister reg, const Immediate& imm) { EmitGenericShift(true, 4, reg, imm); } void X86_64Assembler::shll(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(false, 4, operand, shifter); } void X86_64Assembler::shlq(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(true, 4, operand, shifter); } void X86_64Assembler::shrl(CpuRegister reg, const Immediate& imm) { EmitGenericShift(false, 5, reg, imm); } void X86_64Assembler::shrq(CpuRegister reg, const Immediate& imm) { EmitGenericShift(true, 5, reg, imm); } void X86_64Assembler::shrl(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(false, 5, operand, shifter); } void X86_64Assembler::shrq(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(true, 5, operand, shifter); } void X86_64Assembler::sarl(CpuRegister reg, const Immediate& imm) { EmitGenericShift(false, 7, reg, imm); } void X86_64Assembler::sarl(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(false, 7, operand, shifter); } void X86_64Assembler::sarq(CpuRegister reg, const Immediate& imm) { EmitGenericShift(true, 7, reg, imm); } void X86_64Assembler::sarq(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(true, 7, operand, shifter); } void X86_64Assembler::negl(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitOperand(3, Operand(reg)); } void X86_64Assembler::negq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg); EmitUint8(0xF7); EmitOperand(3, Operand(reg)); } void X86_64Assembler::notl(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitUint8(0xD0 | reg.LowBits()); } void X86_64Assembler::notq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg); EmitUint8(0xF7); EmitOperand(2, Operand(reg)); } void X86_64Assembler::enter(const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC8); CHECK(imm.is_uint16()) << imm.value(); EmitUint8(imm.value() & 0xFF); EmitUint8((imm.value() >> 8) & 0xFF); EmitUint8(0x00); } void X86_64Assembler::leave() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC9); } void X86_64Assembler::ret() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC3); } void X86_64Assembler::ret(const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC2); CHECK(imm.is_uint16()); EmitUint8(imm.value() & 0xFF); EmitUint8((imm.value() >> 8) & 0xFF); } void X86_64Assembler::nop() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x90); } void X86_64Assembler::int3() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xCC); } void X86_64Assembler::hlt() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF4); } void X86_64Assembler::j(Condition condition, Label* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; static const int kLongSize = 6; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); if (IsInt<8>(offset - kShortSize)) { EmitUint8(0x70 + condition); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0x0F); EmitUint8(0x80 + condition); EmitInt32(offset - kLongSize); } } else { EmitUint8(0x0F); EmitUint8(0x80 + condition); EmitLabelLink(label); } } void X86_64Assembler::jmp(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xFF); EmitRegisterOperand(4, reg.LowBits()); } void X86_64Assembler::jmp(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xFF); EmitOperand(4, address); } void X86_64Assembler::jmp(Label* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; static const int kLongSize = 5; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); if (IsInt<8>(offset - kShortSize)) { EmitUint8(0xEB); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0xE9); EmitInt32(offset - kLongSize); } } else { EmitUint8(0xE9); EmitLabelLink(label); } } X86_64Assembler* X86_64Assembler::lock() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF0); return this; } void X86_64Assembler::cmpxchgl(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x0F); EmitUint8(0xB1); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpxchgq(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x0F); EmitUint8(0xB1); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::mfence() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xAE); EmitUint8(0xF0); } X86_64Assembler* X86_64Assembler::gs() { // TODO: gs is a prefix and not an instruction AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x65); return this; } void X86_64Assembler::AddImmediate(CpuRegister reg, const Immediate& imm) { int value = imm.value(); if (value != 0) { if (value > 0) { addl(reg, imm); } else { subl(reg, Immediate(value)); } } } void X86_64Assembler::setcc(Condition condition, CpuRegister dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // RSP, RBP, RDI, RSI need rex prefix (else the pattern encodes ah/bh/ch/dh). if (dst.NeedsRex() || dst.AsRegister() > 3) { EmitOptionalRex(true, false, false, false, dst.NeedsRex()); } EmitUint8(0x0F); EmitUint8(0x90 + condition); EmitUint8(0xC0 + dst.LowBits()); } void X86_64Assembler::bswapl(CpuRegister dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex(false, false, false, false, dst.NeedsRex()); EmitUint8(0x0F); EmitUint8(0xC8 + dst.LowBits()); } void X86_64Assembler::bswapq(CpuRegister dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex(false, true, false, false, dst.NeedsRex()); EmitUint8(0x0F); EmitUint8(0xC8 + dst.LowBits()); } void X86_64Assembler::repne_scasw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0xF2); EmitUint8(0xAF); } void X86_64Assembler::LoadDoubleConstant(XmmRegister dst, double value) { // TODO: Need to have a code constants table. int64_t constant = bit_cast<int64_t, double>(value); pushq(Immediate(High32Bits(constant))); pushq(Immediate(Low32Bits(constant))); movsd(dst, Address(CpuRegister(RSP), 0)); addq(CpuRegister(RSP), Immediate(2 * sizeof(intptr_t))); } void X86_64Assembler::Align(int alignment, int offset) { CHECK(IsPowerOfTwo(alignment)); // Emit nop instruction until the real position is aligned. while (((offset + buffer_.GetPosition()) & (alignment-1)) != 0) { nop(); } } void X86_64Assembler::Bind(Label* label) { int bound = buffer_.Size(); CHECK(!label->IsBound()); // Labels can only be bound once. while (label->IsLinked()) { int position = label->LinkPosition(); int next = buffer_.Load<int32_t>(position); buffer_.Store<int32_t>(position, bound - (position + 4)); label->position_ = next; } label->BindTo(bound); } void X86_64Assembler::EmitOperand(uint8_t reg_or_opcode, const Operand& operand) { CHECK_GE(reg_or_opcode, 0); CHECK_LT(reg_or_opcode, 8); const int length = operand.length_; CHECK_GT(length, 0); // Emit the ModRM byte updated with the given reg value. CHECK_EQ(operand.encoding_[0] & 0x38, 0); EmitUint8(operand.encoding_[0] + (reg_or_opcode << 3)); // Emit the rest of the encoded operand. for (int i = 1; i < length; i++) { EmitUint8(operand.encoding_[i]); } AssemblerFixup* fixup = operand.GetFixup(); if (fixup != nullptr) { EmitFixup(fixup); } } void X86_64Assembler::EmitImmediate(const Immediate& imm) { if (imm.is_int32()) { EmitInt32(static_cast<int32_t>(imm.value())); } else { EmitInt64(imm.value()); } } void X86_64Assembler::EmitComplex(uint8_t reg_or_opcode, const Operand& operand, const Immediate& immediate) { CHECK_GE(reg_or_opcode, 0); CHECK_LT(reg_or_opcode, 8); if (immediate.is_int8()) { // Use sign-extended 8-bit immediate. EmitUint8(0x83); EmitOperand(reg_or_opcode, operand); EmitUint8(immediate.value() & 0xFF); } else if (operand.IsRegister(CpuRegister(RAX))) { // Use short form if the destination is eax. EmitUint8(0x05 + (reg_or_opcode << 3)); EmitImmediate(immediate); } else { EmitUint8(0x81); EmitOperand(reg_or_opcode, operand); EmitImmediate(immediate); } } void X86_64Assembler::EmitLabel(Label* label, int instruction_size) { if (label->IsBound()) { int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); EmitInt32(offset - instruction_size); } else { EmitLabelLink(label); } } void X86_64Assembler::EmitLabelLink(Label* label) { CHECK(!label->IsBound()); int position = buffer_.Size(); EmitInt32(label->position_); label->LinkTo(position); } void X86_64Assembler::EmitGenericShift(bool wide, int reg_or_opcode, CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int8()); if (wide) { EmitRex64(reg); } else { EmitOptionalRex32(reg); } if (imm.value() == 1) { EmitUint8(0xD1); EmitOperand(reg_or_opcode, Operand(reg)); } else { EmitUint8(0xC1); EmitOperand(reg_or_opcode, Operand(reg)); EmitUint8(imm.value() & 0xFF); } } void X86_64Assembler::EmitGenericShift(bool wide, int reg_or_opcode, CpuRegister operand, CpuRegister shifter) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK_EQ(shifter.AsRegister(), RCX); if (wide) { EmitRex64(operand); } else { EmitOptionalRex32(operand); } EmitUint8(0xD3); EmitOperand(reg_or_opcode, Operand(operand)); } void X86_64Assembler::EmitOptionalRex(bool force, bool w, bool r, bool x, bool b) { // REX.WRXB // W - 64-bit operand // R - MODRM.reg // X - SIB.index // B - MODRM.rm/SIB.base uint8_t rex = force ? 0x40 : 0; if (w) { rex |= 0x48; // REX.W000 } if (r) { rex |= 0x44; // REX.0R00 } if (x) { rex |= 0x42; // REX.00X0 } if (b) { rex |= 0x41; // REX.000B } if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::EmitOptionalRex32(CpuRegister reg) { EmitOptionalRex(false, false, false, false, reg.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, CpuRegister src) { EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, XmmRegister src) { EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, XmmRegister src) { EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, CpuRegister src) { EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(const Operand& operand) { uint8_t rex = operand.rex(); if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, const Operand& operand) { uint8_t rex = operand.rex(); if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, const Operand& operand) { uint8_t rex = operand.rex(); if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::EmitRex64() { EmitOptionalRex(false, true, false, false, false); } void X86_64Assembler::EmitRex64(CpuRegister reg) { EmitOptionalRex(false, true, false, false, reg.NeedsRex()); } void X86_64Assembler::EmitRex64(const Operand& operand) { uint8_t rex = operand.rex(); rex |= 0x48; // REX.W000 EmitUint8(rex); } void X86_64Assembler::EmitRex64(CpuRegister dst, CpuRegister src) { EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitRex64(XmmRegister dst, CpuRegister src) { EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitRex64(CpuRegister dst, XmmRegister src) { EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitRex64(CpuRegister dst, const Operand& operand) { uint8_t rex = 0x48 | operand.rex(); // REX.W000 if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } EmitUint8(rex); } void X86_64Assembler::EmitRex64(XmmRegister dst, const Operand& operand) { uint8_t rex = 0x48 | operand.rex(); // REX.W000 if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } EmitUint8(rex); } void X86_64Assembler::EmitOptionalByteRegNormalizingRex32(CpuRegister dst, CpuRegister src) { // For src, SPL, BPL, SIL, DIL need the rex prefix. bool force = src.AsRegister() > 3; EmitOptionalRex(force, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalByteRegNormalizingRex32(CpuRegister dst, const Operand& operand) { uint8_t rex = operand.rex(); // For dst, SPL, BPL, SIL, DIL need the rex prefix. bool force = dst.AsRegister() > 3; if (force) { rex |= 0x40; // REX.0000 } if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } if (rex != 0) { EmitUint8(rex); } } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::X86_64Core(static_cast<int>(reg)); } static dwarf::Reg DWARFReg(FloatRegister reg) { return dwarf::Reg::X86_64Fp(static_cast<int>(reg)); } constexpr size_t kFramePointerSize = 8; void X86_64Assembler::BuildFrame(size_t frame_size, ManagedRegister method_reg, const std::vector<ManagedRegister>& spill_regs, const ManagedRegisterEntrySpills& entry_spills) { DCHECK_EQ(buffer_.Size(), 0U); // Nothing emitted yet. cfi_.SetCurrentCFAOffset(8); // Return address on stack. CHECK_ALIGNED(frame_size, kStackAlignment); int gpr_count = 0; for (int i = spill_regs.size() - 1; i >= 0; --i) { x86_64::X86_64ManagedRegister spill = spill_regs.at(i).AsX86_64(); if (spill.IsCpuRegister()) { pushq(spill.AsCpuRegister()); gpr_count++; cfi_.AdjustCFAOffset(kFramePointerSize); cfi_.RelOffset(DWARFReg(spill.AsCpuRegister().AsRegister()), 0); } } // return address then method on stack. int64_t rest_of_frame = static_cast<int64_t>(frame_size) - (gpr_count * kFramePointerSize) - kFramePointerSize /*return address*/; subq(CpuRegister(RSP), Immediate(rest_of_frame)); cfi_.AdjustCFAOffset(rest_of_frame); // spill xmms int64_t offset = rest_of_frame; for (int i = spill_regs.size() - 1; i >= 0; --i) { x86_64::X86_64ManagedRegister spill = spill_regs.at(i).AsX86_64(); if (spill.IsXmmRegister()) { offset -= sizeof(double); movsd(Address(CpuRegister(RSP), offset), spill.AsXmmRegister()); cfi_.RelOffset(DWARFReg(spill.AsXmmRegister().AsFloatRegister()), offset); } } DCHECK_EQ(kX86_64PointerSize, kFramePointerSize); movq(Address(CpuRegister(RSP), 0), method_reg.AsX86_64().AsCpuRegister()); for (size_t i = 0; i < entry_spills.size(); ++i) { ManagedRegisterSpill spill = entry_spills.at(i); if (spill.AsX86_64().IsCpuRegister()) { if (spill.getSize() == 8) { movq(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()), spill.AsX86_64().AsCpuRegister()); } else { CHECK_EQ(spill.getSize(), 4); movl(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()), spill.AsX86_64().AsCpuRegister()); } } else { if (spill.getSize() == 8) { movsd(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()), spill.AsX86_64().AsXmmRegister()); } else { CHECK_EQ(spill.getSize(), 4); movss(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()), spill.AsX86_64().AsXmmRegister()); } } } } void X86_64Assembler::RemoveFrame(size_t frame_size, const std::vector<ManagedRegister>& spill_regs) { CHECK_ALIGNED(frame_size, kStackAlignment); cfi_.RememberState(); int gpr_count = 0; // unspill xmms int64_t offset = static_cast<int64_t>(frame_size) - (spill_regs.size() * kFramePointerSize) - 2 * kFramePointerSize; for (size_t i = 0; i < spill_regs.size(); ++i) { x86_64::X86_64ManagedRegister spill = spill_regs.at(i).AsX86_64(); if (spill.IsXmmRegister()) { offset += sizeof(double); movsd(spill.AsXmmRegister(), Address(CpuRegister(RSP), offset)); cfi_.Restore(DWARFReg(spill.AsXmmRegister().AsFloatRegister())); } else { gpr_count++; } } int adjust = static_cast<int>(frame_size) - (gpr_count * kFramePointerSize) - kFramePointerSize; addq(CpuRegister(RSP), Immediate(adjust)); cfi_.AdjustCFAOffset(-adjust); for (size_t i = 0; i < spill_regs.size(); ++i) { x86_64::X86_64ManagedRegister spill = spill_regs.at(i).AsX86_64(); if (spill.IsCpuRegister()) { popq(spill.AsCpuRegister()); cfi_.AdjustCFAOffset(-static_cast<int>(kFramePointerSize)); cfi_.Restore(DWARFReg(spill.AsCpuRegister().AsRegister())); } } ret(); // The CFI should be restored for any code that follows the exit block. cfi_.RestoreState(); cfi_.DefCFAOffset(frame_size); } void X86_64Assembler::IncreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kStackAlignment); addq(CpuRegister(RSP), Immediate(-static_cast<int64_t>(adjust))); cfi_.AdjustCFAOffset(adjust); } void X86_64Assembler::DecreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kStackAlignment); addq(CpuRegister(RSP), Immediate(adjust)); cfi_.AdjustCFAOffset(-adjust); } void X86_64Assembler::Store(FrameOffset offs, ManagedRegister msrc, size_t size) { X86_64ManagedRegister src = msrc.AsX86_64(); if (src.IsNoRegister()) { CHECK_EQ(0u, size); } else if (src.IsCpuRegister()) { if (size == 4) { CHECK_EQ(4u, size); movl(Address(CpuRegister(RSP), offs), src.AsCpuRegister()); } else { CHECK_EQ(8u, size); movq(Address(CpuRegister(RSP), offs), src.AsCpuRegister()); } } else if (src.IsRegisterPair()) { CHECK_EQ(0u, size); movq(Address(CpuRegister(RSP), offs), src.AsRegisterPairLow()); movq(Address(CpuRegister(RSP), FrameOffset(offs.Int32Value()+4)), src.AsRegisterPairHigh()); } else if (src.IsX87Register()) { if (size == 4) { fstps(Address(CpuRegister(RSP), offs)); } else { fstpl(Address(CpuRegister(RSP), offs)); } } else { CHECK(src.IsXmmRegister()); if (size == 4) { movss(Address(CpuRegister(RSP), offs), src.AsXmmRegister()); } else { movsd(Address(CpuRegister(RSP), offs), src.AsXmmRegister()); } } } void X86_64Assembler::StoreRef(FrameOffset dest, ManagedRegister msrc) { X86_64ManagedRegister src = msrc.AsX86_64(); CHECK(src.IsCpuRegister()); movl(Address(CpuRegister(RSP), dest), src.AsCpuRegister()); } void X86_64Assembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) { X86_64ManagedRegister src = msrc.AsX86_64(); CHECK(src.IsCpuRegister()); movq(Address(CpuRegister(RSP), dest), src.AsCpuRegister()); } void X86_64Assembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister) { movl(Address(CpuRegister(RSP), dest), Immediate(imm)); // TODO(64) movq? } void X86_64Assembler::StoreImmediateToThread64(ThreadOffset<8> dest, uint32_t imm, ManagedRegister) { gs()->movl(Address::Absolute(dest, true), Immediate(imm)); // TODO(64) movq? } void X86_64Assembler::StoreStackOffsetToThread64(ThreadOffset<8> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { X86_64ManagedRegister scratch = mscratch.AsX86_64(); CHECK(scratch.IsCpuRegister()); leaq(scratch.AsCpuRegister(), Address(CpuRegister(RSP), fr_offs)); gs()->movq(Address::Absolute(thr_offs, true), scratch.AsCpuRegister()); } void X86_64Assembler::StoreStackPointerToThread64(ThreadOffset<8> thr_offs) { gs()->movq(Address::Absolute(thr_offs, true), CpuRegister(RSP)); } void X86_64Assembler::StoreSpanning(FrameOffset /*dst*/, ManagedRegister /*src*/, FrameOffset /*in_off*/, ManagedRegister /*scratch*/) { UNIMPLEMENTED(FATAL); // this case only currently exists for ARM } void X86_64Assembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) { X86_64ManagedRegister dest = mdest.AsX86_64(); if (dest.IsNoRegister()) { CHECK_EQ(0u, size); } else if (dest.IsCpuRegister()) { if (size == 4) { CHECK_EQ(4u, size); movl(dest.AsCpuRegister(), Address(CpuRegister(RSP), src)); } else { CHECK_EQ(8u, size); movq(dest.AsCpuRegister(), Address(CpuRegister(RSP), src)); } } else if (dest.IsRegisterPair()) { CHECK_EQ(0u, size); movq(dest.AsRegisterPairLow(), Address(CpuRegister(RSP), src)); movq(dest.AsRegisterPairHigh(), Address(CpuRegister(RSP), FrameOffset(src.Int32Value()+4))); } else if (dest.IsX87Register()) { if (size == 4) { flds(Address(CpuRegister(RSP), src)); } else { fldl(Address(CpuRegister(RSP), src)); } } else { CHECK(dest.IsXmmRegister()); if (size == 4) { movss(dest.AsXmmRegister(), Address(CpuRegister(RSP), src)); } else { movsd(dest.AsXmmRegister(), Address(CpuRegister(RSP), src)); } } } void X86_64Assembler::LoadFromThread64(ManagedRegister mdest, ThreadOffset<8> src, size_t size) { X86_64ManagedRegister dest = mdest.AsX86_64(); if (dest.IsNoRegister()) { CHECK_EQ(0u, size); } else if (dest.IsCpuRegister()) { CHECK_EQ(4u, size); gs()->movl(dest.AsCpuRegister(), Address::Absolute(src, true)); } else if (dest.IsRegisterPair()) { CHECK_EQ(8u, size); gs()->movq(dest.AsRegisterPairLow(), Address::Absolute(src, true)); } else if (dest.IsX87Register()) { if (size == 4) { gs()->flds(Address::Absolute(src, true)); } else { gs()->fldl(Address::Absolute(src, true)); } } else { CHECK(dest.IsXmmRegister()); if (size == 4) { gs()->movss(dest.AsXmmRegister(), Address::Absolute(src, true)); } else { gs()->movsd(dest.AsXmmRegister(), Address::Absolute(src, true)); } } } void X86_64Assembler::LoadRef(ManagedRegister mdest, FrameOffset src) { X86_64ManagedRegister dest = mdest.AsX86_64(); CHECK(dest.IsCpuRegister()); movq(dest.AsCpuRegister(), Address(CpuRegister(RSP), src)); } void X86_64Assembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, bool poison_reference) { X86_64ManagedRegister dest = mdest.AsX86_64(); CHECK(dest.IsCpuRegister() && dest.IsCpuRegister()); movl(dest.AsCpuRegister(), Address(base.AsX86_64().AsCpuRegister(), offs)); if (kPoisonHeapReferences && poison_reference) { negl(dest.AsCpuRegister()); } } void X86_64Assembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) { X86_64ManagedRegister dest = mdest.AsX86_64(); CHECK(dest.IsCpuRegister() && dest.IsCpuRegister()); movq(dest.AsCpuRegister(), Address(base.AsX86_64().AsCpuRegister(), offs)); } void X86_64Assembler::LoadRawPtrFromThread64(ManagedRegister mdest, ThreadOffset<8> offs) { X86_64ManagedRegister dest = mdest.AsX86_64(); CHECK(dest.IsCpuRegister()); gs()->movq(dest.AsCpuRegister(), Address::Absolute(offs, true)); } void X86_64Assembler::SignExtend(ManagedRegister mreg, size_t size) { X86_64ManagedRegister reg = mreg.AsX86_64(); CHECK(size == 1 || size == 2) << size; CHECK(reg.IsCpuRegister()) << reg; if (size == 1) { movsxb(reg.AsCpuRegister(), reg.AsCpuRegister()); } else { movsxw(reg.AsCpuRegister(), reg.AsCpuRegister()); } } void X86_64Assembler::ZeroExtend(ManagedRegister mreg, size_t size) { X86_64ManagedRegister reg = mreg.AsX86_64(); CHECK(size == 1 || size == 2) << size; CHECK(reg.IsCpuRegister()) << reg; if (size == 1) { movzxb(reg.AsCpuRegister(), reg.AsCpuRegister()); } else { movzxw(reg.AsCpuRegister(), reg.AsCpuRegister()); } } void X86_64Assembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) { X86_64ManagedRegister dest = mdest.AsX86_64(); X86_64ManagedRegister src = msrc.AsX86_64(); if (!dest.Equals(src)) { if (dest.IsCpuRegister() && src.IsCpuRegister()) { movq(dest.AsCpuRegister(), src.AsCpuRegister()); } else if (src.IsX87Register() && dest.IsXmmRegister()) { // Pass via stack and pop X87 register subl(CpuRegister(RSP), Immediate(16)); if (size == 4) { CHECK_EQ(src.AsX87Register(), ST0); fstps(Address(CpuRegister(RSP), 0)); movss(dest.AsXmmRegister(), Address(CpuRegister(RSP), 0)); } else { CHECK_EQ(src.AsX87Register(), ST0); fstpl(Address(CpuRegister(RSP), 0)); movsd(dest.AsXmmRegister(), Address(CpuRegister(RSP), 0)); } addq(CpuRegister(RSP), Immediate(16)); } else { // TODO: x87, SSE UNIMPLEMENTED(FATAL) << ": Move " << dest << ", " << src; } } } void X86_64Assembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) { X86_64ManagedRegister scratch = mscratch.AsX86_64(); CHECK(scratch.IsCpuRegister()); movl(scratch.AsCpuRegister(), Address(CpuRegister(RSP), src)); movl(Address(CpuRegister(RSP), dest), scratch.AsCpuRegister()); } void X86_64Assembler::CopyRawPtrFromThread64(FrameOffset fr_offs, ThreadOffset<8> thr_offs, ManagedRegister mscratch) { X86_64ManagedRegister scratch = mscratch.AsX86_64(); CHECK(scratch.IsCpuRegister()); gs()->movq(scratch.AsCpuRegister(), Address::Absolute(thr_offs, true)); Store(fr_offs, scratch, 8); } void X86_64Assembler::CopyRawPtrToThread64(ThreadOffset<8> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { X86_64ManagedRegister scratch = mscratch.AsX86_64(); CHECK(scratch.IsCpuRegister()); Load(scratch, fr_offs, 8); gs()->movq(Address::Absolute(thr_offs, true), scratch.AsCpuRegister()); } void X86_64Assembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) { X86_64ManagedRegister scratch = mscratch.AsX86_64(); if (scratch.IsCpuRegister() && size == 8) { Load(scratch, src, 4); Store(dest, scratch, 4); Load(scratch, FrameOffset(src.Int32Value() + 4), 4); Store(FrameOffset(dest.Int32Value() + 4), scratch, 4); } else { Load(scratch, src, size); Store(dest, scratch, size); } } void X86_64Assembler::Copy(FrameOffset /*dst*/, ManagedRegister /*src_base*/, Offset /*src_offset*/, ManagedRegister /*scratch*/, size_t /*size*/) { UNIMPLEMENTED(FATAL); } void X86_64Assembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister scratch, size_t size) { CHECK(scratch.IsNoRegister()); CHECK_EQ(size, 4u); pushq(Address(CpuRegister(RSP), src)); popq(Address(dest_base.AsX86_64().AsCpuRegister(), dest_offset)); } void X86_64Assembler::Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister mscratch, size_t size) { CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister(); CHECK_EQ(size, 4u); movq(scratch, Address(CpuRegister(RSP), src_base)); movq(scratch, Address(scratch, src_offset)); movq(Address(CpuRegister(RSP), dest), scratch); } void X86_64Assembler::Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister scratch, size_t size) { CHECK_EQ(size, 4u); CHECK(scratch.IsNoRegister()); pushq(Address(src.AsX86_64().AsCpuRegister(), src_offset)); popq(Address(dest.AsX86_64().AsCpuRegister(), dest_offset)); } void X86_64Assembler::Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset, ManagedRegister mscratch, size_t size) { CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister(); CHECK_EQ(size, 4u); CHECK_EQ(dest.Int32Value(), src.Int32Value()); movq(scratch, Address(CpuRegister(RSP), src)); pushq(Address(scratch, src_offset)); popq(Address(scratch, dest_offset)); } void X86_64Assembler::MemoryBarrier(ManagedRegister) { mfence(); } void X86_64Assembler::CreateHandleScopeEntry(ManagedRegister mout_reg, FrameOffset handle_scope_offset, ManagedRegister min_reg, bool null_allowed) { X86_64ManagedRegister out_reg = mout_reg.AsX86_64(); X86_64ManagedRegister in_reg = min_reg.AsX86_64(); if (in_reg.IsNoRegister()) { // TODO(64): && null_allowed // Use out_reg as indicator of null. in_reg = out_reg; // TODO: movzwl movl(in_reg.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset)); } CHECK(in_reg.IsCpuRegister()); CHECK(out_reg.IsCpuRegister()); VerifyObject(in_reg, null_allowed); if (null_allowed) { Label null_arg; if (!out_reg.Equals(in_reg)) { xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister()); } testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister()); j(kZero, &null_arg); leaq(out_reg.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset)); Bind(&null_arg); } else { leaq(out_reg.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset)); } } void X86_64Assembler::CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handle_scope_offset, ManagedRegister mscratch, bool null_allowed) { X86_64ManagedRegister scratch = mscratch.AsX86_64(); CHECK(scratch.IsCpuRegister()); if (null_allowed) { Label null_arg; movl(scratch.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset)); testl(scratch.AsCpuRegister(), scratch.AsCpuRegister()); j(kZero, &null_arg); leaq(scratch.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset)); Bind(&null_arg); } else { leaq(scratch.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset)); } Store(out_off, scratch, 8); } // Given a handle scope entry, load the associated reference. void X86_64Assembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg, ManagedRegister min_reg) { X86_64ManagedRegister out_reg = mout_reg.AsX86_64(); X86_64ManagedRegister in_reg = min_reg.AsX86_64(); CHECK(out_reg.IsCpuRegister()); CHECK(in_reg.IsCpuRegister()); Label null_arg; if (!out_reg.Equals(in_reg)) { xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister()); } testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister()); j(kZero, &null_arg); movq(out_reg.AsCpuRegister(), Address(in_reg.AsCpuRegister(), 0)); Bind(&null_arg); } void X86_64Assembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) { // TODO: not validating references } void X86_64Assembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) { // TODO: not validating references } void X86_64Assembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister) { X86_64ManagedRegister base = mbase.AsX86_64(); CHECK(base.IsCpuRegister()); call(Address(base.AsCpuRegister(), offset.Int32Value())); // TODO: place reference map on call } void X86_64Assembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) { CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister(); movq(scratch, Address(CpuRegister(RSP), base)); call(Address(scratch, offset)); } void X86_64Assembler::CallFromThread64(ThreadOffset<8> offset, ManagedRegister /*mscratch*/) { gs()->call(Address::Absolute(offset, true)); } void X86_64Assembler::GetCurrentThread(ManagedRegister tr) { gs()->movq(tr.AsX86_64().AsCpuRegister(), Address::Absolute(Thread::SelfOffset<8>(), true)); } void X86_64Assembler::GetCurrentThread(FrameOffset offset, ManagedRegister mscratch) { X86_64ManagedRegister scratch = mscratch.AsX86_64(); gs()->movq(scratch.AsCpuRegister(), Address::Absolute(Thread::SelfOffset<8>(), true)); movq(Address(CpuRegister(RSP), offset), scratch.AsCpuRegister()); } // Slowpath entered when Thread::Current()->_exception is non-null class X86_64ExceptionSlowPath FINAL : public SlowPath { public: explicit X86_64ExceptionSlowPath(size_t stack_adjust) : stack_adjust_(stack_adjust) {} virtual void Emit(Assembler *sp_asm) OVERRIDE; private: const size_t stack_adjust_; }; void X86_64Assembler::ExceptionPoll(ManagedRegister /*scratch*/, size_t stack_adjust) { X86_64ExceptionSlowPath* slow = new X86_64ExceptionSlowPath(stack_adjust); buffer_.EnqueueSlowPath(slow); gs()->cmpl(Address::Absolute(Thread::ExceptionOffset<8>(), true), Immediate(0)); j(kNotEqual, slow->Entry()); } void X86_64ExceptionSlowPath::Emit(Assembler *sasm) { X86_64Assembler* sp_asm = down_cast<X86_64Assembler*>(sasm); #define __ sp_asm-> __ Bind(&entry_); // Note: the return value is dead if (stack_adjust_ != 0) { // Fix up the frame. __ DecreaseFrameSize(stack_adjust_); } // Pass exception as argument in RDI __ gs()->movq(CpuRegister(RDI), Address::Absolute(Thread::ExceptionOffset<8>(), true)); __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(8, pDeliverException), true)); // this call should never return __ int3(); #undef __ } void X86_64Assembler::AddConstantArea() { const std::vector<int32_t>& area = constant_area_.GetBuffer(); for (size_t i = 0, e = area.size(); i < e; i++) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitInt32(area[i]); } } int ConstantArea::AddInt32(int32_t v) { for (size_t i = 0, e = buffer_.size(); i < e; i++) { if (v == buffer_[i]) { return i * elem_size_; } } // Didn't match anything. int result = buffer_.size() * elem_size_; buffer_.push_back(v); return result; } int ConstantArea::AddInt64(int64_t v) { int32_t v_low = v; int32_t v_high = v >> 32; if (buffer_.size() > 1) { // Ensure we don't pass the end of the buffer. for (size_t i = 0, e = buffer_.size() - 1; i < e; i++) { if (v_low == buffer_[i] && v_high == buffer_[i + 1]) { return i * elem_size_; } } } // Didn't match anything. int result = buffer_.size() * elem_size_; buffer_.push_back(v_low); buffer_.push_back(v_high); return result; } int ConstantArea::AddDouble(double v) { // Treat the value as a 64-bit integer value. return AddInt64(bit_cast<int64_t, double>(v)); } int ConstantArea::AddFloat(float v) { // Treat the value as a 32-bit integer value. return AddInt32(bit_cast<int32_t, float>(v)); } } // namespace x86_64 } // namespace art