/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_x86_64.h" #include "art_method.h" #include "code_generator_utils.h" #include "entrypoints/quick/quick_entrypoints.h" #include "gc/accounting/card_table.h" #include "intrinsics.h" #include "intrinsics_x86_64.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/object_reference.h" #include "thread.h" #include "utils/assembler.h" #include "utils/stack_checks.h" #include "utils/x86_64/assembler_x86_64.h" #include "utils/x86_64/managed_register_x86_64.h" namespace art { namespace x86_64 { // Some x86_64 instructions require a register to be available as temp. static constexpr Register TMP = R11; static constexpr int kCurrentMethodStackOffset = 0; static constexpr Register kCoreCalleeSaves[] = { RBX, RBP, R12, R13, R14, R15 }; static constexpr FloatRegister kFpuCalleeSaves[] = { XMM12, XMM13, XMM14, XMM15 }; static constexpr int kC2ConditionMask = 0x400; #define __ reinterpret_cast<X86_64Assembler*>(codegen->GetAssembler())-> class NullCheckSlowPathX86_64 : public SlowPathCodeX86_64 { public: explicit NullCheckSlowPathX86_64(HNullCheck* instruction) : instruction_(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { __ Bind(GetEntryLabel()); __ gs()->call( Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pThrowNullPointer), true)); RecordPcInfo(codegen, instruction_, instruction_->GetDexPc()); } private: HNullCheck* const instruction_; DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86_64); }; class DivZeroCheckSlowPathX86_64 : public SlowPathCodeX86_64 { public: explicit DivZeroCheckSlowPathX86_64(HDivZeroCheck* instruction) : instruction_(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { __ Bind(GetEntryLabel()); __ gs()->call( Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pThrowDivZero), true)); RecordPcInfo(codegen, instruction_, instruction_->GetDexPc()); } private: HDivZeroCheck* const instruction_; DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86_64); }; class DivRemMinusOneSlowPathX86_64 : public SlowPathCodeX86_64 { public: explicit DivRemMinusOneSlowPathX86_64(Register reg, Primitive::Type type, bool is_div) : cpu_reg_(CpuRegister(reg)), type_(type), is_div_(is_div) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { __ Bind(GetEntryLabel()); if (type_ == Primitive::kPrimInt) { if (is_div_) { __ negl(cpu_reg_); } else { __ movl(cpu_reg_, Immediate(0)); } } else { DCHECK_EQ(Primitive::kPrimLong, type_); if (is_div_) { __ negq(cpu_reg_); } else { __ xorl(cpu_reg_, cpu_reg_); } } __ jmp(GetExitLabel()); } private: const CpuRegister cpu_reg_; const Primitive::Type type_; const bool is_div_; DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86_64); }; class SuspendCheckSlowPathX86_64 : public SlowPathCodeX86_64 { public: explicit SuspendCheckSlowPathX86_64(HSuspendCheck* instruction, HBasicBlock* successor) : instruction_(instruction), successor_(successor) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86_64* x64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, instruction_->GetLocations()); __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pTestSuspend), true)); RecordPcInfo(codegen, instruction_, instruction_->GetDexPc()); RestoreLiveRegisters(codegen, instruction_->GetLocations()); if (successor_ == nullptr) { __ jmp(GetReturnLabel()); } else { __ jmp(x64_codegen->GetLabelOf(successor_)); } } Label* GetReturnLabel() { DCHECK(successor_ == nullptr); return &return_label_; } HBasicBlock* GetSuccessor() const { return successor_; } private: HSuspendCheck* const instruction_; HBasicBlock* const successor_; Label return_label_; DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86_64); }; class BoundsCheckSlowPathX86_64 : public SlowPathCodeX86_64 { public: BoundsCheckSlowPathX86_64(HBoundsCheck* instruction, Location index_location, Location length_location) : instruction_(instruction), index_location_(index_location), length_location_(length_location) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { __ Bind(GetEntryLabel()); // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves( index_location_, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt, length_location_, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt); __ gs()->call(Address::Absolute( QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pThrowArrayBounds), true)); RecordPcInfo(codegen, instruction_, instruction_->GetDexPc()); } private: HBoundsCheck* const instruction_; const Location index_location_; const Location length_location_; DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86_64); }; class LoadClassSlowPathX86_64 : public SlowPathCodeX86_64 { public: LoadClassSlowPathX86_64(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit) : cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { DCHECK(at->IsLoadClass() || at->IsClinitCheck()); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = at_->GetLocations(); CodeGeneratorX86_64* x64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; __ movl(CpuRegister(calling_convention.GetRegisterAt(0)), Immediate(cls_->GetTypeIndex())); __ gs()->call(Address::Absolute((do_clinit_ ? QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pInitializeStaticStorage) : QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pInitializeType)) , true)); RecordPcInfo(codegen, at_, dex_pc_); Location out = locations->Out(); // Move the class to the desired location. if (out.IsValid()) { DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); x64_codegen->Move(out, Location::RegisterLocation(RAX)); } RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } private: // The class this slow path will load. HLoadClass* const cls_; // The instruction where this slow path is happening. // (Might be the load class or an initialization check). HInstruction* const at_; // The dex PC of `at_`. const uint32_t dex_pc_; // Whether to initialize the class. const bool do_clinit_; DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86_64); }; class LoadStringSlowPathX86_64 : public SlowPathCodeX86_64 { public: explicit LoadStringSlowPathX86_64(HLoadString* instruction) : instruction_(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorX86_64* x64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; __ movl(CpuRegister(calling_convention.GetRegisterAt(0)), Immediate(instruction_->GetStringIndex())); __ gs()->call(Address::Absolute( QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pResolveString), true)); RecordPcInfo(codegen, instruction_, instruction_->GetDexPc()); x64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } private: HLoadString* const instruction_; DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86_64); }; class TypeCheckSlowPathX86_64 : public SlowPathCodeX86_64 { public: TypeCheckSlowPathX86_64(HInstruction* instruction, Location class_to_check, Location object_class, uint32_t dex_pc) : instruction_(instruction), class_to_check_(class_to_check), object_class_(object_class), dex_pc_(dex_pc) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(instruction_->IsCheckCast() || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorX86_64* x64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves( class_to_check_, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, object_class_, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot); if (instruction_->IsInstanceOf()) { __ gs()->call( Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pInstanceofNonTrivial), true)); } else { DCHECK(instruction_->IsCheckCast()); __ gs()->call( Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pCheckCast), true)); } RecordPcInfo(codegen, instruction_, dex_pc_); if (instruction_->IsInstanceOf()) { x64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX)); } RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } private: HInstruction* const instruction_; const Location class_to_check_; const Location object_class_; const uint32_t dex_pc_; DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86_64); }; class DeoptimizationSlowPathX86_64 : public SlowPathCodeX86_64 { public: explicit DeoptimizationSlowPathX86_64(HInstruction* instruction) : instruction_(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, instruction_->GetLocations()); __ gs()->call( Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pDeoptimize), true)); DCHECK(instruction_->IsDeoptimize()); HDeoptimize* deoptimize = instruction_->AsDeoptimize(); uint32_t dex_pc = deoptimize->GetDexPc(); codegen->RecordPcInfo(instruction_, dex_pc, this); } private: HInstruction* const instruction_; DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86_64); }; #undef __ #define __ reinterpret_cast<X86_64Assembler*>(GetAssembler())-> inline Condition X86_64Condition(IfCondition cond) { switch (cond) { case kCondEQ: return kEqual; case kCondNE: return kNotEqual; case kCondLT: return kLess; case kCondLE: return kLessEqual; case kCondGT: return kGreater; case kCondGE: return kGreaterEqual; default: LOG(FATAL) << "Unknown if condition"; } return kEqual; } void CodeGeneratorX86_64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, CpuRegister temp) { // All registers are assumed to be correctly set up. // TODO: Implement all kinds of calls: // 1) boot -> boot // 2) app -> boot // 3) app -> app // // Currently we implement the app -> app logic, which looks up in the resolve cache. if (invoke->IsStringInit()) { // temp = thread->string_init_entrypoint __ gs()->movq(temp, Address::Absolute(invoke->GetStringInitOffset(), true)); // (temp + offset_of_quick_compiled_code)() __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( kX86_64WordSize).SizeValue())); } else { // temp = method; LoadCurrentMethod(temp); if (!invoke->IsRecursive()) { // temp = temp->dex_cache_resolved_methods_; __ movl(temp, Address(temp, ArtMethod::DexCacheResolvedMethodsOffset().SizeValue())); // temp = temp[index_in_cache] __ movq(temp, Address( temp, CodeGenerator::GetCachePointerOffset(invoke->GetDexMethodIndex()))); // (temp + offset_of_quick_compiled_code)() __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( kX86_64WordSize).SizeValue())); } else { __ call(&frame_entry_label_); } } DCHECK(!IsLeafMethod()); } void CodeGeneratorX86_64::DumpCoreRegister(std::ostream& stream, int reg) const { stream << X86_64ManagedRegister::FromCpuRegister(Register(reg)); } void CodeGeneratorX86_64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { stream << X86_64ManagedRegister::FromXmmRegister(FloatRegister(reg)); } size_t CodeGeneratorX86_64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { __ movq(Address(CpuRegister(RSP), stack_index), CpuRegister(reg_id)); return kX86_64WordSize; } size_t CodeGeneratorX86_64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { __ movq(CpuRegister(reg_id), Address(CpuRegister(RSP), stack_index)); return kX86_64WordSize; } size_t CodeGeneratorX86_64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ movsd(Address(CpuRegister(RSP), stack_index), XmmRegister(reg_id)); return kX86_64WordSize; } size_t CodeGeneratorX86_64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ movsd(XmmRegister(reg_id), Address(CpuRegister(RSP), stack_index)); return kX86_64WordSize; } static constexpr int kNumberOfCpuRegisterPairs = 0; // Use a fake return address register to mimic Quick. static constexpr Register kFakeReturnRegister = Register(kLastCpuRegister + 1); CodeGeneratorX86_64::CodeGeneratorX86_64(HGraph* graph, const X86_64InstructionSetFeatures& isa_features, const CompilerOptions& compiler_options) : CodeGenerator(graph, kNumberOfCpuRegisters, kNumberOfFloatRegisters, kNumberOfCpuRegisterPairs, ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), arraysize(kCoreCalleeSaves)) | (1 << kFakeReturnRegister), ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves), arraysize(kFpuCalleeSaves)), compiler_options), block_labels_(graph->GetArena(), 0), location_builder_(graph, this), instruction_visitor_(graph, this), move_resolver_(graph->GetArena(), this), isa_features_(isa_features), constant_area_start_(0) { AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister)); } InstructionCodeGeneratorX86_64::InstructionCodeGeneratorX86_64(HGraph* graph, CodeGeneratorX86_64* codegen) : HGraphVisitor(graph), assembler_(codegen->GetAssembler()), codegen_(codegen) {} Location CodeGeneratorX86_64::AllocateFreeRegister(Primitive::Type type) const { switch (type) { case Primitive::kPrimLong: case Primitive::kPrimByte: case Primitive::kPrimBoolean: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { size_t reg = FindFreeEntry(blocked_core_registers_, kNumberOfCpuRegisters); return Location::RegisterLocation(reg); } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { size_t reg = FindFreeEntry(blocked_fpu_registers_, kNumberOfFloatRegisters); return Location::FpuRegisterLocation(reg); } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << type; } return Location(); } void CodeGeneratorX86_64::SetupBlockedRegisters(bool is_baseline) const { // Stack register is always reserved. blocked_core_registers_[RSP] = true; // Block the register used as TMP. blocked_core_registers_[TMP] = true; if (is_baseline) { for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { blocked_core_registers_[kCoreCalleeSaves[i]] = true; } for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; } } } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::X86_64Core(static_cast<int>(reg)); } static dwarf::Reg DWARFReg(FloatRegister reg) { return dwarf::Reg::X86_64Fp(static_cast<int>(reg)); } void CodeGeneratorX86_64::GenerateFrameEntry() { __ cfi().SetCurrentCFAOffset(kX86_64WordSize); // return address __ Bind(&frame_entry_label_); bool skip_overflow_check = IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86_64); DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); if (!skip_overflow_check) { __ testq(CpuRegister(RAX), Address( CpuRegister(RSP), -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86_64)))); RecordPcInfo(nullptr, 0); } if (HasEmptyFrame()) { return; } for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { Register reg = kCoreCalleeSaves[i]; if (allocated_registers_.ContainsCoreRegister(reg)) { __ pushq(CpuRegister(reg)); __ cfi().AdjustCFAOffset(kX86_64WordSize); __ cfi().RelOffset(DWARFReg(reg), 0); } } int adjust = GetFrameSize() - GetCoreSpillSize(); __ subq(CpuRegister(RSP), Immediate(adjust)); __ cfi().AdjustCFAOffset(adjust); uint32_t xmm_spill_location = GetFpuSpillStart(); size_t xmm_spill_slot_size = GetFloatingPointSpillSlotSize(); for (int i = arraysize(kFpuCalleeSaves) - 1; i >= 0; --i) { if (allocated_registers_.ContainsFloatingPointRegister(kFpuCalleeSaves[i])) { int offset = xmm_spill_location + (xmm_spill_slot_size * i); __ movsd(Address(CpuRegister(RSP), offset), XmmRegister(kFpuCalleeSaves[i])); __ cfi().RelOffset(DWARFReg(kFpuCalleeSaves[i]), offset); } } __ movq(Address(CpuRegister(RSP), kCurrentMethodStackOffset), CpuRegister(RDI)); } void CodeGeneratorX86_64::GenerateFrameExit() { __ cfi().RememberState(); if (!HasEmptyFrame()) { uint32_t xmm_spill_location = GetFpuSpillStart(); size_t xmm_spill_slot_size = GetFloatingPointSpillSlotSize(); for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { if (allocated_registers_.ContainsFloatingPointRegister(kFpuCalleeSaves[i])) { int offset = xmm_spill_location + (xmm_spill_slot_size * i); __ movsd(XmmRegister(kFpuCalleeSaves[i]), Address(CpuRegister(RSP), offset)); __ cfi().Restore(DWARFReg(kFpuCalleeSaves[i])); } } int adjust = GetFrameSize() - GetCoreSpillSize(); __ addq(CpuRegister(RSP), Immediate(adjust)); __ cfi().AdjustCFAOffset(-adjust); for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { Register reg = kCoreCalleeSaves[i]; if (allocated_registers_.ContainsCoreRegister(reg)) { __ popq(CpuRegister(reg)); __ cfi().AdjustCFAOffset(-static_cast<int>(kX86_64WordSize)); __ cfi().Restore(DWARFReg(reg)); } } } __ ret(); __ cfi().RestoreState(); __ cfi().DefCFAOffset(GetFrameSize()); } void CodeGeneratorX86_64::Bind(HBasicBlock* block) { __ Bind(GetLabelOf(block)); } void CodeGeneratorX86_64::LoadCurrentMethod(CpuRegister reg) { DCHECK(RequiresCurrentMethod()); __ movq(reg, Address(CpuRegister(RSP), kCurrentMethodStackOffset)); } Location CodeGeneratorX86_64::GetStackLocation(HLoadLocal* load) const { switch (load->GetType()) { case Primitive::kPrimLong: case Primitive::kPrimDouble: return Location::DoubleStackSlot(GetStackSlot(load->GetLocal())); case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimFloat: return Location::StackSlot(GetStackSlot(load->GetLocal())); case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected type " << load->GetType(); UNREACHABLE(); } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } void CodeGeneratorX86_64::Move(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegister()) { if (source.IsRegister()) { __ movq(destination.AsRegister<CpuRegister>(), source.AsRegister<CpuRegister>()); } else if (source.IsFpuRegister()) { __ movd(destination.AsRegister<CpuRegister>(), source.AsFpuRegister<XmmRegister>()); } else if (source.IsStackSlot()) { __ movl(destination.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else { DCHECK(source.IsDoubleStackSlot()); __ movq(destination.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } } else if (destination.IsFpuRegister()) { if (source.IsRegister()) { __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<CpuRegister>()); } else if (source.IsFpuRegister()) { __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); } else if (source.IsStackSlot()) { __ movss(destination.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else { DCHECK(source.IsDoubleStackSlot()); __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } } else if (destination.IsStackSlot()) { if (source.IsRegister()) { __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsRegister<CpuRegister>()); } else if (source.IsFpuRegister()) { __ movss(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); int32_t value = GetInt32ValueOf(constant); __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), Immediate(value)); } else { DCHECK(source.IsStackSlot()) << source; __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } else { DCHECK(destination.IsDoubleStackSlot()); if (source.IsRegister()) { __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsRegister<CpuRegister>()); } else if (source.IsFpuRegister()) { __ movsd(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); int64_t value; if (constant->IsDoubleConstant()) { value = bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue()); } else { DCHECK(constant->IsLongConstant()); value = constant->AsLongConstant()->GetValue(); } Load64BitValue(CpuRegister(TMP), value); __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } else { DCHECK(source.IsDoubleStackSlot()); __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } } void CodeGeneratorX86_64::Move(HInstruction* instruction, Location location, HInstruction* move_for) { LocationSummary* locations = instruction->GetLocations(); if (locations != nullptr && locations->Out().Equals(location)) { return; } if (locations != nullptr && locations->Out().IsConstant()) { HConstant* const_to_move = locations->Out().GetConstant(); if (const_to_move->IsIntConstant() || const_to_move->IsNullConstant()) { Immediate imm(GetInt32ValueOf(const_to_move)); if (location.IsRegister()) { __ movl(location.AsRegister<CpuRegister>(), imm); } else if (location.IsStackSlot()) { __ movl(Address(CpuRegister(RSP), location.GetStackIndex()), imm); } else { DCHECK(location.IsConstant()); DCHECK_EQ(location.GetConstant(), const_to_move); } } else if (const_to_move->IsLongConstant()) { int64_t value = const_to_move->AsLongConstant()->GetValue(); if (location.IsRegister()) { Load64BitValue(location.AsRegister<CpuRegister>(), value); } else if (location.IsDoubleStackSlot()) { Load64BitValue(CpuRegister(TMP), value); __ movq(Address(CpuRegister(RSP), location.GetStackIndex()), CpuRegister(TMP)); } else { DCHECK(location.IsConstant()); DCHECK_EQ(location.GetConstant(), const_to_move); } } } else if (instruction->IsLoadLocal()) { switch (instruction->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimFloat: Move(location, Location::StackSlot(GetStackSlot(instruction->AsLoadLocal()->GetLocal()))); break; case Primitive::kPrimLong: case Primitive::kPrimDouble: Move(location, Location::DoubleStackSlot(GetStackSlot(instruction->AsLoadLocal()->GetLocal()))); break; default: LOG(FATAL) << "Unexpected local type " << instruction->GetType(); } } else if (instruction->IsTemporary()) { Location temp_location = GetTemporaryLocation(instruction->AsTemporary()); Move(location, temp_location); } else { DCHECK((instruction->GetNext() == move_for) || instruction->GetNext()->IsTemporary()); switch (instruction->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimLong: case Primitive::kPrimFloat: case Primitive::kPrimDouble: Move(location, locations->Out()); break; default: LOG(FATAL) << "Unexpected type " << instruction->GetType(); } } } void LocationsBuilderX86_64::VisitGoto(HGoto* got) { got->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitGoto(HGoto* got) { HBasicBlock* successor = got->GetSuccessor(); DCHECK(!successor->IsExitBlock()); HBasicBlock* block = got->GetBlock(); HInstruction* previous = got->GetPrevious(); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { GenerateSuspendCheck(info->GetSuspendCheck(), successor); return; } if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); } if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { __ jmp(codegen_->GetLabelOf(successor)); } } void LocationsBuilderX86_64::VisitExit(HExit* exit) { exit->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitExit(HExit* exit) { UNUSED(exit); } void InstructionCodeGeneratorX86_64::GenerateTestAndBranch(HInstruction* instruction, Label* true_target, Label* false_target, Label* always_true_target) { HInstruction* cond = instruction->InputAt(0); if (cond->IsIntConstant()) { // Constant condition, statically compared against 1. int32_t cond_value = cond->AsIntConstant()->GetValue(); if (cond_value == 1) { if (always_true_target != nullptr) { __ jmp(always_true_target); } return; } else { DCHECK_EQ(cond_value, 0); } } else { bool materialized = !cond->IsCondition() || cond->AsCondition()->NeedsMaterialization(); // Moves do not affect the eflags register, so if the condition is // evaluated just before the if, we don't need to evaluate it // again. bool eflags_set = cond->IsCondition() && cond->AsCondition()->IsBeforeWhenDisregardMoves(instruction); if (materialized) { if (!eflags_set) { // Materialized condition, compare against 0. Location lhs = instruction->GetLocations()->InAt(0); if (lhs.IsRegister()) { __ testl(lhs.AsRegister<CpuRegister>(), lhs.AsRegister<CpuRegister>()); } else { __ cmpl(Address(CpuRegister(RSP), lhs.GetStackIndex()), Immediate(0)); } __ j(kNotEqual, true_target); } else { __ j(X86_64Condition(cond->AsCondition()->GetCondition()), true_target); } } else { Location lhs = cond->GetLocations()->InAt(0); Location rhs = cond->GetLocations()->InAt(1); if (rhs.IsRegister()) { __ cmpl(lhs.AsRegister<CpuRegister>(), rhs.AsRegister<CpuRegister>()); } else if (rhs.IsConstant()) { int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); if (constant == 0) { __ testl(lhs.AsRegister<CpuRegister>(), lhs.AsRegister<CpuRegister>()); } else { __ cmpl(lhs.AsRegister<CpuRegister>(), Immediate(constant)); } } else { __ cmpl(lhs.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), rhs.GetStackIndex())); } __ j(X86_64Condition(cond->AsCondition()->GetCondition()), true_target); } } if (false_target != nullptr) { __ jmp(false_target); } } void LocationsBuilderX86_64::VisitIf(HIf* if_instr) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr, LocationSummary::kNoCall); HInstruction* cond = if_instr->InputAt(0); if (!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization()) { locations->SetInAt(0, Location::Any()); } } void InstructionCodeGeneratorX86_64::VisitIf(HIf* if_instr) { Label* true_target = codegen_->GetLabelOf(if_instr->IfTrueSuccessor()); Label* false_target = codegen_->GetLabelOf(if_instr->IfFalseSuccessor()); Label* always_true_target = true_target; if (codegen_->GoesToNextBlock(if_instr->GetBlock(), if_instr->IfTrueSuccessor())) { always_true_target = nullptr; } if (codegen_->GoesToNextBlock(if_instr->GetBlock(), if_instr->IfFalseSuccessor())) { false_target = nullptr; } GenerateTestAndBranch(if_instr, true_target, false_target, always_true_target); } void LocationsBuilderX86_64::VisitDeoptimize(HDeoptimize* deoptimize) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); HInstruction* cond = deoptimize->InputAt(0); DCHECK(cond->IsCondition()); if (cond->AsCondition()->NeedsMaterialization()) { locations->SetInAt(0, Location::Any()); } } void InstructionCodeGeneratorX86_64::VisitDeoptimize(HDeoptimize* deoptimize) { SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) DeoptimizationSlowPathX86_64(deoptimize); codegen_->AddSlowPath(slow_path); Label* slow_path_entry = slow_path->GetEntryLabel(); GenerateTestAndBranch(deoptimize, slow_path_entry, nullptr, slow_path_entry); } void LocationsBuilderX86_64::VisitLocal(HLocal* local) { local->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitLocal(HLocal* local) { DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock()); } void LocationsBuilderX86_64::VisitLoadLocal(HLoadLocal* local) { local->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitLoadLocal(HLoadLocal* load) { // Nothing to do, this is driven by the code generator. UNUSED(load); } void LocationsBuilderX86_64::VisitStoreLocal(HStoreLocal* store) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(store, LocationSummary::kNoCall); switch (store->InputAt(1)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimFloat: locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal()))); break; case Primitive::kPrimLong: case Primitive::kPrimDouble: locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal()))); break; default: LOG(FATAL) << "Unexpected local type " << store->InputAt(1)->GetType(); } } void InstructionCodeGeneratorX86_64::VisitStoreLocal(HStoreLocal* store) { UNUSED(store); } void LocationsBuilderX86_64::VisitCondition(HCondition* comp) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(comp, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); if (comp->NeedsMaterialization()) { locations->SetOut(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86_64::VisitCondition(HCondition* comp) { if (comp->NeedsMaterialization()) { LocationSummary* locations = comp->GetLocations(); CpuRegister reg = locations->Out().AsRegister<CpuRegister>(); // Clear register: setcc only sets the low byte. __ xorl(reg, reg); Location lhs = locations->InAt(0); Location rhs = locations->InAt(1); if (rhs.IsRegister()) { __ cmpl(lhs.AsRegister<CpuRegister>(), rhs.AsRegister<CpuRegister>()); } else if (rhs.IsConstant()) { int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); if (constant == 0) { __ testl(lhs.AsRegister<CpuRegister>(), lhs.AsRegister<CpuRegister>()); } else { __ cmpl(lhs.AsRegister<CpuRegister>(), Immediate(constant)); } } else { __ cmpl(lhs.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), rhs.GetStackIndex())); } __ setcc(X86_64Condition(comp->GetCondition()), reg); } } void LocationsBuilderX86_64::VisitEqual(HEqual* comp) { VisitCondition(comp); } void InstructionCodeGeneratorX86_64::VisitEqual(HEqual* comp) { VisitCondition(comp); } void LocationsBuilderX86_64::VisitNotEqual(HNotEqual* comp) { VisitCondition(comp); } void InstructionCodeGeneratorX86_64::VisitNotEqual(HNotEqual* comp) { VisitCondition(comp); } void LocationsBuilderX86_64::VisitLessThan(HLessThan* comp) { VisitCondition(comp); } void InstructionCodeGeneratorX86_64::VisitLessThan(HLessThan* comp) { VisitCondition(comp); } void LocationsBuilderX86_64::VisitLessThanOrEqual(HLessThanOrEqual* comp) { VisitCondition(comp); } void InstructionCodeGeneratorX86_64::VisitLessThanOrEqual(HLessThanOrEqual* comp) { VisitCondition(comp); } void LocationsBuilderX86_64::VisitGreaterThan(HGreaterThan* comp) { VisitCondition(comp); } void InstructionCodeGeneratorX86_64::VisitGreaterThan(HGreaterThan* comp) { VisitCondition(comp); } void LocationsBuilderX86_64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { VisitCondition(comp); } void InstructionCodeGeneratorX86_64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { VisitCondition(comp); } void LocationsBuilderX86_64::VisitCompare(HCompare* compare) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); switch (compare->InputAt(0)->GetType()) { case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::RequiresRegister()); break; } default: LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); } } void InstructionCodeGeneratorX86_64::VisitCompare(HCompare* compare) { LocationSummary* locations = compare->GetLocations(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); Location left = locations->InAt(0); Location right = locations->InAt(1); Label less, greater, done; Primitive::Type type = compare->InputAt(0)->GetType(); switch (type) { case Primitive::kPrimLong: { CpuRegister left_reg = left.AsRegister<CpuRegister>(); if (right.IsConstant()) { int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); if (IsInt<32>(value)) { if (value == 0) { __ testq(left_reg, left_reg); } else { __ cmpq(left_reg, Immediate(static_cast<int32_t>(value))); } } else { // Value won't fit in an int. __ cmpq(left_reg, codegen_->LiteralInt64Address(value)); } } else if (right.IsDoubleStackSlot()) { __ cmpq(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); } else { __ cmpq(left_reg, right.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimFloat: { XmmRegister left_reg = left.AsFpuRegister<XmmRegister>(); if (right.IsConstant()) { float value = right.GetConstant()->AsFloatConstant()->GetValue(); __ ucomiss(left_reg, codegen_->LiteralFloatAddress(value)); } else if (right.IsStackSlot()) { __ ucomiss(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); } else { __ ucomiss(left_reg, right.AsFpuRegister<XmmRegister>()); } __ j(kUnordered, compare->IsGtBias() ? &greater : &less); break; } case Primitive::kPrimDouble: { XmmRegister left_reg = left.AsFpuRegister<XmmRegister>(); if (right.IsConstant()) { double value = right.GetConstant()->AsDoubleConstant()->GetValue(); __ ucomisd(left_reg, codegen_->LiteralDoubleAddress(value)); } else if (right.IsDoubleStackSlot()) { __ ucomisd(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); } else { __ ucomisd(left_reg, right.AsFpuRegister<XmmRegister>()); } __ j(kUnordered, compare->IsGtBias() ? &greater : &less); break; } default: LOG(FATAL) << "Unexpected compare type " << type; } __ movl(out, Immediate(0)); __ j(kEqual, &done); __ j(type == Primitive::kPrimLong ? kLess : kBelow, &less); // ucomis{s,d} sets CF (kBelow) __ Bind(&greater); __ movl(out, Immediate(1)); __ jmp(&done); __ Bind(&less); __ movl(out, Immediate(-1)); __ Bind(&done); } void LocationsBuilderX86_64::VisitIntConstant(HIntConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitIntConstant(HIntConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderX86_64::VisitNullConstant(HNullConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitNullConstant(HNullConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderX86_64::VisitLongConstant(HLongConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitLongConstant(HLongConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderX86_64::VisitFloatConstant(HFloatConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitFloatConstant(HFloatConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderX86_64::VisitDoubleConstant(HDoubleConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitDoubleConstant(HDoubleConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderX86_64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { memory_barrier->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); } void LocationsBuilderX86_64::VisitReturnVoid(HReturnVoid* ret) { ret->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitReturnVoid(HReturnVoid* ret) { UNUSED(ret); codegen_->GenerateFrameExit(); } void LocationsBuilderX86_64::VisitReturn(HReturn* ret) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); switch (ret->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimLong: locations->SetInAt(0, Location::RegisterLocation(RAX)); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::FpuRegisterLocation(XMM0)); break; default: LOG(FATAL) << "Unexpected return type " << ret->InputAt(0)->GetType(); } } void InstructionCodeGeneratorX86_64::VisitReturn(HReturn* ret) { if (kIsDebugBuild) { switch (ret->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimLong: DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<CpuRegister>().AsRegister(), RAX); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>().AsFloatRegister(), XMM0); break; default: LOG(FATAL) << "Unexpected return type " << ret->InputAt(0)->GetType(); } } codegen_->GenerateFrameExit(); } Location InvokeDexCallingConventionVisitorX86_64::GetNextLocation(Primitive::Type type) { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { uint32_t index = gp_index_++; stack_index_++; if (index < calling_convention.GetNumberOfRegisters()) { return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); } } case Primitive::kPrimLong: { uint32_t index = gp_index_; stack_index_ += 2; if (index < calling_convention.GetNumberOfRegisters()) { gp_index_ += 1; return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); } else { gp_index_ += 2; return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); } } case Primitive::kPrimFloat: { uint32_t index = float_index_++; stack_index_++; if (index < calling_convention.GetNumberOfFpuRegisters()) { return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); } } case Primitive::kPrimDouble: { uint32_t index = float_index_++; stack_index_ += 2; if (index < calling_convention.GetNumberOfFpuRegisters()) { return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); } } case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected parameter type " << type; break; } return Location(); } void LocationsBuilderX86_64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // When we do not run baseline, explicit clinit checks triggered by static // invokes must have been pruned by art::PrepareForRegisterAllocation. DCHECK(codegen_->IsBaseline() || !invoke->IsStaticWithExplicitClinitCheck()); IntrinsicLocationsBuilderX86_64 intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86_64* codegen) { if (invoke->GetLocations()->Intrinsified()) { IntrinsicCodeGeneratorX86_64 intrinsic(codegen); intrinsic.Dispatch(invoke); return true; } return false; } void InstructionCodeGeneratorX86_64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // When we do not run baseline, explicit clinit checks triggered by static // invokes must have been pruned by art::PrepareForRegisterAllocation. DCHECK(codegen_->IsBaseline() || !invoke->IsStaticWithExplicitClinitCheck()); if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } codegen_->GenerateStaticOrDirectCall( invoke, invoke->GetLocations()->GetTemp(0).AsRegister<CpuRegister>()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderX86_64::HandleInvoke(HInvoke* invoke) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(invoke, LocationSummary::kCall); locations->AddTemp(Location::RegisterLocation(RDI)); InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor; for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) { HInstruction* input = invoke->InputAt(i); locations->SetInAt(i, calling_convention_visitor.GetNextLocation(input->GetType())); } switch (invoke->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimLong: locations->SetOut(Location::RegisterLocation(RAX)); break; case Primitive::kPrimVoid: break; case Primitive::kPrimDouble: case Primitive::kPrimFloat: locations->SetOut(Location::FpuRegisterLocation(XMM0)); break; } } void LocationsBuilderX86_64::VisitInvokeVirtual(HInvokeVirtual* invoke) { IntrinsicLocationsBuilderX86_64 intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void InstructionCodeGeneratorX86_64::VisitInvokeVirtual(HInvokeVirtual* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } CpuRegister temp = invoke->GetLocations()->GetTemp(0).AsRegister<CpuRegister>(); size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( invoke->GetVTableIndex(), kX86_64PointerSize).SizeValue(); LocationSummary* locations = invoke->GetLocations(); Location receiver = locations->InAt(0); size_t class_offset = mirror::Object::ClassOffset().SizeValue(); // temp = object->GetClass(); if (receiver.IsStackSlot()) { __ movl(temp, Address(CpuRegister(RSP), receiver.GetStackIndex())); __ movl(temp, Address(temp, class_offset)); } else { __ movl(temp, Address(receiver.AsRegister<CpuRegister>(), class_offset)); } codegen_->MaybeRecordImplicitNullCheck(invoke); // temp = temp->GetMethodAt(method_offset); __ movq(temp, Address(temp, method_offset)); // call temp->GetEntryPoint(); __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( kX86_64WordSize).SizeValue())); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderX86_64::VisitInvokeInterface(HInvokeInterface* invoke) { HandleInvoke(invoke); // Add the hidden argument. invoke->GetLocations()->AddTemp(Location::RegisterLocation(RAX)); } void InstructionCodeGeneratorX86_64::VisitInvokeInterface(HInvokeInterface* invoke) { // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. CpuRegister temp = invoke->GetLocations()->GetTemp(0).AsRegister<CpuRegister>(); uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset( invoke->GetImtIndex() % mirror::Class::kImtSize, kX86_64PointerSize).Uint32Value(); LocationSummary* locations = invoke->GetLocations(); Location receiver = locations->InAt(0); size_t class_offset = mirror::Object::ClassOffset().SizeValue(); // Set the hidden argument. CpuRegister hidden_reg = invoke->GetLocations()->GetTemp(1).AsRegister<CpuRegister>(); codegen_->Load64BitValue(hidden_reg, invoke->GetDexMethodIndex()); // temp = object->GetClass(); if (receiver.IsStackSlot()) { __ movl(temp, Address(CpuRegister(RSP), receiver.GetStackIndex())); __ movl(temp, Address(temp, class_offset)); } else { __ movl(temp, Address(receiver.AsRegister<CpuRegister>(), class_offset)); } codegen_->MaybeRecordImplicitNullCheck(invoke); // temp = temp->GetImtEntryAt(method_offset); __ movq(temp, Address(temp, method_offset)); // call temp->GetEntryPoint(); __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( kX86_64WordSize).SizeValue())); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderX86_64::VisitNeg(HNeg* neg) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); switch (neg->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitNeg(HNeg* neg) { LocationSummary* locations = neg->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (neg->GetResultType()) { case Primitive::kPrimInt: DCHECK(in.IsRegister()); DCHECK(in.Equals(out)); __ negl(out.AsRegister<CpuRegister>()); break; case Primitive::kPrimLong: DCHECK(in.IsRegister()); DCHECK(in.Equals(out)); __ negq(out.AsRegister<CpuRegister>()); break; case Primitive::kPrimFloat: { DCHECK(in.Equals(out)); XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); // Implement float negation with an exclusive or with value // 0x80000000 (mask for bit 31, representing the sign of a // single-precision floating-point number). __ movss(mask, codegen_->LiteralInt32Address(0x80000000)); __ xorps(out.AsFpuRegister<XmmRegister>(), mask); break; } case Primitive::kPrimDouble: { DCHECK(in.Equals(out)); XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); // Implement double negation with an exclusive or with value // 0x8000000000000000 (mask for bit 63, representing the sign of // a double-precision floating-point number). __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000))); __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); break; } default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void LocationsBuilderX86_64::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall); Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); // The Java language does not allow treating boolean as an integral type but // our bit representation makes it safe. switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. // TODO: We would benefit from a (to-be-implemented) // Location::RegisterOrStackSlot requirement for this input. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-long' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-long' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-float' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-float' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-double' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-double' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void InstructionCodeGeneratorX86_64::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = conversion->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. if (in.IsRegister()) { __ movsxb(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); } else if (in.IsStackSlot()) { __ movsxb(out.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } else { DCHECK(in.GetConstant()->IsIntConstant()); __ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<int8_t>(in.GetConstant()->AsIntConstant()->GetValue()))); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. if (in.IsRegister()) { __ movsxw(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); } else if (in.IsStackSlot()) { __ movsxw(out.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } else { DCHECK(in.GetConstant()->IsIntConstant()); __ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<int16_t>(in.GetConstant()->AsIntConstant()->GetValue()))); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. if (in.IsRegister()) { __ movl(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); } else if (in.IsDoubleStackSlot()) { __ movl(out.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } else { DCHECK(in.IsConstant()); DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<int32_t>(value))); } break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-int' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); CpuRegister output = out.AsRegister<CpuRegister>(); XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); Label done, nan; __ movl(output, Immediate(kPrimIntMax)); // temp = int-to-float(output) __ cvtsi2ss(temp, output, false); // if input >= temp goto done __ comiss(input, temp); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = float-to-int-truncate(input) __ cvttss2si(output, input, false); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-int' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); CpuRegister output = out.AsRegister<CpuRegister>(); XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); Label done, nan; __ movl(output, Immediate(kPrimIntMax)); // temp = int-to-double(output) __ cvtsi2sd(temp, output); // if input >= temp goto done __ comisd(input, temp); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = double-to-int-truncate(input) __ cvttsd2si(output, input); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { DCHECK(out.IsRegister()); case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. DCHECK(in.IsRegister()); __ movsxd(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-long' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); CpuRegister output = out.AsRegister<CpuRegister>(); XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); Label done, nan; codegen_->Load64BitValue(output, kPrimLongMax); // temp = long-to-float(output) __ cvtsi2ss(temp, output, true); // if input >= temp goto done __ comiss(input, temp); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = float-to-long-truncate(input) __ cvttss2si(output, input, true); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-long' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); CpuRegister output = out.AsRegister<CpuRegister>(); XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); Label done, nan; codegen_->Load64BitValue(output, kPrimLongMax); // temp = long-to-double(output) __ cvtsi2sd(temp, output, true); // if input >= temp goto done __ comisd(input, temp); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = double-to-long-truncate(input) __ cvttsd2si(output, input, true); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. if (in.IsRegister()) { __ movzxw(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); } else if (in.IsStackSlot()) { __ movzxw(out.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } else { DCHECK(in.GetConstant()->IsIntConstant()); __ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<uint16_t>(in.GetConstant()->AsIntConstant()->GetValue()))); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-float' instruction. if (in.IsRegister()) { __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), false); } else if (in.IsConstant()) { int32_t v = in.GetConstant()->AsIntConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); if (v == 0) { __ xorps(dest, dest); } else { __ movss(dest, codegen_->LiteralFloatAddress(static_cast<float>(v))); } } else { __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex()), false); } break; case Primitive::kPrimLong: // Processing a Dex `long-to-float' instruction. if (in.IsRegister()) { __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), true); } else if (in.IsConstant()) { int64_t v = in.GetConstant()->AsLongConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); if (v == 0) { __ xorps(dest, dest); } else { __ movss(dest, codegen_->LiteralFloatAddress(static_cast<float>(v))); } } else { __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex()), true); } break; case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. if (in.IsFpuRegister()) { __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); } else if (in.IsConstant()) { double v = in.GetConstant()->AsDoubleConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); if (bit_cast<int64_t, double>(v) == 0) { __ xorps(dest, dest); } else { __ movss(dest, codegen_->LiteralFloatAddress(static_cast<float>(v))); } } else { __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-double' instruction. if (in.IsRegister()) { __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), false); } else if (in.IsConstant()) { int32_t v = in.GetConstant()->AsIntConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); if (v == 0) { __ xorpd(dest, dest); } else { __ movsd(dest, codegen_->LiteralDoubleAddress(static_cast<double>(v))); } } else { __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex()), false); } break; case Primitive::kPrimLong: // Processing a Dex `long-to-double' instruction. if (in.IsRegister()) { __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), true); } else if (in.IsConstant()) { int64_t v = in.GetConstant()->AsLongConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); if (v == 0) { __ xorpd(dest, dest); } else { __ movsd(dest, codegen_->LiteralDoubleAddress(static_cast<double>(v))); } } else { __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex()), true); } break; case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. if (in.IsFpuRegister()) { __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); } else if (in.IsConstant()) { float v = in.GetConstant()->AsFloatConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); if (bit_cast<int32_t, float>(v) == 0) { __ xorpd(dest, dest); } else { __ movsd(dest, codegen_->LiteralDoubleAddress(static_cast<double>(v))); } } else { __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void LocationsBuilderX86_64::VisitAdd(HAdd* add) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); switch (add->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); // We can use a leaq or addq if the constant can fit in an immediate. locations->SetInAt(1, Location::RegisterOrInt32LongConstant(add->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimDouble: case Primitive::kPrimFloat: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitAdd(HAdd* add) { LocationSummary* locations = add->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); switch (add->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addl(out.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else { __ leal(out.AsRegister<CpuRegister>(), Address( first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>(), TIMES_1, 0)); } } else if (second.IsConstant()) { if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addl(out.AsRegister<CpuRegister>(), Immediate(second.GetConstant()->AsIntConstant()->GetValue())); } else { __ leal(out.AsRegister<CpuRegister>(), Address( first.AsRegister<CpuRegister>(), second.GetConstant()->AsIntConstant()->GetValue())); } } else { DCHECK(first.Equals(locations->Out())); __ addl(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimLong: { if (second.IsRegister()) { if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addq(out.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else { __ leaq(out.AsRegister<CpuRegister>(), Address( first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>(), TIMES_1, 0)); } } else { DCHECK(second.IsConstant()); int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); int32_t int32_value = Low32Bits(value); DCHECK_EQ(int32_value, value); if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addq(out.AsRegister<CpuRegister>(), Immediate(int32_value)); } else { __ leaq(out.AsRegister<CpuRegister>(), Address( first.AsRegister<CpuRegister>(), int32_value)); } } break; } case Primitive::kPrimFloat: { if (second.IsFpuRegister()) { __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ addss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress(second.GetConstant()->AsFloatConstant()->GetValue())); } else { DCHECK(second.IsStackSlot()); __ addss(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (second.IsFpuRegister()) { __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ addsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress(second.GetConstant()->AsDoubleConstant()->GetValue())); } else { DCHECK(second.IsDoubleStackSlot()); __ addsd(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void LocationsBuilderX86_64::VisitSub(HSub* sub) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); switch (sub->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrInt32LongConstant(sub->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitSub(HSub* sub) { LocationSummary* locations = sub->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); DCHECK(first.Equals(locations->Out())); switch (sub->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { __ subl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else if (second.IsConstant()) { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue()); __ subl(first.AsRegister<CpuRegister>(), imm); } else { __ subl(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimLong: { if (second.IsConstant()) { int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(value)); __ subq(first.AsRegister<CpuRegister>(), Immediate(static_cast<int32_t>(value))); } else { __ subq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimFloat: { if (second.IsFpuRegister()) { __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ subss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress(second.GetConstant()->AsFloatConstant()->GetValue())); } else { DCHECK(second.IsStackSlot()); __ subss(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (second.IsFpuRegister()) { __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ subsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress(second.GetConstant()->AsDoubleConstant()->GetValue())); } else { DCHECK(second.IsDoubleStackSlot()); __ subsd(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void LocationsBuilderX86_64::VisitMul(HMul* mul) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); switch (mul->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrInt32LongConstant(mul->InputAt(1))); if (locations->InAt(1).IsConstant()) { // Can use 3 operand multiply. locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { locations->SetOut(Location::SameAsFirstInput()); } break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitMul(HMul* mul) { LocationSummary* locations = mul->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (mul->GetResultType()) { case Primitive::kPrimInt: { DCHECK(first.Equals(locations->Out())); if (second.IsRegister()) { __ imull(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else if (second.IsConstant()) { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue()); __ imull(first.AsRegister<CpuRegister>(), imm); } else { DCHECK(second.IsStackSlot()); __ imull(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimLong: { if (second.IsConstant()) { int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(value)); __ imulq(locations->Out().AsRegister<CpuRegister>(), first.AsRegister<CpuRegister>(), Immediate(static_cast<int32_t>(value))); } else { DCHECK(first.Equals(locations->Out())); __ imulq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimFloat: { DCHECK(first.Equals(locations->Out())); if (second.IsFpuRegister()) { __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ mulss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress(second.GetConstant()->AsFloatConstant()->GetValue())); } else { DCHECK(second.IsStackSlot()); __ mulss(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { DCHECK(first.Equals(locations->Out())); if (second.IsFpuRegister()) { __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ mulsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress(second.GetConstant()->AsDoubleConstant()->GetValue())); } else { DCHECK(second.IsDoubleStackSlot()); __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorX86_64::PushOntoFPStack(Location source, uint32_t temp_offset, uint32_t stack_adjustment, bool is_float) { if (source.IsStackSlot()) { DCHECK(is_float); __ flds(Address(CpuRegister(RSP), source.GetStackIndex() + stack_adjustment)); } else if (source.IsDoubleStackSlot()) { DCHECK(!is_float); __ fldl(Address(CpuRegister(RSP), source.GetStackIndex() + stack_adjustment)); } else { // Write the value to the temporary location on the stack and load to FP stack. if (is_float) { Location stack_temp = Location::StackSlot(temp_offset); codegen_->Move(stack_temp, source); __ flds(Address(CpuRegister(RSP), temp_offset)); } else { Location stack_temp = Location::DoubleStackSlot(temp_offset); codegen_->Move(stack_temp, source); __ fldl(Address(CpuRegister(RSP), temp_offset)); } } } void InstructionCodeGeneratorX86_64::GenerateRemFP(HRem *rem) { Primitive::Type type = rem->GetResultType(); bool is_float = type == Primitive::kPrimFloat; size_t elem_size = Primitive::ComponentSize(type); LocationSummary* locations = rem->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); // Create stack space for 2 elements. // TODO: enhance register allocator to ask for stack temporaries. __ subq(CpuRegister(RSP), Immediate(2 * elem_size)); // Load the values to the FP stack in reverse order, using temporaries if needed. PushOntoFPStack(second, elem_size, 2 * elem_size, is_float); PushOntoFPStack(first, 0, 2 * elem_size, is_float); // Loop doing FPREM until we stabilize. Label retry; __ Bind(&retry); __ fprem(); // Move FP status to AX. __ fstsw(); // And see if the argument reduction is complete. This is signaled by the // C2 FPU flag bit set to 0. __ andl(CpuRegister(RAX), Immediate(kC2ConditionMask)); __ j(kNotEqual, &retry); // We have settled on the final value. Retrieve it into an XMM register. // Store FP top of stack to real stack. if (is_float) { __ fsts(Address(CpuRegister(RSP), 0)); } else { __ fstl(Address(CpuRegister(RSP), 0)); } // Pop the 2 items from the FP stack. __ fucompp(); // Load the value from the stack into an XMM register. DCHECK(out.IsFpuRegister()) << out; if (is_float) { __ movss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), 0)); } else { __ movsd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), 0)); } // And remove the temporary stack space we allocated. __ addq(CpuRegister(RSP), Immediate(2 * elem_size)); } void InstructionCodeGeneratorX86_64::DivRemOneOrMinusOne(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); CpuRegister output_register = locations->Out().AsRegister<CpuRegister>(); CpuRegister input_register = locations->InAt(0).AsRegister<CpuRegister>(); int64_t imm = Int64FromConstant(second.GetConstant()); DCHECK(imm == 1 || imm == -1); switch (instruction->GetResultType()) { case Primitive::kPrimInt: { if (instruction->IsRem()) { __ xorl(output_register, output_register); } else { __ movl(output_register, input_register); if (imm == -1) { __ negl(output_register); } } break; } case Primitive::kPrimLong: { if (instruction->IsRem()) { __ xorl(output_register, output_register); } else { __ movq(output_register, input_register); if (imm == -1) { __ negq(output_register); } } break; } default: LOG(FATAL) << "Unexpected type for div by (-)1 " << instruction->GetResultType(); } } void InstructionCodeGeneratorX86_64::DivByPowerOfTwo(HDiv* instruction) { LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); CpuRegister output_register = locations->Out().AsRegister<CpuRegister>(); CpuRegister numerator = locations->InAt(0).AsRegister<CpuRegister>(); int64_t imm = Int64FromConstant(second.GetConstant()); DCHECK(IsPowerOfTwo(std::abs(imm))); CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>(); if (instruction->GetResultType() == Primitive::kPrimInt) { __ leal(tmp, Address(numerator, std::abs(imm) - 1)); __ testl(numerator, numerator); __ cmov(kGreaterEqual, tmp, numerator); int shift = CTZ(imm); __ sarl(tmp, Immediate(shift)); if (imm < 0) { __ negl(tmp); } __ movl(output_register, tmp); } else { DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); CpuRegister rdx = locations->GetTemp(0).AsRegister<CpuRegister>(); codegen_->Load64BitValue(rdx, std::abs(imm) - 1); __ addq(rdx, numerator); __ testq(numerator, numerator); __ cmov(kGreaterEqual, rdx, numerator); int shift = CTZ(imm); __ sarq(rdx, Immediate(shift)); if (imm < 0) { __ negq(rdx); } __ movq(output_register, rdx); } } void InstructionCodeGeneratorX86_64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); CpuRegister numerator = instruction->IsDiv() ? locations->GetTemp(1).AsRegister<CpuRegister>() : locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister eax = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister edx = instruction->IsDiv() ? locations->GetTemp(0).AsRegister<CpuRegister>() : locations->Out().AsRegister<CpuRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); DCHECK_EQ(RAX, eax.AsRegister()); DCHECK_EQ(RDX, edx.AsRegister()); if (instruction->IsDiv()) { DCHECK_EQ(RAX, out.AsRegister()); } else { DCHECK_EQ(RDX, out.AsRegister()); } int64_t magic; int shift; // TODO: can these branches be written as one? if (instruction->GetResultType() == Primitive::kPrimInt) { int imm = second.GetConstant()->AsIntConstant()->GetValue(); CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); __ movl(numerator, eax); Label no_div; Label end; __ testl(eax, eax); __ j(kNotEqual, &no_div); __ xorl(out, out); __ jmp(&end); __ Bind(&no_div); __ movl(eax, Immediate(magic)); __ imull(numerator); if (imm > 0 && magic < 0) { __ addl(edx, numerator); } else if (imm < 0 && magic > 0) { __ subl(edx, numerator); } if (shift != 0) { __ sarl(edx, Immediate(shift)); } __ movl(eax, edx); __ shrl(edx, Immediate(31)); __ addl(edx, eax); if (instruction->IsRem()) { __ movl(eax, numerator); __ imull(edx, Immediate(imm)); __ subl(eax, edx); __ movl(edx, eax); } else { __ movl(eax, edx); } __ Bind(&end); } else { int64_t imm = second.GetConstant()->AsLongConstant()->GetValue(); DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); CpuRegister rax = eax; CpuRegister rdx = edx; CalculateMagicAndShiftForDivRem(imm, true /* is_long */, &magic, &shift); // Save the numerator. __ movq(numerator, rax); // RAX = magic codegen_->Load64BitValue(rax, magic); // RDX:RAX = magic * numerator __ imulq(numerator); if (imm > 0 && magic < 0) { // RDX += numerator __ addq(rdx, numerator); } else if (imm < 0 && magic > 0) { // RDX -= numerator __ subq(rdx, numerator); } // Shift if needed. if (shift != 0) { __ sarq(rdx, Immediate(shift)); } // RDX += 1 if RDX < 0 __ movq(rax, rdx); __ shrq(rdx, Immediate(63)); __ addq(rdx, rax); if (instruction->IsRem()) { __ movq(rax, numerator); if (IsInt<32>(imm)) { __ imulq(rdx, Immediate(static_cast<int32_t>(imm))); } else { __ imulq(rdx, codegen_->LiteralInt64Address(imm)); } __ subq(rax, rdx); __ movq(rdx, rax); } else { __ movq(rax, rdx); } } } void InstructionCodeGeneratorX86_64::GenerateDivRemIntegral(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); Primitive::Type type = instruction->GetResultType(); DCHECK(type == Primitive::kPrimInt || Primitive::kPrimLong); bool is_div = instruction->IsDiv(); LocationSummary* locations = instruction->GetLocations(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); Location second = locations->InAt(1); DCHECK_EQ(RAX, locations->InAt(0).AsRegister<CpuRegister>().AsRegister()); DCHECK_EQ(is_div ? RAX : RDX, out.AsRegister()); if (second.IsConstant()) { int64_t imm = Int64FromConstant(second.GetConstant()); if (imm == 0) { // Do not generate anything. DivZeroCheck would prevent any code to be executed. } else if (imm == 1 || imm == -1) { DivRemOneOrMinusOne(instruction); } else if (instruction->IsDiv() && IsPowerOfTwo(std::abs(imm))) { DivByPowerOfTwo(instruction->AsDiv()); } else { DCHECK(imm <= -2 || imm >= 2); GenerateDivRemWithAnyConstant(instruction); } } else { SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86_64( out.AsRegister(), type, is_div); codegen_->AddSlowPath(slow_path); CpuRegister second_reg = second.AsRegister<CpuRegister>(); // 0x80000000(00000000)/-1 triggers an arithmetic exception! // Dividing by -1 is actually negation and -0x800000000(00000000) = 0x80000000(00000000) // so it's safe to just use negl instead of more complex comparisons. if (type == Primitive::kPrimInt) { __ cmpl(second_reg, Immediate(-1)); __ j(kEqual, slow_path->GetEntryLabel()); // edx:eax <- sign-extended of eax __ cdq(); // eax = quotient, edx = remainder __ idivl(second_reg); } else { __ cmpq(second_reg, Immediate(-1)); __ j(kEqual, slow_path->GetEntryLabel()); // rdx:rax <- sign-extended of rax __ cqo(); // rax = quotient, rdx = remainder __ idivq(second_reg); } __ Bind(slow_path->GetExitLabel()); } } void LocationsBuilderX86_64::VisitDiv(HDiv* div) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall); switch (div->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RegisterLocation(RAX)); locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); // Intel uses edx:eax as the dividend. locations->AddTemp(Location::RegisterLocation(RDX)); // We need to save the numerator while we tweak rax and rdx. As we are using imul in a way // which enforces results to be in RAX and RDX, things are simpler if we use RDX also as // output and request another temp. if (div->InputAt(1)->IsConstant()) { locations->AddTemp(Location::RequiresRegister()); } break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitDiv(HDiv* div) { LocationSummary* locations = div->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); DCHECK(first.Equals(locations->Out())); Primitive::Type type = div->GetResultType(); switch (type) { case Primitive::kPrimInt: case Primitive::kPrimLong: { GenerateDivRemIntegral(div); break; } case Primitive::kPrimFloat: { if (second.IsFpuRegister()) { __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ divss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress(second.GetConstant()->AsFloatConstant()->GetValue())); } else { DCHECK(second.IsStackSlot()); __ divss(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (second.IsFpuRegister()) { __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ divsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress(second.GetConstant()->AsDoubleConstant()->GetValue())); } else { DCHECK(second.IsDoubleStackSlot()); __ divsd(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void LocationsBuilderX86_64::VisitRem(HRem* rem) { Primitive::Type type = rem->GetResultType(); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, LocationSummary::kNoCall); switch (type) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RegisterLocation(RAX)); locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); // Intel uses rdx:rax as the dividend and puts the remainder in rdx locations->SetOut(Location::RegisterLocation(RDX)); // We need to save the numerator while we tweak eax and edx. As we are using imul in a way // which enforces results to be in RAX and RDX, things are simpler if we use EAX also as // output and request another temp. if (rem->InputAt(1)->IsConstant()) { locations->AddTemp(Location::RequiresRegister()); } break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::Any()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); locations->AddTemp(Location::RegisterLocation(RAX)); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void InstructionCodeGeneratorX86_64::VisitRem(HRem* rem) { Primitive::Type type = rem->GetResultType(); switch (type) { case Primitive::kPrimInt: case Primitive::kPrimLong: { GenerateDivRemIntegral(rem); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { GenerateRemFP(rem); break; } default: LOG(FATAL) << "Unexpected rem type " << rem->GetResultType(); } } void LocationsBuilderX86_64::VisitDivZeroCheck(HDivZeroCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::Any()); if (instruction->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorX86_64::VisitDivZeroCheck(HDivZeroCheck* instruction) { SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86_64(instruction); codegen_->AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location value = locations->InAt(0); switch (instruction->GetType()) { case Primitive::kPrimInt: { if (value.IsRegister()) { __ testl(value.AsRegister<CpuRegister>(), value.AsRegister<CpuRegister>()); __ j(kEqual, slow_path->GetEntryLabel()); } else if (value.IsStackSlot()) { __ cmpl(Address(CpuRegister(RSP), value.GetStackIndex()), Immediate(0)); __ j(kEqual, slow_path->GetEntryLabel()); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { __ jmp(slow_path->GetEntryLabel()); } } break; } case Primitive::kPrimLong: { if (value.IsRegister()) { __ testq(value.AsRegister<CpuRegister>(), value.AsRegister<CpuRegister>()); __ j(kEqual, slow_path->GetEntryLabel()); } else if (value.IsDoubleStackSlot()) { __ cmpq(Address(CpuRegister(RSP), value.GetStackIndex()), Immediate(0)); __ j(kEqual, slow_path->GetEntryLabel()); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { __ jmp(slow_path->GetEntryLabel()); } } break; } default: LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); } } void LocationsBuilderX86_64::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); switch (op->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); // The shift count needs to be in CL. locations->SetInAt(1, Location::ByteRegisterOrConstant(RCX, op->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); } } void InstructionCodeGeneratorX86_64::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = op->GetLocations(); CpuRegister first_reg = locations->InAt(0).AsRegister<CpuRegister>(); Location second = locations->InAt(1); switch (op->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { CpuRegister second_reg = second.AsRegister<CpuRegister>(); if (op->IsShl()) { __ shll(first_reg, second_reg); } else if (op->IsShr()) { __ sarl(first_reg, second_reg); } else { __ shrl(first_reg, second_reg); } } else { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftValue); if (op->IsShl()) { __ shll(first_reg, imm); } else if (op->IsShr()) { __ sarl(first_reg, imm); } else { __ shrl(first_reg, imm); } } break; } case Primitive::kPrimLong: { if (second.IsRegister()) { CpuRegister second_reg = second.AsRegister<CpuRegister>(); if (op->IsShl()) { __ shlq(first_reg, second_reg); } else if (op->IsShr()) { __ sarq(first_reg, second_reg); } else { __ shrq(first_reg, second_reg); } } else { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftValue); if (op->IsShl()) { __ shlq(first_reg, imm); } else if (op->IsShr()) { __ sarq(first_reg, imm); } else { __ shrq(first_reg, imm); } } break; } default: LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); } } void LocationsBuilderX86_64::VisitShl(HShl* shl) { HandleShift(shl); } void InstructionCodeGeneratorX86_64::VisitShl(HShl* shl) { HandleShift(shl); } void LocationsBuilderX86_64::VisitShr(HShr* shr) { HandleShift(shr); } void InstructionCodeGeneratorX86_64::VisitShr(HShr* shr) { HandleShift(shr); } void LocationsBuilderX86_64::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void InstructionCodeGeneratorX86_64::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void LocationsBuilderX86_64::VisitNewInstance(HNewInstance* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(RAX)); } void InstructionCodeGeneratorX86_64::VisitNewInstance(HNewInstance* instruction) { InvokeRuntimeCallingConvention calling_convention; codegen_->LoadCurrentMethod(CpuRegister(calling_convention.GetRegisterAt(1))); codegen_->Load64BitValue(CpuRegister(calling_convention.GetRegisterAt(0)), instruction->GetTypeIndex()); __ gs()->call( Address::Absolute(GetThreadOffset<kX86_64WordSize>(instruction->GetEntrypoint()), true)); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } void LocationsBuilderX86_64::VisitNewArray(HNewArray* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(RAX)); locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); } void InstructionCodeGeneratorX86_64::VisitNewArray(HNewArray* instruction) { InvokeRuntimeCallingConvention calling_convention; codegen_->LoadCurrentMethod(CpuRegister(calling_convention.GetRegisterAt(2))); codegen_->Load64BitValue(CpuRegister(calling_convention.GetRegisterAt(0)), instruction->GetTypeIndex()); __ gs()->call( Address::Absolute(GetThreadOffset<kX86_64WordSize>(instruction->GetEntrypoint()), true)); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } void LocationsBuilderX86_64::VisitParameterValue(HParameterValue* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); if (location.IsStackSlot()) { location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } else if (location.IsDoubleStackSlot()) { location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } locations->SetOut(location); } void InstructionCodeGeneratorX86_64::VisitParameterValue(HParameterValue* instruction) { // Nothing to do, the parameter is already at its location. UNUSED(instruction); } void LocationsBuilderX86_64::VisitNot(HNot* not_) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86_64::VisitNot(HNot* not_) { LocationSummary* locations = not_->GetLocations(); DCHECK_EQ(locations->InAt(0).AsRegister<CpuRegister>().AsRegister(), locations->Out().AsRegister<CpuRegister>().AsRegister()); Location out = locations->Out(); switch (not_->GetResultType()) { case Primitive::kPrimInt: __ notl(out.AsRegister<CpuRegister>()); break; case Primitive::kPrimLong: __ notq(out.AsRegister<CpuRegister>()); break; default: LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); } } void LocationsBuilderX86_64::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86_64::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = bool_not->GetLocations(); DCHECK_EQ(locations->InAt(0).AsRegister<CpuRegister>().AsRegister(), locations->Out().AsRegister<CpuRegister>().AsRegister()); Location out = locations->Out(); __ xorl(out.AsRegister<CpuRegister>(), Immediate(1)); } void LocationsBuilderX86_64::VisitPhi(HPhi* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { locations->SetInAt(i, Location::Any()); } locations->SetOut(Location::Any()); } void InstructionCodeGeneratorX86_64::VisitPhi(HPhi* instruction) { UNUSED(instruction); LOG(FATAL) << "Unimplemented"; } void InstructionCodeGeneratorX86_64::GenerateMemoryBarrier(MemBarrierKind kind) { /* * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. * For those cases, all we need to ensure is that there is a scheduling barrier in place. */ switch (kind) { case MemBarrierKind::kAnyAny: { __ mfence(); break; } case MemBarrierKind::kAnyStore: case MemBarrierKind::kLoadAny: case MemBarrierKind::kStoreStore: { // nop break; } default: LOG(FATAL) << "Unexpected memory barier " << kind; } } void LocationsBuilderX86_64::HandleFieldGet(HInstruction* instruction) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister()); } else { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorX86_64::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); LocationSummary* locations = instruction->GetLocations(); CpuRegister base = locations->InAt(0).AsRegister<CpuRegister>(); Location out = locations->Out(); bool is_volatile = field_info.IsVolatile(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); switch (field_type) { case Primitive::kPrimBoolean: { __ movzxb(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimByte: { __ movsxb(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimShort: { __ movsxw(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimChar: { __ movzxw(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { __ movl(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimLong: { __ movq(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimFloat: { __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); break; } case Primitive::kPrimDouble: { __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } codegen_->MaybeRecordImplicitNullCheck(instruction); if (is_volatile) { GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } void LocationsBuilderX86_64::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(field_info.GetFieldType(), instruction->InputAt(1)); locations->SetInAt(0, Location::RequiresRegister()); if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::RegisterOrInt32LongConstant(instruction->InputAt(1))); } if (needs_write_barrier) { // Temporary registers for the write barrier. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86_64::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = instruction->GetLocations(); CpuRegister base = locations->InAt(0).AsRegister<CpuRegister>(); Location value = locations->InAt(1); bool is_volatile = field_info.IsVolatile(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); if (is_volatile) { GenerateMemoryBarrier(MemBarrierKind::kAnyStore); } switch (field_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: { if (value.IsConstant()) { int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movb(Address(base, offset), Immediate(v)); } else { __ movb(Address(base, offset), value.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimShort: case Primitive::kPrimChar: { if (value.IsConstant()) { int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movw(Address(base, offset), Immediate(v)); } else { __ movw(Address(base, offset), value.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { if (value.IsConstant()) { int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movw(Address(base, offset), Immediate(v)); } else { __ movl(Address(base, offset), value.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimLong: { if (value.IsConstant()) { int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(v)); int32_t v_32 = v; __ movq(Address(base, offset), Immediate(v_32)); } else { __ movq(Address(base, offset), value.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimFloat: { __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>()); break; } case Primitive::kPrimDouble: { __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>()); break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } codegen_->MaybeRecordImplicitNullCheck(instruction); if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister card = locations->GetTemp(1).AsRegister<CpuRegister>(); codegen_->MarkGCCard(temp, card, base, value.AsRegister<CpuRegister>()); } if (is_volatile) { GenerateMemoryBarrier(MemBarrierKind::kAnyAny); } } void LocationsBuilderX86_64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorX86_64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderX86_64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction); } void InstructionCodeGeneratorX86_64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderX86_64::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction); } void InstructionCodeGeneratorX86_64::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderX86_64::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorX86_64::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderX86_64::VisitNullCheck(HNullCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); Location loc = codegen_->GetCompilerOptions().GetImplicitNullChecks() ? Location::RequiresRegister() : Location::Any(); locations->SetInAt(0, loc); if (instruction->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorX86_64::GenerateImplicitNullCheck(HNullCheck* instruction) { if (codegen_->CanMoveNullCheckToUser(instruction)) { return; } LocationSummary* locations = instruction->GetLocations(); Location obj = locations->InAt(0); __ testl(CpuRegister(RAX), Address(obj.AsRegister<CpuRegister>(), 0)); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } void InstructionCodeGeneratorX86_64::GenerateExplicitNullCheck(HNullCheck* instruction) { SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86_64(instruction); codegen_->AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location obj = locations->InAt(0); if (obj.IsRegister()) { __ testl(obj.AsRegister<CpuRegister>(), obj.AsRegister<CpuRegister>()); } else if (obj.IsStackSlot()) { __ cmpl(Address(CpuRegister(RSP), obj.GetStackIndex()), Immediate(0)); } else { DCHECK(obj.IsConstant()) << obj; DCHECK_EQ(obj.GetConstant()->AsIntConstant()->GetValue(), 0); __ jmp(slow_path->GetEntryLabel()); return; } __ j(kEqual, slow_path->GetEntryLabel()); } void InstructionCodeGeneratorX86_64::VisitNullCheck(HNullCheck* instruction) { if (codegen_->GetCompilerOptions().GetImplicitNullChecks()) { GenerateImplicitNullCheck(instruction); } else { GenerateExplicitNullCheck(instruction); } } void LocationsBuilderX86_64::VisitArrayGet(HArrayGet* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorX86_64::VisitArrayGet(HArrayGet* instruction) { LocationSummary* locations = instruction->GetLocations(); CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); Location index = locations->InAt(1); switch (instruction->GetType()) { case Primitive::kPrimBoolean: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movzxb(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); } else { __ movzxb(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset)); } break; } case Primitive::kPrimByte: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movsxb(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); } else { __ movsxb(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset)); } break; } case Primitive::kPrimShort: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movsxw(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); } else { __ movsxw(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset)); } break; } case Primitive::kPrimChar: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movzxw(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); } else { __ movzxw(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset)); } break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t)); uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movl(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); } else { __ movl(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset)); } break; } case Primitive::kPrimLong: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movq(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset)); } else { __ movq(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset)); } break; } case Primitive::kPrimFloat: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); if (index.IsConstant()) { __ movss(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); } else { __ movss(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset)); } break; } case Primitive::kPrimDouble: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); if (index.IsConstant()) { __ movsd(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset)); } else { __ movsd(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset)); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << instruction->GetType(); UNREACHABLE(); } codegen_->MaybeRecordImplicitNullCheck(instruction); } void LocationsBuilderX86_64::VisitArraySet(HArraySet* instruction) { Primitive::Type value_type = instruction->GetComponentType(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); bool needs_runtime_call = instruction->NeedsTypeCheck(); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( instruction, needs_runtime_call ? LocationSummary::kCall : LocationSummary::kNoCall); if (needs_runtime_call) { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); } else { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt( 1, Location::RegisterOrConstant(instruction->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); if (value_type == Primitive::kPrimLong) { locations->SetInAt(2, Location::RegisterOrInt32LongConstant(instruction->InputAt(2))); } else if (value_type == Primitive::kPrimFloat || value_type == Primitive::kPrimDouble) { locations->SetInAt(2, Location::RequiresFpuRegister()); } else { locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2))); } if (needs_write_barrier) { // Temporary registers for the write barrier. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } } } void InstructionCodeGeneratorX86_64::VisitArraySet(HArraySet* instruction) { LocationSummary* locations = instruction->GetLocations(); CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); Location index = locations->InAt(1); Location value = locations->InAt(2); Primitive::Type value_type = instruction->GetComponentType(); bool needs_runtime_call = locations->WillCall(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); switch (value_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; if (value.IsRegister()) { __ movb(Address(obj, offset), value.AsRegister<CpuRegister>()); } else { __ movb(Address(obj, offset), Immediate(value.GetConstant()->AsIntConstant()->GetValue())); } } else { if (value.IsRegister()) { __ movb(Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset), value.AsRegister<CpuRegister>()); } else { __ movb(Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset), Immediate(value.GetConstant()->AsIntConstant()->GetValue())); } } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimShort: case Primitive::kPrimChar: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; if (value.IsRegister()) { __ movw(Address(obj, offset), value.AsRegister<CpuRegister>()); } else { DCHECK(value.IsConstant()) << value; __ movw(Address(obj, offset), Immediate(value.GetConstant()->AsIntConstant()->GetValue())); } } else { DCHECK(index.IsRegister()) << index; if (value.IsRegister()) { __ movw(Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset), value.AsRegister<CpuRegister>()); } else { DCHECK(value.IsConstant()) << value; __ movw(Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset), Immediate(value.GetConstant()->AsIntConstant()->GetValue())); } } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { if (!needs_runtime_call) { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; if (value.IsRegister()) { __ movl(Address(obj, offset), value.AsRegister<CpuRegister>()); } else { DCHECK(value.IsConstant()) << value; int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movl(Address(obj, offset), Immediate(v)); } } else { DCHECK(index.IsRegister()) << index; if (value.IsRegister()) { __ movl(Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset), value.AsRegister<CpuRegister>()); } else { DCHECK(value.IsConstant()) << value; int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movl(Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset), Immediate(v)); } } codegen_->MaybeRecordImplicitNullCheck(instruction); if (needs_write_barrier) { DCHECK_EQ(value_type, Primitive::kPrimNot); CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister card = locations->GetTemp(1).AsRegister<CpuRegister>(); codegen_->MarkGCCard(temp, card, obj, value.AsRegister<CpuRegister>()); } } else { DCHECK_EQ(value_type, Primitive::kPrimNot); __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAputObject), true)); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } break; } case Primitive::kPrimLong: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; if (value.IsRegister()) { __ movq(Address(obj, offset), value.AsRegister<CpuRegister>()); } else { int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(v)); int32_t v_32 = v; __ movq(Address(obj, offset), Immediate(v_32)); } } else { if (value.IsRegister()) { __ movq(Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset), value.AsRegister<CpuRegister>()); } else { int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(v)); int32_t v_32 = v; __ movq(Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset), Immediate(v_32)); } } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimFloat: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; DCHECK(value.IsFpuRegister()); __ movss(Address(obj, offset), value.AsFpuRegister<XmmRegister>()); } else { DCHECK(value.IsFpuRegister()); __ movss(Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset), value.AsFpuRegister<XmmRegister>()); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimDouble: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; DCHECK(value.IsFpuRegister()); __ movsd(Address(obj, offset), value.AsFpuRegister<XmmRegister>()); } else { DCHECK(value.IsFpuRegister()); __ movsd(Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset), value.AsFpuRegister<XmmRegister>()); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << instruction->GetType(); UNREACHABLE(); } } void LocationsBuilderX86_64::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorX86_64::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = instruction->GetLocations(); uint32_t offset = mirror::Array::LengthOffset().Uint32Value(); CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); __ movl(out, Address(obj, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); } void LocationsBuilderX86_64::VisitBoundsCheck(HBoundsCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (instruction->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorX86_64::VisitBoundsCheck(HBoundsCheck* instruction) { LocationSummary* locations = instruction->GetLocations(); Location index_loc = locations->InAt(0); Location length_loc = locations->InAt(1); SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathX86_64(instruction, index_loc, length_loc); if (length_loc.IsConstant()) { int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant()); if (index_loc.IsConstant()) { // BCE will remove the bounds check if we are guarenteed to pass. int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); if (index < 0 || index >= length) { codegen_->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); } else { // Some optimization after BCE may have generated this, and we should not // generate a bounds check if it is a valid range. } return; } // We have to reverse the jump condition because the length is the constant. CpuRegister index_reg = index_loc.AsRegister<CpuRegister>(); __ cmpl(index_reg, Immediate(length)); codegen_->AddSlowPath(slow_path); __ j(kAboveEqual, slow_path->GetEntryLabel()); } else { CpuRegister length = length_loc.AsRegister<CpuRegister>(); if (index_loc.IsConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); __ cmpl(length, Immediate(value)); } else { __ cmpl(length, index_loc.AsRegister<CpuRegister>()); } codegen_->AddSlowPath(slow_path); __ j(kBelowEqual, slow_path->GetEntryLabel()); } } void CodeGeneratorX86_64::MarkGCCard(CpuRegister temp, CpuRegister card, CpuRegister object, CpuRegister value) { Label is_null; __ testl(value, value); __ j(kEqual, &is_null); __ gs()->movq(card, Address::Absolute( Thread::CardTableOffset<kX86_64WordSize>().Int32Value(), true)); __ movq(temp, object); __ shrq(temp, Immediate(gc::accounting::CardTable::kCardShift)); __ movb(Address(temp, card, TIMES_1, 0), card); __ Bind(&is_null); } void LocationsBuilderX86_64::VisitTemporary(HTemporary* temp) { temp->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitTemporary(HTemporary* temp) { // Nothing to do, this is driven by the code generator. UNUSED(temp); } void LocationsBuilderX86_64::VisitParallelMove(HParallelMove* instruction) { UNUSED(instruction); LOG(FATAL) << "Unimplemented"; } void InstructionCodeGeneratorX86_64::VisitParallelMove(HParallelMove* instruction) { codegen_->GetMoveResolver()->EmitNativeCode(instruction); } void LocationsBuilderX86_64::VisitSuspendCheck(HSuspendCheck* instruction) { new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); } void InstructionCodeGeneratorX86_64::VisitSuspendCheck(HSuspendCheck* instruction) { HBasicBlock* block = instruction->GetBlock(); if (block->GetLoopInformation() != nullptr) { DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); // The back edge will generate the suspend check. return; } if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { // The goto will generate the suspend check. return; } GenerateSuspendCheck(instruction, nullptr); } void InstructionCodeGeneratorX86_64::GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor) { SuspendCheckSlowPathX86_64* slow_path = down_cast<SuspendCheckSlowPathX86_64*>(instruction->GetSlowPath()); if (slow_path == nullptr) { slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86_64(instruction, successor); instruction->SetSlowPath(slow_path); codegen_->AddSlowPath(slow_path); if (successor != nullptr) { DCHECK(successor->IsLoopHeader()); codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); } } else { DCHECK_EQ(slow_path->GetSuccessor(), successor); } __ gs()->cmpw(Address::Absolute( Thread::ThreadFlagsOffset<kX86_64WordSize>().Int32Value(), true), Immediate(0)); if (successor == nullptr) { __ j(kNotEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetReturnLabel()); } else { __ j(kEqual, codegen_->GetLabelOf(successor)); __ jmp(slow_path->GetEntryLabel()); } } X86_64Assembler* ParallelMoveResolverX86_64::GetAssembler() const { return codegen_->GetAssembler(); } void ParallelMoveResolverX86_64::EmitMove(size_t index) { MoveOperands* move = moves_.Get(index); Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister()) { if (destination.IsRegister()) { __ movq(destination.AsRegister<CpuRegister>(), source.AsRegister<CpuRegister>()); } else if (destination.IsStackSlot()) { __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsRegister<CpuRegister>()); } else { DCHECK(destination.IsDoubleStackSlot()); __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsRegister<CpuRegister>()); } } else if (source.IsStackSlot()) { if (destination.IsRegister()) { __ movl(destination.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else if (destination.IsFpuRegister()) { __ movss(destination.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else { DCHECK(destination.IsStackSlot()); __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } else if (source.IsDoubleStackSlot()) { if (destination.IsRegister()) { __ movq(destination.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else if (destination.IsFpuRegister()) { __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); if (constant->IsIntConstant() || constant->IsNullConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(constant); if (destination.IsRegister()) { if (value == 0) { __ xorl(destination.AsRegister<CpuRegister>(), destination.AsRegister<CpuRegister>()); } else { __ movl(destination.AsRegister<CpuRegister>(), Immediate(value)); } } else { DCHECK(destination.IsStackSlot()) << destination; __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), Immediate(value)); } } else if (constant->IsLongConstant()) { int64_t value = constant->AsLongConstant()->GetValue(); if (destination.IsRegister()) { codegen_->Load64BitValue(destination.AsRegister<CpuRegister>(), value); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; codegen_->Load64BitValue(CpuRegister(TMP), value); __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } else if (constant->IsFloatConstant()) { float fp_value = constant->AsFloatConstant()->GetValue(); int32_t value = bit_cast<int32_t, float>(fp_value); if (destination.IsFpuRegister()) { XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); if (value == 0) { // easy FP 0.0. __ xorps(dest, dest); } else { __ movss(dest, codegen_->LiteralFloatAddress(fp_value)); } } else { DCHECK(destination.IsStackSlot()) << destination; Immediate imm(value); __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), imm); } } else { DCHECK(constant->IsDoubleConstant()) << constant->DebugName(); double fp_value = constant->AsDoubleConstant()->GetValue(); int64_t value = bit_cast<int64_t, double>(fp_value); if (destination.IsFpuRegister()) { XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); if (value == 0) { __ xorpd(dest, dest); } else { __ movsd(dest, codegen_->LiteralDoubleAddress(fp_value)); } } else { DCHECK(destination.IsDoubleStackSlot()) << destination; codegen_->Load64BitValue(CpuRegister(TMP), value); __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } } else if (source.IsFpuRegister()) { if (destination.IsFpuRegister()) { __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); } else if (destination.IsStackSlot()) { __ movss(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; __ movsd(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } } } void ParallelMoveResolverX86_64::Exchange32(CpuRegister reg, int mem) { __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); __ movl(Address(CpuRegister(RSP), mem), reg); __ movl(reg, CpuRegister(TMP)); } void ParallelMoveResolverX86_64::Exchange32(int mem1, int mem2) { ScratchRegisterScope ensure_scratch( this, TMP, RAX, codegen_->GetNumberOfCoreRegisters()); int stack_offset = ensure_scratch.IsSpilled() ? kX86_64WordSize : 0; __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem1 + stack_offset)); __ movl(CpuRegister(ensure_scratch.GetRegister()), Address(CpuRegister(RSP), mem2 + stack_offset)); __ movl(Address(CpuRegister(RSP), mem2 + stack_offset), CpuRegister(TMP)); __ movl(Address(CpuRegister(RSP), mem1 + stack_offset), CpuRegister(ensure_scratch.GetRegister())); } void ParallelMoveResolverX86_64::Exchange64(CpuRegister reg, int mem) { __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); __ movq(Address(CpuRegister(RSP), mem), reg); __ movq(reg, CpuRegister(TMP)); } void ParallelMoveResolverX86_64::Exchange64(int mem1, int mem2) { ScratchRegisterScope ensure_scratch( this, TMP, RAX, codegen_->GetNumberOfCoreRegisters()); int stack_offset = ensure_scratch.IsSpilled() ? kX86_64WordSize : 0; __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem1 + stack_offset)); __ movq(CpuRegister(ensure_scratch.GetRegister()), Address(CpuRegister(RSP), mem2 + stack_offset)); __ movq(Address(CpuRegister(RSP), mem2 + stack_offset), CpuRegister(TMP)); __ movq(Address(CpuRegister(RSP), mem1 + stack_offset), CpuRegister(ensure_scratch.GetRegister())); } void ParallelMoveResolverX86_64::Exchange32(XmmRegister reg, int mem) { __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); __ movss(Address(CpuRegister(RSP), mem), reg); __ movd(reg, CpuRegister(TMP)); } void ParallelMoveResolverX86_64::Exchange64(XmmRegister reg, int mem) { __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); __ movsd(Address(CpuRegister(RSP), mem), reg); __ movd(reg, CpuRegister(TMP)); } void ParallelMoveResolverX86_64::EmitSwap(size_t index) { MoveOperands* move = moves_.Get(index); Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister() && destination.IsRegister()) { __ xchgq(destination.AsRegister<CpuRegister>(), source.AsRegister<CpuRegister>()); } else if (source.IsRegister() && destination.IsStackSlot()) { Exchange32(source.AsRegister<CpuRegister>(), destination.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsRegister()) { Exchange32(destination.AsRegister<CpuRegister>(), source.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsStackSlot()) { Exchange32(destination.GetStackIndex(), source.GetStackIndex()); } else if (source.IsRegister() && destination.IsDoubleStackSlot()) { Exchange64(source.AsRegister<CpuRegister>(), destination.GetStackIndex()); } else if (source.IsDoubleStackSlot() && destination.IsRegister()) { Exchange64(destination.AsRegister<CpuRegister>(), source.GetStackIndex()); } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) { Exchange64(destination.GetStackIndex(), source.GetStackIndex()); } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { __ movd(CpuRegister(TMP), source.AsFpuRegister<XmmRegister>()); __ movaps(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>()); __ movd(destination.AsFpuRegister<XmmRegister>(), CpuRegister(TMP)); } else if (source.IsFpuRegister() && destination.IsStackSlot()) { Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsFpuRegister()) { Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) { Exchange64(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); } else if (source.IsDoubleStackSlot() && destination.IsFpuRegister()) { Exchange64(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); } else { LOG(FATAL) << "Unimplemented swap between " << source << " and " << destination; } } void ParallelMoveResolverX86_64::SpillScratch(int reg) { __ pushq(CpuRegister(reg)); } void ParallelMoveResolverX86_64::RestoreScratch(int reg) { __ popq(CpuRegister(reg)); } void InstructionCodeGeneratorX86_64::GenerateClassInitializationCheck( SlowPathCodeX86_64* slow_path, CpuRegister class_reg) { __ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()), Immediate(mirror::Class::kStatusInitialized)); __ j(kLess, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); // No need for memory fence, thanks to the X86_64 memory model. } void LocationsBuilderX86_64::VisitLoadClass(HLoadClass* cls) { LocationSummary::CallKind call_kind = cls->CanCallRuntime() ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86_64::VisitLoadClass(HLoadClass* cls) { CpuRegister out = cls->GetLocations()->Out().AsRegister<CpuRegister>(); if (cls->IsReferrersClass()) { DCHECK(!cls->CanCallRuntime()); DCHECK(!cls->MustGenerateClinitCheck()); codegen_->LoadCurrentMethod(out); __ movl(out, Address(out, ArtMethod::DeclaringClassOffset().Int32Value())); } else { DCHECK(cls->CanCallRuntime()); codegen_->LoadCurrentMethod(out); __ movl(out, Address(out, ArtMethod::DexCacheResolvedTypesOffset().Int32Value())); __ movl(out, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex()))); SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86_64( cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); codegen_->AddSlowPath(slow_path); __ testl(out, out); __ j(kEqual, slow_path->GetEntryLabel()); if (cls->MustGenerateClinitCheck()) { GenerateClassInitializationCheck(slow_path, out); } else { __ Bind(slow_path->GetExitLabel()); } } } void LocationsBuilderX86_64::VisitClinitCheck(HClinitCheck* check) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); locations->SetInAt(0, Location::RequiresRegister()); if (check->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorX86_64::VisitClinitCheck(HClinitCheck* check) { // We assume the class to not be null. SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86_64( check->GetLoadClass(), check, check->GetDexPc(), true); codegen_->AddSlowPath(slow_path); GenerateClassInitializationCheck(slow_path, check->GetLocations()->InAt(0).AsRegister<CpuRegister>()); } void LocationsBuilderX86_64::VisitLoadString(HLoadString* load) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kCallOnSlowPath); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86_64::VisitLoadString(HLoadString* load) { SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86_64(load); codegen_->AddSlowPath(slow_path); CpuRegister out = load->GetLocations()->Out().AsRegister<CpuRegister>(); codegen_->LoadCurrentMethod(CpuRegister(out)); __ movl(out, Address(out, ArtMethod::DeclaringClassOffset().Int32Value())); __ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value())); __ movl(out, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex()))); __ testl(out, out); __ j(kEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void LocationsBuilderX86_64::VisitLoadException(HLoadException* load) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86_64::VisitLoadException(HLoadException* load) { Address address = Address::Absolute( Thread::ExceptionOffset<kX86_64WordSize>().Int32Value(), true); __ gs()->movl(load->GetLocations()->Out().AsRegister<CpuRegister>(), address); __ gs()->movl(address, Immediate(0)); } void LocationsBuilderX86_64::VisitThrow(HThrow* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorX86_64::VisitThrow(HThrow* instruction) { __ gs()->call( Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pDeliverException), true)); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } void LocationsBuilderX86_64::VisitInstanceOf(HInstanceOf* instruction) { LocationSummary::CallKind call_kind = instruction->IsClassFinal() ? LocationSummary::kNoCall : LocationSummary::kCallOnSlowPath; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86_64::VisitInstanceOf(HInstanceOf* instruction) { LocationSummary* locations = instruction->GetLocations(); CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); Location cls = locations->InAt(1); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); Label done, zero; SlowPathCodeX86_64* slow_path = nullptr; // Return 0 if `obj` is null. // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, &zero); } // Compare the class of `obj` with `cls`. __ movl(out, Address(obj, class_offset)); if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); } if (instruction->IsClassFinal()) { // Classes must be equal for the instanceof to succeed. __ j(kNotEqual, &zero); __ movl(out, Immediate(1)); __ jmp(&done); } else { // If the classes are not equal, we go into a slow path. DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64( instruction, locations->InAt(1), locations->Out(), instruction->GetDexPc()); codegen_->AddSlowPath(slow_path); __ j(kNotEqual, slow_path->GetEntryLabel()); __ movl(out, Immediate(1)); __ jmp(&done); } if (instruction->MustDoNullCheck() || instruction->IsClassFinal()) { __ Bind(&zero); __ movl(out, Immediate(0)); } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } __ Bind(&done); } void LocationsBuilderX86_64::VisitCheckCast(HCheckCast* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( instruction, LocationSummary::kCallOnSlowPath); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->AddTemp(Location::RequiresRegister()); } void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) { LocationSummary* locations = instruction->GetLocations(); CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); Location cls = locations->InAt(1); CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64( instruction, locations->InAt(1), locations->GetTemp(0), instruction->GetDexPc()); codegen_->AddSlowPath(slow_path); // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, slow_path->GetExitLabel()); } // Compare the class of `obj` with `cls`. __ movl(temp, Address(obj, class_offset)); if (cls.IsRegister()) { __ cmpl(temp, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex())); } // Classes must be equal for the checkcast to succeed. __ j(kNotEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void LocationsBuilderX86_64::VisitMonitorOperation(HMonitorOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorX86_64::VisitMonitorOperation(HMonitorOperation* instruction) { __ gs()->call(Address::Absolute(instruction->IsEnter() ? QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pLockObject) : QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pUnlockObject), true)); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } void LocationsBuilderX86_64::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderX86_64::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderX86_64::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderX86_64::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); DCHECK(instruction->GetResultType() == Primitive::kPrimInt || instruction->GetResultType() == Primitive::kPrimLong); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86_64::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorX86_64::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorX86_64::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorX86_64::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = instruction->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); DCHECK(first.Equals(locations->Out())); if (instruction->GetResultType() == Primitive::kPrimInt) { if (second.IsRegister()) { if (instruction->IsAnd()) { __ andl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else if (instruction->IsOr()) { __ orl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } } else if (second.IsConstant()) { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue()); if (instruction->IsAnd()) { __ andl(first.AsRegister<CpuRegister>(), imm); } else if (instruction->IsOr()) { __ orl(first.AsRegister<CpuRegister>(), imm); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegister<CpuRegister>(), imm); } } else { Address address(CpuRegister(RSP), second.GetStackIndex()); if (instruction->IsAnd()) { __ andl(first.AsRegister<CpuRegister>(), address); } else if (instruction->IsOr()) { __ orl(first.AsRegister<CpuRegister>(), address); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegister<CpuRegister>(), address); } } } else { DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); CpuRegister first_reg = first.AsRegister<CpuRegister>(); bool second_is_constant = false; int64_t value = 0; if (second.IsConstant()) { second_is_constant = true; value = second.GetConstant()->AsLongConstant()->GetValue(); } bool is_int32_value = IsInt<32>(value); if (instruction->IsAnd()) { if (second_is_constant) { if (is_int32_value) { __ andq(first_reg, Immediate(static_cast<int32_t>(value))); } else { __ andq(first_reg, codegen_->LiteralInt64Address(value)); } } else if (second.IsDoubleStackSlot()) { __ andq(first_reg, Address(CpuRegister(RSP), second.GetStackIndex())); } else { __ andq(first_reg, second.AsRegister<CpuRegister>()); } } else if (instruction->IsOr()) { if (second_is_constant) { if (is_int32_value) { __ orq(first_reg, Immediate(static_cast<int32_t>(value))); } else { __ orq(first_reg, codegen_->LiteralInt64Address(value)); } } else if (second.IsDoubleStackSlot()) { __ orq(first_reg, Address(CpuRegister(RSP), second.GetStackIndex())); } else { __ orq(first_reg, second.AsRegister<CpuRegister>()); } } else { DCHECK(instruction->IsXor()); if (second_is_constant) { if (is_int32_value) { __ xorq(first_reg, Immediate(static_cast<int32_t>(value))); } else { __ xorq(first_reg, codegen_->LiteralInt64Address(value)); } } else if (second.IsDoubleStackSlot()) { __ xorq(first_reg, Address(CpuRegister(RSP), second.GetStackIndex())); } else { __ xorq(first_reg, second.AsRegister<CpuRegister>()); } } } } void LocationsBuilderX86_64::VisitBoundType(HBoundType* instruction) { // Nothing to do, this should be removed during prepare for register allocator. UNUSED(instruction); LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorX86_64::VisitBoundType(HBoundType* instruction) { // Nothing to do, this should be removed during prepare for register allocator. UNUSED(instruction); LOG(FATAL) << "Unreachable"; } void CodeGeneratorX86_64::Load64BitValue(CpuRegister dest, int64_t value) { if (value == 0) { __ xorl(dest, dest); } else if (value > 0 && IsInt<32>(value)) { // We can use a 32 bit move, as it will zero-extend and is one byte shorter. __ movl(dest, Immediate(static_cast<int32_t>(value))); } else { __ movq(dest, Immediate(value)); } } void CodeGeneratorX86_64::Finalize(CodeAllocator* allocator) { // Generate the constant area if needed. X86_64Assembler* assembler = GetAssembler(); if (!assembler->IsConstantAreaEmpty()) { // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8 // byte values. If used for vectors at a later time, this will need to be // updated to 16 bytes with the appropriate offset. assembler->Align(4, 0); constant_area_start_ = assembler->CodeSize(); assembler->AddConstantArea(); } // And finish up. CodeGenerator::Finalize(allocator); } /** * Class to handle late fixup of offsets into constant area. */ class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocMisc> { public: RIPFixup(const CodeGeneratorX86_64& codegen, int offset) : codegen_(codegen), offset_into_constant_area_(offset) {} private: void Process(const MemoryRegion& region, int pos) OVERRIDE { // Patch the correct offset for the instruction. We use the address of the // 'next' instruction, which is 'pos' (patch the 4 bytes before). int constant_offset = codegen_.ConstantAreaStart() + offset_into_constant_area_; int relative_position = constant_offset - pos; // Patch in the right value. region.StoreUnaligned<int32_t>(pos - 4, relative_position); } const CodeGeneratorX86_64& codegen_; // Location in constant area that the fixup refers to. int offset_into_constant_area_; }; Address CodeGeneratorX86_64::LiteralDoubleAddress(double v) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v)); return Address::RIP(fixup); } Address CodeGeneratorX86_64::LiteralFloatAddress(float v) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v)); return Address::RIP(fixup); } Address CodeGeneratorX86_64::LiteralInt32Address(int32_t v) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v)); return Address::RIP(fixup); } Address CodeGeneratorX86_64::LiteralInt64Address(int64_t v) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v)); return Address::RIP(fixup); } } // namespace x86_64 } // namespace art