/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_thumb2.h" #include "base/bit_utils.h" #include "base/logging.h" #include "entrypoints/quick/quick_entrypoints.h" #include "offsets.h" #include "thread.h" namespace art { namespace arm { bool Thumb2Assembler::ShifterOperandCanHold(Register rd ATTRIBUTE_UNUSED, Register rn ATTRIBUTE_UNUSED, Opcode opcode, uint32_t immediate, ShifterOperand* shifter_op) { shifter_op->type_ = ShifterOperand::kImmediate; shifter_op->immed_ = immediate; shifter_op->is_shift_ = false; shifter_op->is_rotate_ = false; switch (opcode) { case ADD: case SUB: if (immediate < (1 << 12)) { // Less than (or equal to) 12 bits can always be done. return true; } return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate; case MOV: // TODO: Support less than or equal to 12bits. return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate; case MVN: default: return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate; } } void Thumb2Assembler::and_(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, AND, 0, rn, rd, so); } void Thumb2Assembler::eor(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, EOR, 0, rn, rd, so); } void Thumb2Assembler::sub(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, SUB, 0, rn, rd, so); } void Thumb2Assembler::rsb(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, RSB, 0, rn, rd, so); } void Thumb2Assembler::rsbs(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, RSB, 1, rn, rd, so); } void Thumb2Assembler::add(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, ADD, 0, rn, rd, so); } void Thumb2Assembler::adds(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, ADD, 1, rn, rd, so); } void Thumb2Assembler::subs(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, SUB, 1, rn, rd, so); } void Thumb2Assembler::adc(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, ADC, 0, rn, rd, so); } void Thumb2Assembler::sbc(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, SBC, 0, rn, rd, so); } void Thumb2Assembler::rsc(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, RSC, 0, rn, rd, so); } void Thumb2Assembler::tst(Register rn, const ShifterOperand& so, Condition cond) { CHECK_NE(rn, PC); // Reserve tst pc instruction for exception handler marker. EmitDataProcessing(cond, TST, 1, rn, R0, so); } void Thumb2Assembler::teq(Register rn, const ShifterOperand& so, Condition cond) { CHECK_NE(rn, PC); // Reserve teq pc instruction for exception handler marker. EmitDataProcessing(cond, TEQ, 1, rn, R0, so); } void Thumb2Assembler::cmp(Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, CMP, 1, rn, R0, so); } void Thumb2Assembler::cmn(Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, CMN, 1, rn, R0, so); } void Thumb2Assembler::orr(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, ORR, 0, rn, rd, so); } void Thumb2Assembler::orrs(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, ORR, 1, rn, rd, so); } void Thumb2Assembler::mov(Register rd, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, MOV, 0, R0, rd, so); } void Thumb2Assembler::movs(Register rd, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, MOV, 1, R0, rd, so); } void Thumb2Assembler::bic(Register rd, Register rn, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, BIC, 0, rn, rd, so); } void Thumb2Assembler::mvn(Register rd, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, MVN, 0, R0, rd, so); } void Thumb2Assembler::mvns(Register rd, const ShifterOperand& so, Condition cond) { EmitDataProcessing(cond, MVN, 1, R0, rd, so); } void Thumb2Assembler::mul(Register rd, Register rn, Register rm, Condition cond) { CheckCondition(cond); if (rd == rm && !IsHighRegister(rd) && !IsHighRegister(rn) && !force_32bit_) { // 16 bit. int16_t encoding = B14 | B9 | B8 | B6 | rn << 3 | rd; Emit16(encoding); } else { // 32 bit. uint32_t op1 = 0U /* 0b000 */; uint32_t op2 = 0U /* 0b00 */; int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | op1 << 20 | B15 | B14 | B13 | B12 | op2 << 4 | static_cast<uint32_t>(rd) << 8 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rm); Emit32(encoding); } } void Thumb2Assembler::mla(Register rd, Register rn, Register rm, Register ra, Condition cond) { CheckCondition(cond); uint32_t op1 = 0U /* 0b000 */; uint32_t op2 = 0U /* 0b00 */; int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | op1 << 20 | op2 << 4 | static_cast<uint32_t>(rd) << 8 | static_cast<uint32_t>(ra) << 12 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rm); Emit32(encoding); } void Thumb2Assembler::mls(Register rd, Register rn, Register rm, Register ra, Condition cond) { CheckCondition(cond); uint32_t op1 = 0U /* 0b000 */; uint32_t op2 = 01 /* 0b01 */; int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | op1 << 20 | op2 << 4 | static_cast<uint32_t>(rd) << 8 | static_cast<uint32_t>(ra) << 12 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rm); Emit32(encoding); } void Thumb2Assembler::umull(Register rd_lo, Register rd_hi, Register rn, Register rm, Condition cond) { CheckCondition(cond); uint32_t op1 = 2U /* 0b010; */; uint32_t op2 = 0U /* 0b0000 */; int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | B23 | op1 << 20 | op2 << 4 | static_cast<uint32_t>(rd_lo) << 12 | static_cast<uint32_t>(rd_hi) << 8 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rm); Emit32(encoding); } void Thumb2Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) { CheckCondition(cond); uint32_t op1 = 1U /* 0b001 */; uint32_t op2 = 15U /* 0b1111 */; int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | B23 | B20 | op1 << 20 | op2 << 4 | 0xf << 12 | static_cast<uint32_t>(rd) << 8 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rm); Emit32(encoding); } void Thumb2Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) { CheckCondition(cond); uint32_t op1 = 1U /* 0b001 */; uint32_t op2 = 15U /* 0b1111 */; int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | B23 | B21 | B20 | op1 << 20 | op2 << 4 | 0xf << 12 | static_cast<uint32_t>(rd) << 8 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rm); Emit32(encoding); } void Thumb2Assembler::sbfx(Register rd, Register rn, uint32_t lsb, uint32_t width, Condition cond) { CheckCondition(cond); CHECK_LE(lsb, 31U); CHECK(1U <= width && width <= 32U) << width; uint32_t widthminus1 = width - 1; uint32_t imm2 = lsb & (B1 | B0); // Bits 0-1 of `lsb`. uint32_t imm3 = (lsb & (B4 | B3 | B2)) >> 2; // Bits 2-4 of `lsb`. uint32_t op = 20U /* 0b10100 */; int32_t encoding = B31 | B30 | B29 | B28 | B25 | op << 20 | static_cast<uint32_t>(rn) << 16 | imm3 << 12 | static_cast<uint32_t>(rd) << 8 | imm2 << 6 | widthminus1; Emit32(encoding); } void Thumb2Assembler::ubfx(Register rd, Register rn, uint32_t lsb, uint32_t width, Condition cond) { CheckCondition(cond); CHECK_LE(lsb, 31U); CHECK(1U <= width && width <= 32U) << width; uint32_t widthminus1 = width - 1; uint32_t imm2 = lsb & (B1 | B0); // Bits 0-1 of `lsb`. uint32_t imm3 = (lsb & (B4 | B3 | B2)) >> 2; // Bits 2-4 of `lsb`. uint32_t op = 28U /* 0b11100 */; int32_t encoding = B31 | B30 | B29 | B28 | B25 | op << 20 | static_cast<uint32_t>(rn) << 16 | imm3 << 12 | static_cast<uint32_t>(rd) << 8 | imm2 << 6 | widthminus1; Emit32(encoding); } void Thumb2Assembler::ldr(Register rd, const Address& ad, Condition cond) { EmitLoadStore(cond, true, false, false, false, rd, ad); } void Thumb2Assembler::str(Register rd, const Address& ad, Condition cond) { EmitLoadStore(cond, false, false, false, false, rd, ad); } void Thumb2Assembler::ldrb(Register rd, const Address& ad, Condition cond) { EmitLoadStore(cond, true, true, false, false, rd, ad); } void Thumb2Assembler::strb(Register rd, const Address& ad, Condition cond) { EmitLoadStore(cond, false, true, false, false, rd, ad); } void Thumb2Assembler::ldrh(Register rd, const Address& ad, Condition cond) { EmitLoadStore(cond, true, false, true, false, rd, ad); } void Thumb2Assembler::strh(Register rd, const Address& ad, Condition cond) { EmitLoadStore(cond, false, false, true, false, rd, ad); } void Thumb2Assembler::ldrsb(Register rd, const Address& ad, Condition cond) { EmitLoadStore(cond, true, true, false, true, rd, ad); } void Thumb2Assembler::ldrsh(Register rd, const Address& ad, Condition cond) { EmitLoadStore(cond, true, false, true, true, rd, ad); } void Thumb2Assembler::ldrd(Register rd, const Address& ad, Condition cond) { ldrd(rd, Register(rd + 1), ad, cond); } void Thumb2Assembler::ldrd(Register rd, Register rd2, const Address& ad, Condition cond) { CheckCondition(cond); // Encoding T1. // This is different from other loads. The encoding is like ARM. int32_t encoding = B31 | B30 | B29 | B27 | B22 | B20 | static_cast<int32_t>(rd) << 12 | static_cast<int32_t>(rd2) << 8 | ad.encodingThumbLdrdStrd(); Emit32(encoding); } void Thumb2Assembler::strd(Register rd, const Address& ad, Condition cond) { strd(rd, Register(rd + 1), ad, cond); } void Thumb2Assembler::strd(Register rd, Register rd2, const Address& ad, Condition cond) { CheckCondition(cond); // Encoding T1. // This is different from other loads. The encoding is like ARM. int32_t encoding = B31 | B30 | B29 | B27 | B22 | static_cast<int32_t>(rd) << 12 | static_cast<int32_t>(rd2) << 8 | ad.encodingThumbLdrdStrd(); Emit32(encoding); } void Thumb2Assembler::ldm(BlockAddressMode am, Register base, RegList regs, Condition cond) { CHECK_NE(regs, 0u); // Do not use ldm if there's nothing to load. if (IsPowerOfTwo(regs)) { // Thumb doesn't support one reg in the list. // Find the register number. int reg = CTZ(static_cast<uint32_t>(regs)); CHECK_LT(reg, 16); CHECK(am == DB_W); // Only writeback is supported. ldr(static_cast<Register>(reg), Address(base, kRegisterSize, Address::PostIndex), cond); } else { EmitMultiMemOp(cond, am, true, base, regs); } } void Thumb2Assembler::stm(BlockAddressMode am, Register base, RegList regs, Condition cond) { CHECK_NE(regs, 0u); // Do not use stm if there's nothing to store. if (IsPowerOfTwo(regs)) { // Thumb doesn't support one reg in the list. // Find the register number. int reg = CTZ(static_cast<uint32_t>(regs)); CHECK_LT(reg, 16); CHECK(am == IA || am == IA_W); Address::Mode strmode = am == IA ? Address::PreIndex : Address::Offset; str(static_cast<Register>(reg), Address(base, -kRegisterSize, strmode), cond); } else { EmitMultiMemOp(cond, am, false, base, regs); } } bool Thumb2Assembler::vmovs(SRegister sd, float s_imm, Condition cond) { uint32_t imm32 = bit_cast<uint32_t, float>(s_imm); if (((imm32 & ((1 << 19) - 1)) == 0) && ((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) || (((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) { uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) | ((imm32 >> 19) & ((1 << 6) -1)); EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf), sd, S0, S0); return true; } return false; } bool Thumb2Assembler::vmovd(DRegister dd, double d_imm, Condition cond) { uint64_t imm64 = bit_cast<uint64_t, double>(d_imm); if (((imm64 & ((1LL << 48) - 1)) == 0) && ((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) || (((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) { uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) | ((imm64 >> 48) & ((1 << 6) -1)); EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf), dd, D0, D0); return true; } return false; } void Thumb2Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm); } void Thumb2Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm); } void Thumb2Assembler::vadds(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B21 | B20, sd, sn, sm); } void Thumb2Assembler::vaddd(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B21 | B20, dd, dn, dm); } void Thumb2Assembler::vsubs(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm); } void Thumb2Assembler::vsubd(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm); } void Thumb2Assembler::vmuls(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B21, sd, sn, sm); } void Thumb2Assembler::vmuld(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B21, dd, dn, dm); } void Thumb2Assembler::vmlas(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, 0, sd, sn, sm); } void Thumb2Assembler::vmlad(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, 0, dd, dn, dm); } void Thumb2Assembler::vmlss(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B6, sd, sn, sm); } void Thumb2Assembler::vmlsd(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B6, dd, dn, dm); } void Thumb2Assembler::vdivs(SRegister sd, SRegister sn, SRegister sm, Condition cond) { EmitVFPsss(cond, B23, sd, sn, sm); } void Thumb2Assembler::vdivd(DRegister dd, DRegister dn, DRegister dm, Condition cond) { EmitVFPddd(cond, B23, dd, dn, dm); } void Thumb2Assembler::vabss(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm); } void Thumb2Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm); } void Thumb2Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm); } void Thumb2Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm); } void Thumb2Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm); } void Thumb2Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm); } void Thumb2Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) { EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm); } void Thumb2Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) { EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm); } void Thumb2Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm); } void Thumb2Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) { EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm); } void Thumb2Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm); } void Thumb2Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) { EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm); } void Thumb2Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm); } void Thumb2Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) { EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm); } void Thumb2Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm); } void Thumb2Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) { EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm); } void Thumb2Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm); } void Thumb2Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm); } void Thumb2Assembler::vcmpsz(SRegister sd, Condition cond) { EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0); } void Thumb2Assembler::vcmpdz(DRegister dd, Condition cond) { EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0); } void Thumb2Assembler::b(Label* label, Condition cond) { EmitBranch(cond, label, false, false); } void Thumb2Assembler::bl(Label* label, Condition cond) { CheckCondition(cond); EmitBranch(cond, label, true, false); } void Thumb2Assembler::blx(Label* label) { EmitBranch(AL, label, true, true); } void Thumb2Assembler::MarkExceptionHandler(Label* label) { EmitDataProcessing(AL, TST, 1, PC, R0, ShifterOperand(0)); Label l; b(&l); EmitBranch(AL, label, false, false); Bind(&l); } void Thumb2Assembler::Emit32(int32_t value) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); buffer_.Emit<int16_t>(value >> 16); buffer_.Emit<int16_t>(value & 0xffff); } void Thumb2Assembler::Emit16(int16_t value) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); buffer_.Emit<int16_t>(value); } bool Thumb2Assembler::Is32BitDataProcessing(Condition cond ATTRIBUTE_UNUSED, Opcode opcode, bool set_cc, Register rn, Register rd, const ShifterOperand& so) { if (force_32bit_) { return true; } // Check special case for SP relative ADD and SUB immediate. if ((opcode == ADD || opcode == SUB) && rn == SP && so.IsImmediate()) { // If the immediate is in range, use 16 bit. if (rd == SP) { if (so.GetImmediate() < (1 << 9)) { // 9 bit immediate. return false; } } else if (!IsHighRegister(rd) && opcode == ADD) { if (so.GetImmediate() < (1 << 10)) { // 10 bit immediate. return false; } } } bool can_contain_high_register = (opcode == MOV) || ((opcode == ADD) && (rn == rd) && !set_cc); if (IsHighRegister(rd) || IsHighRegister(rn)) { if (!can_contain_high_register) { return true; } // There are high register instructions available for this opcode. // However, there is no actual shift available, neither for ADD nor for MOV (ASR/LSR/LSL/ROR). if (so.IsShift() && (so.GetShift() == RRX || so.GetImmediate() != 0u)) { return true; } // The ADD and MOV instructions that work with high registers don't have 16-bit // immediate variants. if (so.IsImmediate()) { return true; } } if (so.IsRegister() && IsHighRegister(so.GetRegister()) && !can_contain_high_register) { return true; } // Check for MOV with an ROR. if (opcode == MOV && so.IsRegister() && so.IsShift() && so.GetShift() == ROR) { if (so.GetImmediate() != 0) { return true; } } bool rn_is_valid = true; // Check for single operand instructions and ADD/SUB. switch (opcode) { case CMP: case MOV: case TST: case MVN: rn_is_valid = false; // There is no Rn for these instructions. break; case TEQ: return true; case ADD: case SUB: break; default: if (so.IsRegister() && rd != rn) { return true; } } if (so.IsImmediate()) { if (rn_is_valid && rn != rd) { // The only thumb1 instruction with a register and an immediate are ADD and SUB. The // immediate must be 3 bits. if (opcode != ADD && opcode != SUB) { return true; } else { // Check that the immediate is 3 bits for ADD and SUB. if (so.GetImmediate() >= 8) { return true; } } } else { // ADD, SUB, CMP and MOV may be thumb1 only if the immediate is 8 bits. if (!(opcode == ADD || opcode == SUB || opcode == MOV || opcode == CMP)) { return true; } else { if (so.GetImmediate() > 255) { return true; } } } } // The instruction can be encoded in 16 bits. return false; } void Thumb2Assembler::Emit32BitDataProcessing(Condition cond ATTRIBUTE_UNUSED, Opcode opcode, bool set_cc, Register rn, Register rd, const ShifterOperand& so) { uint8_t thumb_opcode = 255U /* 0b11111111 */; switch (opcode) { case AND: thumb_opcode = 0U /* 0b0000 */; break; case EOR: thumb_opcode = 4U /* 0b0100 */; break; case SUB: thumb_opcode = 13U /* 0b1101 */; break; case RSB: thumb_opcode = 14U /* 0b1110 */; break; case ADD: thumb_opcode = 8U /* 0b1000 */; break; case ADC: thumb_opcode = 10U /* 0b1010 */; break; case SBC: thumb_opcode = 11U /* 0b1011 */; break; case RSC: break; case TST: thumb_opcode = 0U /* 0b0000 */; set_cc = true; rd = PC; break; case TEQ: thumb_opcode = 4U /* 0b0100 */; set_cc = true; rd = PC; break; case CMP: thumb_opcode = 13U /* 0b1101 */; set_cc = true; rd = PC; break; case CMN: thumb_opcode = 8U /* 0b1000 */; set_cc = true; rd = PC; break; case ORR: thumb_opcode = 2U /* 0b0010 */; break; case MOV: thumb_opcode = 2U /* 0b0010 */; rn = PC; break; case BIC: thumb_opcode = 1U /* 0b0001 */; break; case MVN: thumb_opcode = 3U /* 0b0011 */; rn = PC; break; default: break; } if (thumb_opcode == 255U /* 0b11111111 */) { LOG(FATAL) << "Invalid thumb2 opcode " << opcode; UNREACHABLE(); } int32_t encoding = 0; if (so.IsImmediate()) { // Check special cases. if ((opcode == SUB || opcode == ADD) && (so.GetImmediate() < (1u << 12))) { if (!set_cc) { if (opcode == SUB) { thumb_opcode = 5U; } else if (opcode == ADD) { thumb_opcode = 0U; } } uint32_t imm = so.GetImmediate(); uint32_t i = (imm >> 11) & 1; uint32_t imm3 = (imm >> 8) & 7U /* 0b111 */; uint32_t imm8 = imm & 0xff; encoding = B31 | B30 | B29 | B28 | (set_cc ? B20 : B25) | thumb_opcode << 21 | rn << 16 | rd << 8 | i << 26 | imm3 << 12 | imm8; } else { // Modified immediate. uint32_t imm = ModifiedImmediate(so.encodingThumb()); if (imm == kInvalidModifiedImmediate) { LOG(FATAL) << "Immediate value cannot fit in thumb2 modified immediate"; UNREACHABLE(); } encoding = B31 | B30 | B29 | B28 | thumb_opcode << 21 | (set_cc ? B20 : 0) | rn << 16 | rd << 8 | imm; } } else if (so.IsRegister()) { // Register (possibly shifted) encoding = B31 | B30 | B29 | B27 | B25 | thumb_opcode << 21 | (set_cc ? B20 : 0) | rn << 16 | rd << 8 | so.encodingThumb(); } Emit32(encoding); } void Thumb2Assembler::Emit16BitDataProcessing(Condition cond, Opcode opcode, bool set_cc, Register rn, Register rd, const ShifterOperand& so) { if (opcode == ADD || opcode == SUB) { Emit16BitAddSub(cond, opcode, set_cc, rn, rd, so); return; } uint8_t thumb_opcode = 255U /* 0b11111111 */; // Thumb1. uint8_t dp_opcode = 1U /* 0b01 */; uint8_t opcode_shift = 6; uint8_t rd_shift = 0; uint8_t rn_shift = 3; uint8_t immediate_shift = 0; bool use_immediate = false; uint8_t immediate = 0; if (opcode == MOV && so.IsRegister() && so.IsShift()) { // Convert shifted mov operand2 into 16 bit opcodes. dp_opcode = 0; opcode_shift = 11; use_immediate = true; immediate = so.GetImmediate(); immediate_shift = 6; rn = so.GetRegister(); switch (so.GetShift()) { case LSL: thumb_opcode = 0U /* 0b00 */; break; case LSR: thumb_opcode = 1U /* 0b01 */; break; case ASR: thumb_opcode = 2U /* 0b10 */; break; case ROR: // ROR doesn't allow immediates. thumb_opcode = 7U /* 0b111 */; dp_opcode = 1U /* 0b01 */; opcode_shift = 6; use_immediate = false; break; case RRX: break; default: break; } } else { if (so.IsImmediate()) { use_immediate = true; immediate = so.GetImmediate(); } else { CHECK(!(so.IsRegister() && so.IsShift() && so.GetSecondRegister() != kNoRegister)) << "No register-shifted register instruction available in thumb"; // Adjust rn and rd: only two registers will be emitted. switch (opcode) { case AND: case ORR: case EOR: case RSB: case ADC: case SBC: case BIC: { if (rn == rd) { rn = so.GetRegister(); } else { CHECK_EQ(rd, so.GetRegister()); } break; } case CMP: case CMN: { CHECK_EQ(rd, 0); rd = rn; rn = so.GetRegister(); break; } case TST: case TEQ: case MVN: { CHECK_EQ(rn, 0); rn = so.GetRegister(); break; } default: break; } } switch (opcode) { case AND: thumb_opcode = 0U /* 0b0000 */; break; case ORR: thumb_opcode = 12U /* 0b1100 */; break; case EOR: thumb_opcode = 1U /* 0b0001 */; break; case RSB: thumb_opcode = 9U /* 0b1001 */; break; case ADC: thumb_opcode = 5U /* 0b0101 */; break; case SBC: thumb_opcode = 6U /* 0b0110 */; break; case BIC: thumb_opcode = 14U /* 0b1110 */; break; case TST: thumb_opcode = 8U /* 0b1000 */; CHECK(!use_immediate); break; case MVN: thumb_opcode = 15U /* 0b1111 */; CHECK(!use_immediate); break; case CMP: { if (use_immediate) { // T2 encoding. dp_opcode = 0; opcode_shift = 11; thumb_opcode = 5U /* 0b101 */; rd_shift = 8; rn_shift = 8; } else { thumb_opcode = 10U /* 0b1010 */; } break; } case CMN: { CHECK(!use_immediate); thumb_opcode = 11U /* 0b1011 */; break; } case MOV: dp_opcode = 0; if (use_immediate) { // T2 encoding. opcode_shift = 11; thumb_opcode = 4U /* 0b100 */; rd_shift = 8; rn_shift = 8; } else { rn = so.GetRegister(); if (IsHighRegister(rn) || IsHighRegister(rd)) { // Special mov for high registers. dp_opcode = 1U /* 0b01 */; opcode_shift = 7; // Put the top bit of rd into the bottom bit of the opcode. thumb_opcode = 12U /* 0b0001100 */ | static_cast<uint32_t>(rd) >> 3; rd = static_cast<Register>(static_cast<uint32_t>(rd) & 7U /* 0b111 */); } else { thumb_opcode = 0; } } break; case TEQ: case RSC: default: LOG(FATAL) << "Invalid thumb1 opcode " << opcode; break; } } if (thumb_opcode == 255U /* 0b11111111 */) { LOG(FATAL) << "Invalid thumb1 opcode " << opcode; UNREACHABLE(); } int16_t encoding = dp_opcode << 14 | (thumb_opcode << opcode_shift) | rd << rd_shift | rn << rn_shift | (use_immediate ? (immediate << immediate_shift) : 0); Emit16(encoding); } // ADD and SUB are complex enough to warrant their own emitter. void Thumb2Assembler::Emit16BitAddSub(Condition cond ATTRIBUTE_UNUSED, Opcode opcode, bool set_cc, Register rn, Register rd, const ShifterOperand& so) { uint8_t dp_opcode = 0; uint8_t opcode_shift = 6; uint8_t rd_shift = 0; uint8_t rn_shift = 3; uint8_t immediate_shift = 0; bool use_immediate = false; uint32_t immediate = 0; // Should be at most 9 bits but keep the full immediate for CHECKs. uint8_t thumb_opcode;; if (so.IsImmediate()) { use_immediate = true; immediate = so.GetImmediate(); } switch (opcode) { case ADD: if (so.IsRegister()) { Register rm = so.GetRegister(); if (rn == rd && !set_cc) { // Can use T2 encoding (allows 4 bit registers) dp_opcode = 1U /* 0b01 */; opcode_shift = 10; thumb_opcode = 1U /* 0b0001 */; // Make Rn also contain the top bit of rd. rn = static_cast<Register>(static_cast<uint32_t>(rm) | (static_cast<uint32_t>(rd) & 8U /* 0b1000 */) << 1); rd = static_cast<Register>(static_cast<uint32_t>(rd) & 7U /* 0b111 */); } else { // T1. opcode_shift = 9; thumb_opcode = 12U /* 0b01100 */; immediate = static_cast<uint32_t>(so.GetRegister()); use_immediate = true; immediate_shift = 6; } } else { // Immediate. if (rd == SP && rn == SP) { // ADD sp, sp, #imm dp_opcode = 2U /* 0b10 */; thumb_opcode = 3U /* 0b11 */; opcode_shift = 12; CHECK_LT(immediate, (1u << 9)); CHECK_EQ((immediate & 3u /* 0b11 */), 0u); // Remove rd and rn from instruction by orring it with immed and clearing bits. rn = R0; rd = R0; rd_shift = 0; rn_shift = 0; immediate >>= 2; } else if (rd != SP && rn == SP) { // ADD rd, SP, #imm dp_opcode = 2U /* 0b10 */; thumb_opcode = 5U /* 0b101 */; opcode_shift = 11; CHECK_LT(immediate, (1u << 10)); CHECK_EQ((immediate & 3u /* 0b11 */), 0u); // Remove rn from instruction. rn = R0; rn_shift = 0; rd_shift = 8; immediate >>= 2; } else if (rn != rd) { // Must use T1. opcode_shift = 9; thumb_opcode = 14U /* 0b01110 */; immediate_shift = 6; } else { // T2 encoding. opcode_shift = 11; thumb_opcode = 6U /* 0b110 */; rd_shift = 8; rn_shift = 8; } } break; case SUB: if (so.IsRegister()) { // T1. opcode_shift = 9; thumb_opcode = 13U /* 0b01101 */; immediate = static_cast<uint32_t>(so.GetRegister()); use_immediate = true; immediate_shift = 6; } else { if (rd == SP && rn == SP) { // SUB sp, sp, #imm dp_opcode = 2U /* 0b10 */; thumb_opcode = 0x61 /* 0b1100001 */; opcode_shift = 7; CHECK_LT(immediate, (1u << 9)); CHECK_EQ((immediate & 3u /* 0b11 */), 0u); // Remove rd and rn from instruction by orring it with immed and clearing bits. rn = R0; rd = R0; rd_shift = 0; rn_shift = 0; immediate >>= 2; } else if (rn != rd) { // Must use T1. opcode_shift = 9; thumb_opcode = 15U /* 0b01111 */; immediate_shift = 6; } else { // T2 encoding. opcode_shift = 11; thumb_opcode = 7U /* 0b111 */; rd_shift = 8; rn_shift = 8; } } break; default: LOG(FATAL) << "This opcode is not an ADD or SUB: " << opcode; UNREACHABLE(); } int16_t encoding = dp_opcode << 14 | (thumb_opcode << opcode_shift) | rd << rd_shift | rn << rn_shift | (use_immediate ? (immediate << immediate_shift) : 0); Emit16(encoding); } void Thumb2Assembler::EmitDataProcessing(Condition cond, Opcode opcode, bool set_cc, Register rn, Register rd, const ShifterOperand& so) { CHECK_NE(rd, kNoRegister); CheckCondition(cond); if (Is32BitDataProcessing(cond, opcode, set_cc, rn, rd, so)) { Emit32BitDataProcessing(cond, opcode, set_cc, rn, rd, so); } else { Emit16BitDataProcessing(cond, opcode, set_cc, rn, rd, so); } } void Thumb2Assembler::EmitShift(Register rd, Register rm, Shift shift, uint8_t amount, bool setcc) { CHECK_LT(amount, (1 << 5)); if (IsHighRegister(rd) || IsHighRegister(rm) || shift == ROR || shift == RRX) { uint16_t opcode = 0; switch (shift) { case LSL: opcode = 0U /* 0b00 */; break; case LSR: opcode = 1U /* 0b01 */; break; case ASR: opcode = 2U /* 0b10 */; break; case ROR: opcode = 3U /* 0b11 */; break; case RRX: opcode = 3U /* 0b11 */; amount = 0; break; default: LOG(FATAL) << "Unsupported thumb2 shift opcode"; UNREACHABLE(); } // 32 bit. int32_t encoding = B31 | B30 | B29 | B27 | B25 | B22 | 0xf << 16 | (setcc ? B20 : 0); uint32_t imm3 = amount >> 2; uint32_t imm2 = amount & 3U /* 0b11 */; encoding |= imm3 << 12 | imm2 << 6 | static_cast<int16_t>(rm) | static_cast<int16_t>(rd) << 8 | opcode << 4; Emit32(encoding); } else { // 16 bit shift uint16_t opcode = 0; switch (shift) { case LSL: opcode = 0U /* 0b00 */; break; case LSR: opcode = 1U /* 0b01 */; break; case ASR: opcode = 2U /* 0b10 */; break; default: LOG(FATAL) << "Unsupported thumb2 shift opcode"; UNREACHABLE(); } int16_t encoding = opcode << 11 | amount << 6 | static_cast<int16_t>(rm) << 3 | static_cast<int16_t>(rd); Emit16(encoding); } } void Thumb2Assembler::EmitShift(Register rd, Register rn, Shift shift, Register rm, bool setcc) { CHECK_NE(shift, RRX); bool must_be_32bit = false; if (IsHighRegister(rd) || IsHighRegister(rm) || IsHighRegister(rn) || rd != rn) { must_be_32bit = true; } if (must_be_32bit) { uint16_t opcode = 0; switch (shift) { case LSL: opcode = 0U /* 0b00 */; break; case LSR: opcode = 1U /* 0b01 */; break; case ASR: opcode = 2U /* 0b10 */; break; case ROR: opcode = 3U /* 0b11 */; break; default: LOG(FATAL) << "Unsupported thumb2 shift opcode"; UNREACHABLE(); } // 32 bit. int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | 0xf << 12 | (setcc ? B20 : 0); encoding |= static_cast<int16_t>(rn) << 16 | static_cast<int16_t>(rm) | static_cast<int16_t>(rd) << 8 | opcode << 21; Emit32(encoding); } else { uint16_t opcode = 0; switch (shift) { case LSL: opcode = 2U /* 0b0010 */; break; case LSR: opcode = 3U /* 0b0011 */; break; case ASR: opcode = 4U /* 0b0100 */; break; default: LOG(FATAL) << "Unsupported thumb2 shift opcode"; UNREACHABLE(); } int16_t encoding = B14 | opcode << 6 | static_cast<int16_t>(rm) << 3 | static_cast<int16_t>(rd); Emit16(encoding); } } void Thumb2Assembler::Branch::Emit(AssemblerBuffer* buffer) const { bool link = type_ == kUnconditionalLinkX || type_ == kUnconditionalLink; bool x = type_ == kUnconditionalX || type_ == kUnconditionalLinkX; int32_t offset = target_ - location_; if (size_ == k32Bit) { int32_t encoding = B31 | B30 | B29 | B28 | B15; if (link) { // BL or BLX immediate. encoding |= B14; if (!x) { encoding |= B12; } else { // Bottom bit of offset must be 0. CHECK_EQ((offset & 1), 0); } } else { if (x) { LOG(FATAL) << "Invalid use of BX"; UNREACHABLE(); } else { if (cond_ == AL) { // Can use the T4 encoding allowing a 24 bit offset. if (!x) { encoding |= B12; } } else { // Must be T3 encoding with a 20 bit offset. encoding |= cond_ << 22; } } } encoding = Thumb2Assembler::EncodeBranchOffset(offset, encoding); buffer->Store<int16_t>(location_, static_cast<int16_t>(encoding >> 16)); buffer->Store<int16_t>(location_+2, static_cast<int16_t>(encoding & 0xffff)); } else { if (IsCompareAndBranch()) { offset -= 4; uint16_t i = (offset >> 6) & 1; uint16_t imm5 = (offset >> 1) & 31U /* 0b11111 */; int16_t encoding = B15 | B13 | B12 | (type_ == kCompareAndBranchNonZero ? B11 : 0) | static_cast<uint32_t>(rn_) | B8 | i << 9 | imm5 << 3; buffer->Store<int16_t>(location_, encoding); } else { offset -= 4; // Account for PC offset. int16_t encoding; // 16 bit. if (cond_ == AL) { encoding = B15 | B14 | B13 | ((offset >> 1) & 0x7ff); } else { encoding = B15 | B14 | B12 | cond_ << 8 | ((offset >> 1) & 0xff); } buffer->Store<int16_t>(location_, encoding); } } } uint16_t Thumb2Assembler::EmitCompareAndBranch(Register rn, uint16_t prev, bool n) { uint32_t location = buffer_.Size(); // This is always unresolved as it must be a forward branch. Emit16(prev); // Previous link. return AddBranch(n ? Branch::kCompareAndBranchNonZero : Branch::kCompareAndBranchZero, location, rn); } // NOTE: this only support immediate offsets, not [rx,ry]. // TODO: support [rx,ry] instructions. void Thumb2Assembler::EmitLoadStore(Condition cond, bool load, bool byte, bool half, bool is_signed, Register rd, const Address& ad) { CHECK_NE(rd, kNoRegister); CheckCondition(cond); bool must_be_32bit = force_32bit_; if (IsHighRegister(rd)) { must_be_32bit = true; } Register rn = ad.GetRegister(); if (IsHighRegister(rn) && rn != SP && rn != PC) { must_be_32bit = true; } if (is_signed || ad.GetOffset() < 0 || ad.GetMode() != Address::Offset) { must_be_32bit = true; } if (ad.IsImmediate()) { // Immediate offset int32_t offset = ad.GetOffset(); // The 16 bit SP relative instruction can only have a 10 bit offset. if (rn == SP && offset >= (1 << 10)) { must_be_32bit = true; } if (byte) { // 5 bit offset, no shift. if (offset >= (1 << 5)) { must_be_32bit = true; } } else if (half) { // 6 bit offset, shifted by 1. if (offset >= (1 << 6)) { must_be_32bit = true; } } else { // 7 bit offset, shifted by 2. if (offset >= (1 << 7)) { must_be_32bit = true; } } if (must_be_32bit) { int32_t encoding = B31 | B30 | B29 | B28 | B27 | (load ? B20 : 0) | (is_signed ? B24 : 0) | static_cast<uint32_t>(rd) << 12 | ad.encodingThumb(true) | (byte ? 0 : half ? B21 : B22); Emit32(encoding); } else { // 16 bit thumb1. uint8_t opA = 0; bool sp_relative = false; if (byte) { opA = 7U /* 0b0111 */; } else if (half) { opA = 8U /* 0b1000 */; } else { if (rn == SP) { opA = 9U /* 0b1001 */; sp_relative = true; } else { opA = 6U /* 0b0110 */; } } int16_t encoding = opA << 12 | (load ? B11 : 0); CHECK_GE(offset, 0); if (sp_relative) { // SP relative, 10 bit offset. CHECK_LT(offset, (1 << 10)); CHECK_EQ((offset & 3 /* 0b11 */), 0); encoding |= rd << 8 | offset >> 2; } else { // No SP relative. The offset is shifted right depending on // the size of the load/store. encoding |= static_cast<uint32_t>(rd); if (byte) { // 5 bit offset, no shift. CHECK_LT(offset, (1 << 5)); } else if (half) { // 6 bit offset, shifted by 1. CHECK_LT(offset, (1 << 6)); CHECK_EQ((offset & 1 /* 0b1 */), 0); offset >>= 1; } else { // 7 bit offset, shifted by 2. CHECK_LT(offset, (1 << 7)); CHECK_EQ((offset & 3 /* 0b11 */), 0); offset >>= 2; } encoding |= rn << 3 | offset << 6; } Emit16(encoding); } } else { // Register shift. if (ad.GetRegister() == PC) { // PC relative literal encoding. int32_t offset = ad.GetOffset(); if (must_be_32bit || offset < 0 || offset >= (1 << 10) || !load) { int32_t up = B23; if (offset < 0) { offset = -offset; up = 0; } CHECK_LT(offset, (1 << 12)); int32_t encoding = 0x1f << 27 | 0xf << 16 | B22 | (load ? B20 : 0) | offset | up | static_cast<uint32_t>(rd) << 12; Emit32(encoding); } else { // 16 bit literal load. CHECK_GE(offset, 0); CHECK_LT(offset, (1 << 10)); int32_t encoding = B14 | (load ? B11 : 0) | static_cast<uint32_t>(rd) << 8 | offset >> 2; Emit16(encoding); } } else { if (ad.GetShiftCount() != 0) { // If there is a shift count this must be 32 bit. must_be_32bit = true; } else if (IsHighRegister(ad.GetRegisterOffset())) { must_be_32bit = true; } if (must_be_32bit) { int32_t encoding = 0x1f << 27 | (load ? B20 : 0) | static_cast<uint32_t>(rd) << 12 | ad.encodingThumb(true); if (half) { encoding |= B21; } else if (!byte) { encoding |= B22; } Emit32(encoding); } else { // 16 bit register offset. int32_t encoding = B14 | B12 | (load ? B11 : 0) | static_cast<uint32_t>(rd) | ad.encodingThumb(false); if (byte) { encoding |= B10; } else if (half) { encoding |= B9; } Emit16(encoding); } } } } void Thumb2Assembler::EmitMultiMemOp(Condition cond, BlockAddressMode bam, bool load, Register base, RegList regs) { CHECK_NE(base, kNoRegister); CheckCondition(cond); bool must_be_32bit = force_32bit_; if (!must_be_32bit && base == SP && bam == (load ? IA_W : DB_W) && (regs & 0xff00 & ~(1 << (load ? PC : LR))) == 0) { // Use 16-bit PUSH/POP. int16_t encoding = B15 | B13 | B12 | (load ? B11 : 0) | B10 | ((regs & (1 << (load ? PC : LR))) != 0 ? B8 : 0) | (regs & 0x00ff); Emit16(encoding); return; } if ((regs & 0xff00) != 0) { must_be_32bit = true; } bool w_bit = bam == IA_W || bam == DB_W || bam == DA_W || bam == IB_W; // 16 bit always uses writeback. if (!w_bit) { must_be_32bit = true; } if (must_be_32bit) { uint32_t op = 0; switch (bam) { case IA: case IA_W: op = 1U /* 0b01 */; break; case DB: case DB_W: op = 2U /* 0b10 */; break; case DA: case IB: case DA_W: case IB_W: LOG(FATAL) << "LDM/STM mode not supported on thumb: " << bam; UNREACHABLE(); } if (load) { // Cannot have SP in the list. CHECK_EQ((regs & (1 << SP)), 0); } else { // Cannot have PC or SP in the list. CHECK_EQ((regs & (1 << PC | 1 << SP)), 0); } int32_t encoding = B31 | B30 | B29 | B27 | (op << 23) | (load ? B20 : 0) | base << 16 | regs | (w_bit << 21); Emit32(encoding); } else { int16_t encoding = B15 | B14 | (load ? B11 : 0) | base << 8 | regs; Emit16(encoding); } } void Thumb2Assembler::EmitBranch(Condition cond, Label* label, bool link, bool x) { uint32_t pc = buffer_.Size(); Branch::Type branch_type; if (cond == AL) { if (link) { if (x) { branch_type = Branch::kUnconditionalLinkX; // BLX. } else { branch_type = Branch::kUnconditionalLink; // BX. } } else { branch_type = Branch::kUnconditional; // B. } } else { branch_type = Branch::kConditional; // B<cond>. } if (label->IsBound()) { Branch::Size size = AddBranch(branch_type, pc, label->Position(), cond); // Resolved branch. // The branch is to a bound label which means that it's a backwards branch. We know the // current size of it so we can emit the appropriate space. Note that if it's a 16 bit // branch the size may change if it so happens that other branches change size that change // the distance to the target and that distance puts this branch over the limit for 16 bits. if (size == Branch::k16Bit) { DCHECK(!force_32bit_branches_); Emit16(0); // Space for a 16 bit branch. } else { Emit32(0); // Space for a 32 bit branch. } } else { // Branch is to an unbound label. Emit space for it. uint16_t branch_id = AddBranch(branch_type, pc, cond); // Unresolved branch. if (force_32bit_branches_ || force_32bit_) { Emit16(static_cast<uint16_t>(label->position_)); // Emit current label link. Emit16(0); // another 16 bits. } else { Emit16(static_cast<uint16_t>(label->position_)); // Emit current label link. } label->LinkTo(branch_id); // Link to the branch ID. } } void Thumb2Assembler::clz(Register rd, Register rm, Condition cond) { CHECK_NE(rd, kNoRegister); CHECK_NE(rm, kNoRegister); CheckCondition(cond); CHECK_NE(rd, PC); CHECK_NE(rm, PC); int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B23 | B21 | B20 | static_cast<uint32_t>(rm) << 16 | 0xf << 12 | static_cast<uint32_t>(rd) << 8 | B7 | static_cast<uint32_t>(rm); Emit32(encoding); } void Thumb2Assembler::movw(Register rd, uint16_t imm16, Condition cond) { CheckCondition(cond); bool must_be_32bit = force_32bit_; if (IsHighRegister(rd)|| imm16 >= 256u) { must_be_32bit = true; } if (must_be_32bit) { // Use encoding T3. uint32_t imm4 = (imm16 >> 12) & 15U /* 0b1111 */; uint32_t i = (imm16 >> 11) & 1U /* 0b1 */; uint32_t imm3 = (imm16 >> 8) & 7U /* 0b111 */; uint32_t imm8 = imm16 & 0xff; int32_t encoding = B31 | B30 | B29 | B28 | B25 | B22 | static_cast<uint32_t>(rd) << 8 | i << 26 | imm4 << 16 | imm3 << 12 | imm8; Emit32(encoding); } else { int16_t encoding = B13 | static_cast<uint16_t>(rd) << 8 | imm16; Emit16(encoding); } } void Thumb2Assembler::movt(Register rd, uint16_t imm16, Condition cond) { CheckCondition(cond); // Always 32 bits. uint32_t imm4 = (imm16 >> 12) & 15U /* 0b1111 */; uint32_t i = (imm16 >> 11) & 1U /* 0b1 */; uint32_t imm3 = (imm16 >> 8) & 7U /* 0b111 */; uint32_t imm8 = imm16 & 0xff; int32_t encoding = B31 | B30 | B29 | B28 | B25 | B23 | B22 | static_cast<uint32_t>(rd) << 8 | i << 26 | imm4 << 16 | imm3 << 12 | imm8; Emit32(encoding); } void Thumb2Assembler::ldrex(Register rt, Register rn, uint16_t imm, Condition cond) { CHECK_NE(rn, kNoRegister); CHECK_NE(rt, kNoRegister); CheckCondition(cond); CHECK_LT(imm, (1u << 10)); int32_t encoding = B31 | B30 | B29 | B27 | B22 | B20 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rt) << 12 | 0xf << 8 | imm >> 2; Emit32(encoding); } void Thumb2Assembler::ldrex(Register rt, Register rn, Condition cond) { ldrex(rt, rn, 0, cond); } void Thumb2Assembler::strex(Register rd, Register rt, Register rn, uint16_t imm, Condition cond) { CHECK_NE(rn, kNoRegister); CHECK_NE(rd, kNoRegister); CHECK_NE(rt, kNoRegister); CheckCondition(cond); CHECK_LT(imm, (1u << 10)); int32_t encoding = B31 | B30 | B29 | B27 | B22 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rt) << 12 | static_cast<uint32_t>(rd) << 8 | imm >> 2; Emit32(encoding); } void Thumb2Assembler::ldrexd(Register rt, Register rt2, Register rn, Condition cond) { CHECK_NE(rn, kNoRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt, rt2); CheckCondition(cond); int32_t encoding = B31 | B30 | B29 | B27 | B23 | B22 | B20 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rt) << 12 | static_cast<uint32_t>(rt2) << 8 | B6 | B5 | B4 | B3 | B2 | B1 | B0; Emit32(encoding); } void Thumb2Assembler::strex(Register rd, Register rt, Register rn, Condition cond) { strex(rd, rt, rn, 0, cond); } void Thumb2Assembler::strexd(Register rd, Register rt, Register rt2, Register rn, Condition cond) { CHECK_NE(rd, kNoRegister); CHECK_NE(rn, kNoRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt, rt2); CHECK_NE(rd, rt); CHECK_NE(rd, rt2); CheckCondition(cond); int32_t encoding = B31 | B30 | B29 | B27 | B23 | B22 | static_cast<uint32_t>(rn) << 16 | static_cast<uint32_t>(rt) << 12 | static_cast<uint32_t>(rt2) << 8 | B6 | B5 | B4 | static_cast<uint32_t>(rd); Emit32(encoding); } void Thumb2Assembler::clrex(Condition cond) { CheckCondition(cond); int32_t encoding = B31 | B30 | B29 | B27 | B28 | B25 | B24 | B23 | B21 | B20 | 0xf << 16 | B15 | 0xf << 8 | B5 | 0xf; Emit32(encoding); } void Thumb2Assembler::nop(Condition cond) { CheckCondition(cond); uint16_t encoding = B15 | B13 | B12 | B11 | B10 | B9 | B8; Emit16(static_cast<int16_t>(encoding)); } void Thumb2Assembler::vmovsr(SRegister sn, Register rt, Condition cond) { CHECK_NE(sn, kNoSRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | ((static_cast<int32_t>(sn) >> 1)*B16) | (static_cast<int32_t>(rt)*B12) | B11 | B9 | ((static_cast<int32_t>(sn) & 1)*B7) | B4; Emit32(encoding); } void Thumb2Assembler::vmovrs(Register rt, SRegister sn, Condition cond) { CHECK_NE(sn, kNoSRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B20 | ((static_cast<int32_t>(sn) >> 1)*B16) | (static_cast<int32_t>(rt)*B12) | B11 | B9 | ((static_cast<int32_t>(sn) & 1)*B7) | B4; Emit32(encoding); } void Thumb2Assembler::vmovsrr(SRegister sm, Register rt, Register rt2, Condition cond) { CHECK_NE(sm, kNoSRegister); CHECK_NE(sm, S31); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt2, SP); CHECK_NE(rt2, PC); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B22 | (static_cast<int32_t>(rt2)*B16) | (static_cast<int32_t>(rt)*B12) | B11 | B9 | ((static_cast<int32_t>(sm) & 1)*B5) | B4 | (static_cast<int32_t>(sm) >> 1); Emit32(encoding); } void Thumb2Assembler::vmovrrs(Register rt, Register rt2, SRegister sm, Condition cond) { CHECK_NE(sm, kNoSRegister); CHECK_NE(sm, S31); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt2, SP); CHECK_NE(rt2, PC); CHECK_NE(rt, rt2); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B22 | B20 | (static_cast<int32_t>(rt2)*B16) | (static_cast<int32_t>(rt)*B12) | B11 | B9 | ((static_cast<int32_t>(sm) & 1)*B5) | B4 | (static_cast<int32_t>(sm) >> 1); Emit32(encoding); } void Thumb2Assembler::vmovdrr(DRegister dm, Register rt, Register rt2, Condition cond) { CHECK_NE(dm, kNoDRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt2, SP); CHECK_NE(rt2, PC); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B22 | (static_cast<int32_t>(rt2)*B16) | (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | ((static_cast<int32_t>(dm) >> 4)*B5) | B4 | (static_cast<int32_t>(dm) & 0xf); Emit32(encoding); } void Thumb2Assembler::vmovrrd(Register rt, Register rt2, DRegister dm, Condition cond) { CHECK_NE(dm, kNoDRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rt, SP); CHECK_NE(rt, PC); CHECK_NE(rt2, kNoRegister); CHECK_NE(rt2, SP); CHECK_NE(rt2, PC); CHECK_NE(rt, rt2); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B22 | B20 | (static_cast<int32_t>(rt2)*B16) | (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | ((static_cast<int32_t>(dm) >> 4)*B5) | B4 | (static_cast<int32_t>(dm) & 0xf); Emit32(encoding); } void Thumb2Assembler::vldrs(SRegister sd, const Address& ad, Condition cond) { const Address& addr = static_cast<const Address&>(ad); CHECK_NE(sd, kNoSRegister); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B24 | B20 | ((static_cast<int32_t>(sd) & 1)*B22) | ((static_cast<int32_t>(sd) >> 1)*B12) | B11 | B9 | addr.vencoding(); Emit32(encoding); } void Thumb2Assembler::vstrs(SRegister sd, const Address& ad, Condition cond) { const Address& addr = static_cast<const Address&>(ad); CHECK_NE(static_cast<Register>(addr.encodingArm() & (0xf << kRnShift)), PC); CHECK_NE(sd, kNoSRegister); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B24 | ((static_cast<int32_t>(sd) & 1)*B22) | ((static_cast<int32_t>(sd) >> 1)*B12) | B11 | B9 | addr.vencoding(); Emit32(encoding); } void Thumb2Assembler::vldrd(DRegister dd, const Address& ad, Condition cond) { const Address& addr = static_cast<const Address&>(ad); CHECK_NE(dd, kNoDRegister); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B24 | B20 | ((static_cast<int32_t>(dd) >> 4)*B22) | ((static_cast<int32_t>(dd) & 0xf)*B12) | B11 | B9 | B8 | addr.vencoding(); Emit32(encoding); } void Thumb2Assembler::vstrd(DRegister dd, const Address& ad, Condition cond) { const Address& addr = static_cast<const Address&>(ad); CHECK_NE(static_cast<Register>(addr.encodingArm() & (0xf << kRnShift)), PC); CHECK_NE(dd, kNoDRegister); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B24 | ((static_cast<int32_t>(dd) >> 4)*B22) | ((static_cast<int32_t>(dd) & 0xf)*B12) | B11 | B9 | B8 | addr.vencoding(); Emit32(encoding); } void Thumb2Assembler::vpushs(SRegister reg, int nregs, Condition cond) { EmitVPushPop(static_cast<uint32_t>(reg), nregs, true, false, cond); } void Thumb2Assembler::vpushd(DRegister reg, int nregs, Condition cond) { EmitVPushPop(static_cast<uint32_t>(reg), nregs, true, true, cond); } void Thumb2Assembler::vpops(SRegister reg, int nregs, Condition cond) { EmitVPushPop(static_cast<uint32_t>(reg), nregs, false, false, cond); } void Thumb2Assembler::vpopd(DRegister reg, int nregs, Condition cond) { EmitVPushPop(static_cast<uint32_t>(reg), nregs, false, true, cond); } void Thumb2Assembler::EmitVPushPop(uint32_t reg, int nregs, bool push, bool dbl, Condition cond) { CheckCondition(cond); uint32_t D; uint32_t Vd; if (dbl) { // Encoded as D:Vd. D = (reg >> 4) & 1; Vd = reg & 15U /* 0b1111 */; } else { // Encoded as Vd:D. D = reg & 1; Vd = (reg >> 1) & 15U /* 0b1111 */; } int32_t encoding = B27 | B26 | B21 | B19 | B18 | B16 | B11 | B9 | (dbl ? B8 : 0) | (push ? B24 : (B23 | B20)) | 14U /* 0b1110 */ << 28 | nregs << (dbl ? 1 : 0) | D << 22 | Vd << 12; Emit32(encoding); } void Thumb2Assembler::EmitVFPsss(Condition cond, int32_t opcode, SRegister sd, SRegister sn, SRegister sm) { CHECK_NE(sd, kNoSRegister); CHECK_NE(sn, kNoSRegister); CHECK_NE(sm, kNoSRegister); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 | B9 | opcode | ((static_cast<int32_t>(sd) & 1)*B22) | ((static_cast<int32_t>(sn) >> 1)*B16) | ((static_cast<int32_t>(sd) >> 1)*B12) | ((static_cast<int32_t>(sn) & 1)*B7) | ((static_cast<int32_t>(sm) & 1)*B5) | (static_cast<int32_t>(sm) >> 1); Emit32(encoding); } void Thumb2Assembler::EmitVFPddd(Condition cond, int32_t opcode, DRegister dd, DRegister dn, DRegister dm) { CHECK_NE(dd, kNoDRegister); CHECK_NE(dn, kNoDRegister); CHECK_NE(dm, kNoDRegister); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 | B9 | B8 | opcode | ((static_cast<int32_t>(dd) >> 4)*B22) | ((static_cast<int32_t>(dn) & 0xf)*B16) | ((static_cast<int32_t>(dd) & 0xf)*B12) | ((static_cast<int32_t>(dn) >> 4)*B7) | ((static_cast<int32_t>(dm) >> 4)*B5) | (static_cast<int32_t>(dm) & 0xf); Emit32(encoding); } void Thumb2Assembler::EmitVFPsd(Condition cond, int32_t opcode, SRegister sd, DRegister dm) { CHECK_NE(sd, kNoSRegister); CHECK_NE(dm, kNoDRegister); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 | B9 | opcode | ((static_cast<int32_t>(sd) & 1)*B22) | ((static_cast<int32_t>(sd) >> 1)*B12) | ((static_cast<int32_t>(dm) >> 4)*B5) | (static_cast<int32_t>(dm) & 0xf); Emit32(encoding); } void Thumb2Assembler::EmitVFPds(Condition cond, int32_t opcode, DRegister dd, SRegister sm) { CHECK_NE(dd, kNoDRegister); CHECK_NE(sm, kNoSRegister); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 | B9 | opcode | ((static_cast<int32_t>(dd) >> 4)*B22) | ((static_cast<int32_t>(dd) & 0xf)*B12) | ((static_cast<int32_t>(sm) & 1)*B5) | (static_cast<int32_t>(sm) >> 1); Emit32(encoding); } void Thumb2Assembler::vmstat(Condition cond) { // VMRS APSR_nzcv, FPSCR. CHECK_NE(cond, kNoCondition); CheckCondition(cond); int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 | (static_cast<int32_t>(PC)*B12) | B11 | B9 | B4; Emit32(encoding); } void Thumb2Assembler::svc(uint32_t imm8) { CHECK(IsUint<8>(imm8)) << imm8; int16_t encoding = B15 | B14 | B12 | B11 | B10 | B9 | B8 | imm8; Emit16(encoding); } void Thumb2Assembler::bkpt(uint16_t imm8) { CHECK(IsUint<8>(imm8)) << imm8; int16_t encoding = B15 | B13 | B12 | B11 | B10 | B9 | imm8; Emit16(encoding); } // Convert the given IT state to a mask bit given bit 0 of the first // condition and a shift position. static uint8_t ToItMask(ItState s, uint8_t firstcond0, uint8_t shift) { switch (s) { case kItOmitted: return 1 << shift; case kItThen: return firstcond0 << shift; case kItElse: return !firstcond0 << shift; } return 0; } // Set the IT condition in the given position for the given state. This is used // to check that conditional instructions match the preceding IT statement. void Thumb2Assembler::SetItCondition(ItState s, Condition cond, uint8_t index) { switch (s) { case kItOmitted: it_conditions_[index] = AL; break; case kItThen: it_conditions_[index] = cond; break; case kItElse: it_conditions_[index] = static_cast<Condition>(static_cast<uint8_t>(cond) ^ 1); break; } } void Thumb2Assembler::it(Condition firstcond, ItState i1, ItState i2, ItState i3) { CheckCondition(AL); // Not allowed in IT block. uint8_t firstcond0 = static_cast<uint8_t>(firstcond) & 1; // All conditions to AL. for (uint8_t i = 0; i < 4; ++i) { it_conditions_[i] = AL; } SetItCondition(kItThen, firstcond, 0); uint8_t mask = ToItMask(i1, firstcond0, 3); SetItCondition(i1, firstcond, 1); if (i1 != kItOmitted) { mask |= ToItMask(i2, firstcond0, 2); SetItCondition(i2, firstcond, 2); if (i2 != kItOmitted) { mask |= ToItMask(i3, firstcond0, 1); SetItCondition(i3, firstcond, 3); if (i3 != kItOmitted) { mask |= 1U /* 0b0001 */; } } } // Start at first condition. it_cond_index_ = 0; next_condition_ = it_conditions_[0]; uint16_t encoding = B15 | B13 | B12 | B11 | B10 | B9 | B8 | firstcond << 4 | mask; Emit16(encoding); } void Thumb2Assembler::cbz(Register rn, Label* label) { CheckCondition(AL); if (label->IsBound()) { LOG(FATAL) << "cbz can only be used to branch forwards"; UNREACHABLE(); } else { uint16_t branchid = EmitCompareAndBranch(rn, static_cast<uint16_t>(label->position_), false); label->LinkTo(branchid); } } void Thumb2Assembler::cbnz(Register rn, Label* label) { CheckCondition(AL); if (label->IsBound()) { LOG(FATAL) << "cbnz can only be used to branch forwards"; UNREACHABLE(); } else { uint16_t branchid = EmitCompareAndBranch(rn, static_cast<uint16_t>(label->position_), true); label->LinkTo(branchid); } } void Thumb2Assembler::blx(Register rm, Condition cond) { CHECK_NE(rm, kNoRegister); CheckCondition(cond); int16_t encoding = B14 | B10 | B9 | B8 | B7 | static_cast<int16_t>(rm) << 3; Emit16(encoding); } void Thumb2Assembler::bx(Register rm, Condition cond) { CHECK_NE(rm, kNoRegister); CheckCondition(cond); int16_t encoding = B14 | B10 | B9 | B8 | static_cast<int16_t>(rm) << 3; Emit16(encoding); } void Thumb2Assembler::Push(Register rd, Condition cond) { str(rd, Address(SP, -kRegisterSize, Address::PreIndex), cond); } void Thumb2Assembler::Pop(Register rd, Condition cond) { ldr(rd, Address(SP, kRegisterSize, Address::PostIndex), cond); } void Thumb2Assembler::PushList(RegList regs, Condition cond) { stm(DB_W, SP, regs, cond); } void Thumb2Assembler::PopList(RegList regs, Condition cond) { ldm(IA_W, SP, regs, cond); } void Thumb2Assembler::Mov(Register rd, Register rm, Condition cond) { if (cond != AL || rd != rm) { mov(rd, ShifterOperand(rm), cond); } } // A branch has changed size. Make a hole for it. void Thumb2Assembler::MakeHoleForBranch(uint32_t location, uint32_t delta) { // Move the contents of the buffer using: Move(newposition, oldposition) AssemblerBuffer::EnsureCapacity ensured(&buffer_); buffer_.Move(location + delta, location); } void Thumb2Assembler::Bind(Label* label) { CHECK(!label->IsBound()); uint32_t bound_pc = buffer_.Size(); std::vector<Branch*> changed_branches; while (label->IsLinked()) { uint16_t position = label->Position(); // Branch id for linked branch. Branch* branch = GetBranch(position); // Get the branch at this id. bool changed = branch->Resolve(bound_pc); // Branch can be resolved now. uint32_t branch_location = branch->GetLocation(); uint16_t next = buffer_.Load<uint16_t>(branch_location); // Get next in chain. if (changed) { DCHECK(!force_32bit_branches_); MakeHoleForBranch(branch->GetLocation(), 2); if (branch->IsCompareAndBranch()) { // A cbz/cbnz instruction has changed size. There is no valid encoding for // a 32 bit cbz/cbnz so we need to change this to an instruction pair: // cmp rn, #0 // b<eq|ne> target bool n = branch->GetType() == Branch::kCompareAndBranchNonZero; Condition cond = n ? NE : EQ; branch->Move(2); // Move the branch forward by 2 bytes. branch->ResetTypeAndCondition(Branch::kConditional, cond); branch->ResetSize(Branch::k16Bit); // Now add a compare instruction in the place the branch was. buffer_.Store<int16_t>(branch_location, B13 | B11 | static_cast<int16_t>(branch->GetRegister()) << 8); // Since have moved made a hole in the code we need to reload the // current pc. bound_pc = buffer_.Size(); // Now resolve the newly added branch. changed = branch->Resolve(bound_pc); if (changed) { MakeHoleForBranch(branch->GetLocation(), 2); changed_branches.push_back(branch); } } else { changed_branches.push_back(branch); } } label->position_ = next; // Move to next. } label->BindTo(bound_pc); // Now relocate any changed branches. Do this until there are no more changes. std::vector<Branch*> branches_to_process = changed_branches; while (branches_to_process.size() != 0) { changed_branches.clear(); for (auto& changed_branch : branches_to_process) { for (auto& branch : branches_) { bool changed = branch->Relocate(changed_branch->GetLocation(), 2); if (changed) { changed_branches.push_back(branch); } } branches_to_process = changed_branches; } } } void Thumb2Assembler::EmitBranches() { for (auto& branch : branches_) { branch->Emit(&buffer_); } } void Thumb2Assembler::Lsl(Register rd, Register rm, uint32_t shift_imm, bool setcc, Condition cond) { CHECK_LE(shift_imm, 31u); CheckCondition(cond); EmitShift(rd, rm, LSL, shift_imm, setcc); } void Thumb2Assembler::Lsr(Register rd, Register rm, uint32_t shift_imm, bool setcc, Condition cond) { CHECK(1u <= shift_imm && shift_imm <= 32u); if (shift_imm == 32) shift_imm = 0; // Comply to UAL syntax. CheckCondition(cond); EmitShift(rd, rm, LSR, shift_imm, setcc); } void Thumb2Assembler::Asr(Register rd, Register rm, uint32_t shift_imm, bool setcc, Condition cond) { CHECK(1u <= shift_imm && shift_imm <= 32u); if (shift_imm == 32) shift_imm = 0; // Comply to UAL syntax. CheckCondition(cond); EmitShift(rd, rm, ASR, shift_imm, setcc); } void Thumb2Assembler::Ror(Register rd, Register rm, uint32_t shift_imm, bool setcc, Condition cond) { CHECK(1u <= shift_imm && shift_imm <= 31u); CheckCondition(cond); EmitShift(rd, rm, ROR, shift_imm, setcc); } void Thumb2Assembler::Rrx(Register rd, Register rm, bool setcc, Condition cond) { CheckCondition(cond); EmitShift(rd, rm, RRX, rm, setcc); } void Thumb2Assembler::Lsl(Register rd, Register rm, Register rn, bool setcc, Condition cond) { CheckCondition(cond); EmitShift(rd, rm, LSL, rn, setcc); } void Thumb2Assembler::Lsr(Register rd, Register rm, Register rn, bool setcc, Condition cond) { CheckCondition(cond); EmitShift(rd, rm, LSR, rn, setcc); } void Thumb2Assembler::Asr(Register rd, Register rm, Register rn, bool setcc, Condition cond) { CheckCondition(cond); EmitShift(rd, rm, ASR, rn, setcc); } void Thumb2Assembler::Ror(Register rd, Register rm, Register rn, bool setcc, Condition cond) { CheckCondition(cond); EmitShift(rd, rm, ROR, rn, setcc); } int32_t Thumb2Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) { // The offset is off by 4 due to the way the ARM CPUs read PC. offset -= 4; offset >>= 1; uint32_t value = 0; // There are two different encodings depending on the value of bit 12. In one case // intermediate values are calculated using the sign bit. if ((inst & B12) == B12) { // 25 bits of offset. uint32_t signbit = (offset >> 31) & 0x1; uint32_t i1 = (offset >> 22) & 0x1; uint32_t i2 = (offset >> 21) & 0x1; uint32_t imm10 = (offset >> 11) & 0x03ff; uint32_t imm11 = offset & 0x07ff; uint32_t j1 = (i1 ^ signbit) ? 0 : 1; uint32_t j2 = (i2 ^ signbit) ? 0 : 1; value = (signbit << 26) | (j1 << 13) | (j2 << 11) | (imm10 << 16) | imm11; // Remove the offset from the current encoding. inst &= ~(0x3ff << 16 | 0x7ff); } else { uint32_t signbit = (offset >> 31) & 0x1; uint32_t imm6 = (offset >> 11) & 0x03f; uint32_t imm11 = offset & 0x07ff; uint32_t j1 = (offset >> 19) & 1; uint32_t j2 = (offset >> 17) & 1; value = (signbit << 26) | (j1 << 13) | (j2 << 11) | (imm6 << 16) | imm11; // Remove the offset from the current encoding. inst &= ~(0x3f << 16 | 0x7ff); } // Mask out offset bits in current instruction. inst &= ~(B26 | B13 | B11); inst |= value; return inst; } int Thumb2Assembler::DecodeBranchOffset(int32_t instr) { int32_t imm32; if ((instr & B12) == B12) { uint32_t S = (instr >> 26) & 1; uint32_t J2 = (instr >> 11) & 1; uint32_t J1 = (instr >> 13) & 1; uint32_t imm10 = (instr >> 16) & 0x3FF; uint32_t imm11 = instr & 0x7FF; uint32_t I1 = ~(J1 ^ S) & 1; uint32_t I2 = ~(J2 ^ S) & 1; imm32 = (S << 24) | (I1 << 23) | (I2 << 22) | (imm10 << 12) | (imm11 << 1); imm32 = (imm32 << 8) >> 8; // sign extend 24 bit immediate. } else { uint32_t S = (instr >> 26) & 1; uint32_t J2 = (instr >> 11) & 1; uint32_t J1 = (instr >> 13) & 1; uint32_t imm6 = (instr >> 16) & 0x3F; uint32_t imm11 = instr & 0x7FF; imm32 = (S << 20) | (J2 << 19) | (J1 << 18) | (imm6 << 12) | (imm11 << 1); imm32 = (imm32 << 11) >> 11; // sign extend 21 bit immediate. } imm32 += 4; return imm32; } void Thumb2Assembler::AddConstant(Register rd, int32_t value, Condition cond) { AddConstant(rd, rd, value, cond); } void Thumb2Assembler::AddConstant(Register rd, Register rn, int32_t value, Condition cond) { if (value == 0) { if (rd != rn) { mov(rd, ShifterOperand(rn), cond); } return; } // We prefer to select the shorter code sequence rather than selecting add for // positive values and sub for negatives ones, which would slightly improve // the readability of generated code for some constants. ShifterOperand shifter_op; if (ShifterOperandCanHold(rd, rn, ADD, value, &shifter_op)) { add(rd, rn, shifter_op, cond); } else if (ShifterOperandCanHold(rd, rn, SUB, -value, &shifter_op)) { sub(rd, rn, shifter_op, cond); } else { CHECK(rn != IP); if (ShifterOperandCanHold(rd, rn, MVN, ~value, &shifter_op)) { mvn(IP, shifter_op, cond); add(rd, rn, ShifterOperand(IP), cond); } else if (ShifterOperandCanHold(rd, rn, MVN, ~(-value), &shifter_op)) { mvn(IP, shifter_op, cond); sub(rd, rn, ShifterOperand(IP), cond); } else { movw(IP, Low16Bits(value), cond); uint16_t value_high = High16Bits(value); if (value_high != 0) { movt(IP, value_high, cond); } add(rd, rn, ShifterOperand(IP), cond); } } } void Thumb2Assembler::AddConstantSetFlags(Register rd, Register rn, int32_t value, Condition cond) { ShifterOperand shifter_op; if (ShifterOperandCanHold(rd, rn, ADD, value, &shifter_op)) { adds(rd, rn, shifter_op, cond); } else if (ShifterOperandCanHold(rd, rn, ADD, -value, &shifter_op)) { subs(rd, rn, shifter_op, cond); } else { CHECK(rn != IP); if (ShifterOperandCanHold(rd, rn, MVN, ~value, &shifter_op)) { mvn(IP, shifter_op, cond); adds(rd, rn, ShifterOperand(IP), cond); } else if (ShifterOperandCanHold(rd, rn, MVN, ~(-value), &shifter_op)) { mvn(IP, shifter_op, cond); subs(rd, rn, ShifterOperand(IP), cond); } else { movw(IP, Low16Bits(value), cond); uint16_t value_high = High16Bits(value); if (value_high != 0) { movt(IP, value_high, cond); } adds(rd, rn, ShifterOperand(IP), cond); } } } void Thumb2Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) { ShifterOperand shifter_op; if (ShifterOperandCanHold(rd, R0, MOV, value, &shifter_op)) { mov(rd, shifter_op, cond); } else if (ShifterOperandCanHold(rd, R0, MVN, ~value, &shifter_op)) { mvn(rd, shifter_op, cond); } else { movw(rd, Low16Bits(value), cond); uint16_t value_high = High16Bits(value); if (value_high != 0) { movt(rd, value_high, cond); } } } // Implementation note: this method must emit at most one instruction when // Address::CanHoldLoadOffsetThumb. void Thumb2Assembler::LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldLoadOffsetThumb(type, offset)) { CHECK_NE(base, IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldLoadOffsetThumb(type, offset)); switch (type) { case kLoadSignedByte: ldrsb(reg, Address(base, offset), cond); break; case kLoadUnsignedByte: ldrb(reg, Address(base, offset), cond); break; case kLoadSignedHalfword: ldrsh(reg, Address(base, offset), cond); break; case kLoadUnsignedHalfword: ldrh(reg, Address(base, offset), cond); break; case kLoadWord: ldr(reg, Address(base, offset), cond); break; case kLoadWordPair: ldrd(reg, Address(base, offset), cond); break; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } // Implementation note: this method must emit at most one instruction when // Address::CanHoldLoadOffsetThumb, as expected by JIT::GuardedLoadFromOffset. void Thumb2Assembler::LoadSFromOffset(SRegister reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldLoadOffsetThumb(kLoadSWord, offset)) { CHECK_NE(base, IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldLoadOffsetThumb(kLoadSWord, offset)); vldrs(reg, Address(base, offset), cond); } // Implementation note: this method must emit at most one instruction when // Address::CanHoldLoadOffsetThumb, as expected by JIT::GuardedLoadFromOffset. void Thumb2Assembler::LoadDFromOffset(DRegister reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldLoadOffsetThumb(kLoadDWord, offset)) { CHECK_NE(base, IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldLoadOffsetThumb(kLoadDWord, offset)); vldrd(reg, Address(base, offset), cond); } // Implementation note: this method must emit at most one instruction when // Address::CanHoldStoreOffsetThumb. void Thumb2Assembler::StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset, Condition cond) { Register tmp_reg = kNoRegister; if (!Address::CanHoldStoreOffsetThumb(type, offset)) { CHECK_NE(base, IP); if (reg != IP && (type != kStoreWordPair || reg + 1 != IP)) { tmp_reg = IP; } else { // Be careful not to use IP twice (for `reg` (or `reg` + 1 in // the case of a word-pair store)) and to build the Address // object used by the store instruction(s) below). Instead, // save R5 on the stack (or R6 if R5 is not available), use it // as secondary temporary register, and restore it after the // store instruction has been emitted. tmp_reg = base != R5 ? R5 : R6; Push(tmp_reg); if (base == SP) { offset += kRegisterSize; } } LoadImmediate(tmp_reg, offset, cond); add(tmp_reg, tmp_reg, ShifterOperand(base), cond); base = tmp_reg; offset = 0; } CHECK(Address::CanHoldStoreOffsetThumb(type, offset)); switch (type) { case kStoreByte: strb(reg, Address(base, offset), cond); break; case kStoreHalfword: strh(reg, Address(base, offset), cond); break; case kStoreWord: str(reg, Address(base, offset), cond); break; case kStoreWordPair: strd(reg, Address(base, offset), cond); break; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } if (tmp_reg != kNoRegister && tmp_reg != IP) { DCHECK(tmp_reg == R5 || tmp_reg == R6); Pop(tmp_reg); } } // Implementation note: this method must emit at most one instruction when // Address::CanHoldStoreOffsetThumb, as expected by JIT::GuardedStoreToOffset. void Thumb2Assembler::StoreSToOffset(SRegister reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldStoreOffsetThumb(kStoreSWord, offset)) { CHECK_NE(base, IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldStoreOffsetThumb(kStoreSWord, offset)); vstrs(reg, Address(base, offset), cond); } // Implementation note: this method must emit at most one instruction when // Address::CanHoldStoreOffsetThumb, as expected by JIT::GuardedStoreSToOffset. void Thumb2Assembler::StoreDToOffset(DRegister reg, Register base, int32_t offset, Condition cond) { if (!Address::CanHoldStoreOffsetThumb(kStoreDWord, offset)) { CHECK_NE(base, IP); LoadImmediate(IP, offset, cond); add(IP, IP, ShifterOperand(base), cond); base = IP; offset = 0; } CHECK(Address::CanHoldStoreOffsetThumb(kStoreDWord, offset)); vstrd(reg, Address(base, offset), cond); } void Thumb2Assembler::MemoryBarrier(ManagedRegister mscratch) { CHECK_EQ(mscratch.AsArm().AsCoreRegister(), R12); dmb(SY); } void Thumb2Assembler::dmb(DmbOptions flavor) { int32_t encoding = 0xf3bf8f50; // dmb in T1 encoding. Emit32(encoding | flavor); } void Thumb2Assembler::CompareAndBranchIfZero(Register r, Label* label) { if (force_32bit_branches_) { cmp(r, ShifterOperand(0)); b(label, EQ); } else { cbz(r, label); } } void Thumb2Assembler::CompareAndBranchIfNonZero(Register r, Label* label) { if (force_32bit_branches_) { cmp(r, ShifterOperand(0)); b(label, NE); } else { cbnz(r, label); } } } // namespace arm } // namespace art