/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_ #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_ #include "arch/instruction_set.h" #include "arch/instruction_set_features.h" #include "base/bit_field.h" #include "driver/compiler_options.h" #include "globals.h" #include "locations.h" #include "memory_region.h" #include "nodes.h" #include "stack_map_stream.h" namespace art { // Binary encoding of 2^32 for type double. static int64_t constexpr k2Pow32EncodingForDouble = INT64_C(0x41F0000000000000); // Binary encoding of 2^31 for type double. static int64_t constexpr k2Pow31EncodingForDouble = INT64_C(0x41E0000000000000); // Maximum value for a primitive integer. static int32_t constexpr kPrimIntMax = 0x7fffffff; // Maximum value for a primitive long. static int64_t constexpr kPrimLongMax = 0x7fffffffffffffff; class Assembler; class CodeGenerator; class DexCompilationUnit; class ParallelMoveResolver; class SrcMapElem; template <class Alloc> class SrcMap; using DefaultSrcMap = SrcMap<std::allocator<SrcMapElem>>; class CodeAllocator { public: CodeAllocator() {} virtual ~CodeAllocator() {} virtual uint8_t* Allocate(size_t size) = 0; private: DISALLOW_COPY_AND_ASSIGN(CodeAllocator); }; struct PcInfo { uint32_t dex_pc; uintptr_t native_pc; }; class SlowPathCode : public ArenaObject<kArenaAllocSlowPaths> { public: SlowPathCode() { for (size_t i = 0; i < kMaximumNumberOfExpectedRegisters; ++i) { saved_core_stack_offsets_[i] = kRegisterNotSaved; saved_fpu_stack_offsets_[i] = kRegisterNotSaved; } } virtual ~SlowPathCode() {} virtual void EmitNativeCode(CodeGenerator* codegen) = 0; void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations); void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations); void RecordPcInfo(CodeGenerator* codegen, HInstruction* instruction, uint32_t dex_pc); bool IsCoreRegisterSaved(int reg) const { return saved_core_stack_offsets_[reg] != kRegisterNotSaved; } bool IsFpuRegisterSaved(int reg) const { return saved_fpu_stack_offsets_[reg] != kRegisterNotSaved; } uint32_t GetStackOffsetOfCoreRegister(int reg) const { return saved_core_stack_offsets_[reg]; } uint32_t GetStackOffsetOfFpuRegister(int reg) const { return saved_fpu_stack_offsets_[reg]; } private: static constexpr size_t kMaximumNumberOfExpectedRegisters = 32; static constexpr uint32_t kRegisterNotSaved = -1; uint32_t saved_core_stack_offsets_[kMaximumNumberOfExpectedRegisters]; uint32_t saved_fpu_stack_offsets_[kMaximumNumberOfExpectedRegisters]; DISALLOW_COPY_AND_ASSIGN(SlowPathCode); }; class InvokeDexCallingConventionVisitor { public: virtual Location GetNextLocation(Primitive::Type type) = 0; protected: InvokeDexCallingConventionVisitor() {} virtual ~InvokeDexCallingConventionVisitor() {} // The current index for core registers. uint32_t gp_index_ = 0u; // The current index for floating-point registers. uint32_t float_index_ = 0u; // The current stack index. uint32_t stack_index_ = 0u; private: DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitor); }; class CodeGenerator { public: // Compiles the graph to executable instructions. Returns whether the compilation // succeeded. void CompileBaseline(CodeAllocator* allocator, bool is_leaf = false); void CompileOptimized(CodeAllocator* allocator); static CodeGenerator* Create(HGraph* graph, InstructionSet instruction_set, const InstructionSetFeatures& isa_features, const CompilerOptions& compiler_options); virtual ~CodeGenerator() {} HGraph* GetGraph() const { return graph_; } HBasicBlock* GetNextBlockToEmit() const; HBasicBlock* FirstNonEmptyBlock(HBasicBlock* block) const; bool GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const; size_t GetStackSlotOfParameter(HParameterValue* parameter) const { // Note that this follows the current calling convention. return GetFrameSize() + InstructionSetPointerSize(GetInstructionSet()) // Art method + parameter->GetIndex() * kVRegSize; } virtual void Initialize() = 0; virtual void Finalize(CodeAllocator* allocator); virtual void GenerateFrameEntry() = 0; virtual void GenerateFrameExit() = 0; virtual void Bind(HBasicBlock* block) = 0; virtual void Move(HInstruction* instruction, Location location, HInstruction* move_for) = 0; virtual Assembler* GetAssembler() = 0; virtual size_t GetWordSize() const = 0; virtual size_t GetFloatingPointSpillSlotSize() const = 0; virtual uintptr_t GetAddressOf(HBasicBlock* block) const = 0; void InitializeCodeGeneration(size_t number_of_spill_slots, size_t maximum_number_of_live_core_registers, size_t maximum_number_of_live_fp_registers, size_t number_of_out_slots, const GrowableArray<HBasicBlock*>& block_order); int32_t GetStackSlot(HLocal* local) const; Location GetTemporaryLocation(HTemporary* temp) const; uint32_t GetFrameSize() const { return frame_size_; } void SetFrameSize(uint32_t size) { frame_size_ = size; } uint32_t GetCoreSpillMask() const { return core_spill_mask_; } uint32_t GetFpuSpillMask() const { return fpu_spill_mask_; } size_t GetNumberOfCoreRegisters() const { return number_of_core_registers_; } size_t GetNumberOfFloatingPointRegisters() const { return number_of_fpu_registers_; } virtual void SetupBlockedRegisters(bool is_baseline) const = 0; virtual void ComputeSpillMask() { core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; } static uint32_t ComputeRegisterMask(const int* registers, size_t length) { uint32_t mask = 0; for (size_t i = 0, e = length; i < e; ++i) { mask |= (1 << registers[i]); } return mask; } virtual void DumpCoreRegister(std::ostream& stream, int reg) const = 0; virtual void DumpFloatingPointRegister(std::ostream& stream, int reg) const = 0; virtual InstructionSet GetInstructionSet() const = 0; const CompilerOptions& GetCompilerOptions() const { return compiler_options_; } // Saves the register in the stack. Returns the size taken on stack. virtual size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) = 0; // Restores the register from the stack. Returns the size taken on stack. virtual size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) = 0; virtual size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0; virtual size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0; virtual bool NeedsTwoRegisters(Primitive::Type type) const = 0; // Returns whether we should split long moves in parallel moves. virtual bool ShouldSplitLongMoves() const { return false; } bool IsCoreCalleeSaveRegister(int reg) const { return (core_callee_save_mask_ & (1 << reg)) != 0; } bool IsFloatingPointCalleeSaveRegister(int reg) const { return (fpu_callee_save_mask_ & (1 << reg)) != 0; } void RecordPcInfo(HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path = nullptr); bool CanMoveNullCheckToUser(HNullCheck* null_check); void MaybeRecordImplicitNullCheck(HInstruction* instruction); void AddSlowPath(SlowPathCode* slow_path) { slow_paths_.Add(slow_path); } void BuildSourceMap(DefaultSrcMap* src_map) const; void BuildMappingTable(std::vector<uint8_t>* vector) const; void BuildVMapTable(std::vector<uint8_t>* vector) const; void BuildNativeGCMap( std::vector<uint8_t>* vector, const DexCompilationUnit& dex_compilation_unit) const; void BuildStackMaps(std::vector<uint8_t>* vector); bool IsBaseline() const { return is_baseline_; } bool IsLeafMethod() const { return is_leaf_; } void MarkNotLeaf() { is_leaf_ = false; requires_current_method_ = true; } void SetRequiresCurrentMethod() { requires_current_method_ = true; } bool RequiresCurrentMethod() const { return requires_current_method_; } // Clears the spill slots taken by loop phis in the `LocationSummary` of the // suspend check. This is called when the code generator generates code // for the suspend check at the back edge (instead of where the suspend check // is, which is the loop entry). At this point, the spill slots for the phis // have not been written to. void ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const; bool* GetBlockedCoreRegisters() const { return blocked_core_registers_; } bool* GetBlockedFloatingPointRegisters() const { return blocked_fpu_registers_; } // Helper that returns the pointer offset of an index in an object array. // Note: this method assumes we always have the same pointer size, regardless // of the architecture. static size_t GetCacheOffset(uint32_t index); // Pointer variant for ArtMethod and ArtField arrays. size_t GetCachePointerOffset(uint32_t index); void EmitParallelMoves(Location from1, Location to1, Primitive::Type type1, Location from2, Location to2, Primitive::Type type2); static bool StoreNeedsWriteBarrier(Primitive::Type type, HInstruction* value) { // Check that null value is not represented as an integer constant. DCHECK(type != Primitive::kPrimNot || !value->IsIntConstant()); return type == Primitive::kPrimNot && !value->IsNullConstant(); } void AddAllocatedRegister(Location location) { allocated_registers_.Add(location); } void AllocateLocations(HInstruction* instruction); // Tells whether the stack frame of the compiled method is // considered "empty", that is either actually having a size of zero, // or just containing the saved return address register. bool HasEmptyFrame() const { return GetFrameSize() == (CallPushesPC() ? GetWordSize() : 0); } static int32_t GetInt32ValueOf(HConstant* constant) { if (constant->IsIntConstant()) { return constant->AsIntConstant()->GetValue(); } else if (constant->IsNullConstant()) { return 0; } else { DCHECK(constant->IsFloatConstant()); return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue()); } } static int64_t GetInt64ValueOf(HConstant* constant) { if (constant->IsIntConstant()) { return constant->AsIntConstant()->GetValue(); } else if (constant->IsNullConstant()) { return 0; } else if (constant->IsFloatConstant()) { return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue()); } else if (constant->IsLongConstant()) { return constant->AsLongConstant()->GetValue(); } else { DCHECK(constant->IsDoubleConstant()); return bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue()); } } size_t GetFirstRegisterSlotInSlowPath() const { return first_register_slot_in_slow_path_; } uint32_t FrameEntrySpillSize() const { return GetFpuSpillSize() + GetCoreSpillSize(); } virtual ParallelMoveResolver* GetMoveResolver() = 0; protected: CodeGenerator(HGraph* graph, size_t number_of_core_registers, size_t number_of_fpu_registers, size_t number_of_register_pairs, uint32_t core_callee_save_mask, uint32_t fpu_callee_save_mask, const CompilerOptions& compiler_options) : frame_size_(0), core_spill_mask_(0), fpu_spill_mask_(0), first_register_slot_in_slow_path_(0), blocked_core_registers_(graph->GetArena()->AllocArray<bool>(number_of_core_registers)), blocked_fpu_registers_(graph->GetArena()->AllocArray<bool>(number_of_fpu_registers)), blocked_register_pairs_(graph->GetArena()->AllocArray<bool>(number_of_register_pairs)), number_of_core_registers_(number_of_core_registers), number_of_fpu_registers_(number_of_fpu_registers), number_of_register_pairs_(number_of_register_pairs), core_callee_save_mask_(core_callee_save_mask), fpu_callee_save_mask_(fpu_callee_save_mask), is_baseline_(false), graph_(graph), compiler_options_(compiler_options), pc_infos_(graph->GetArena(), 32), slow_paths_(graph->GetArena(), 8), block_order_(nullptr), current_block_index_(0), is_leaf_(true), requires_current_method_(false), stack_map_stream_(graph->GetArena()) {} // Register allocation logic. void AllocateRegistersLocally(HInstruction* instruction) const; // Backend specific implementation for allocating a register. virtual Location AllocateFreeRegister(Primitive::Type type) const = 0; static size_t FindFreeEntry(bool* array, size_t length); static size_t FindTwoFreeConsecutiveAlignedEntries(bool* array, size_t length); virtual Location GetStackLocation(HLoadLocal* load) const = 0; virtual HGraphVisitor* GetLocationBuilder() = 0; virtual HGraphVisitor* GetInstructionVisitor() = 0; // Returns the location of the first spilled entry for floating point registers, // relative to the stack pointer. uint32_t GetFpuSpillStart() const { return GetFrameSize() - FrameEntrySpillSize(); } uint32_t GetFpuSpillSize() const { return POPCOUNT(fpu_spill_mask_) * GetFloatingPointSpillSlotSize(); } uint32_t GetCoreSpillSize() const { return POPCOUNT(core_spill_mask_) * GetWordSize(); } bool HasAllocatedCalleeSaveRegisters() const { // We check the core registers against 1 because it always comprises the return PC. return (POPCOUNT(allocated_registers_.GetCoreRegisters() & core_callee_save_mask_) != 1) || (POPCOUNT(allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_) != 0); } bool CallPushesPC() const { InstructionSet instruction_set = GetInstructionSet(); return instruction_set == kX86 || instruction_set == kX86_64; } // Arm64 has its own type for a label, so we need to templatize this method // to share the logic. template <typename T> T* CommonGetLabelOf(T* raw_pointer_to_labels_array, HBasicBlock* block) const { block = FirstNonEmptyBlock(block); return raw_pointer_to_labels_array + block->GetBlockId(); } // Frame size required for this method. uint32_t frame_size_; uint32_t core_spill_mask_; uint32_t fpu_spill_mask_; uint32_t first_register_slot_in_slow_path_; // Registers that were allocated during linear scan. RegisterSet allocated_registers_; // Arrays used when doing register allocation to know which // registers we can allocate. `SetupBlockedRegisters` updates the // arrays. bool* const blocked_core_registers_; bool* const blocked_fpu_registers_; bool* const blocked_register_pairs_; size_t number_of_core_registers_; size_t number_of_fpu_registers_; size_t number_of_register_pairs_; const uint32_t core_callee_save_mask_; const uint32_t fpu_callee_save_mask_; // Whether we are using baseline. bool is_baseline_; private: void InitLocationsBaseline(HInstruction* instruction); size_t GetStackOffsetOfSavedRegister(size_t index); void CompileInternal(CodeAllocator* allocator, bool is_baseline); void BlockIfInRegister(Location location, bool is_out = false) const; HGraph* const graph_; const CompilerOptions& compiler_options_; GrowableArray<PcInfo> pc_infos_; GrowableArray<SlowPathCode*> slow_paths_; // The order to use for code generation. const GrowableArray<HBasicBlock*>* block_order_; // The current block index in `block_order_` of the block // we are generating code for. size_t current_block_index_; // Whether the method is a leaf method. bool is_leaf_; // Whether an instruction in the graph accesses the current method. bool requires_current_method_; StackMapStream stack_map_stream_; friend class OptimizingCFITest; DISALLOW_COPY_AND_ASSIGN(CodeGenerator); }; template <typename C, typename F> class CallingConvention { public: CallingConvention(const C* registers, size_t number_of_registers, const F* fpu_registers, size_t number_of_fpu_registers, size_t pointer_size) : registers_(registers), number_of_registers_(number_of_registers), fpu_registers_(fpu_registers), number_of_fpu_registers_(number_of_fpu_registers), pointer_size_(pointer_size) {} size_t GetNumberOfRegisters() const { return number_of_registers_; } size_t GetNumberOfFpuRegisters() const { return number_of_fpu_registers_; } C GetRegisterAt(size_t index) const { DCHECK_LT(index, number_of_registers_); return registers_[index]; } F GetFpuRegisterAt(size_t index) const { DCHECK_LT(index, number_of_fpu_registers_); return fpu_registers_[index]; } size_t GetStackOffsetOf(size_t index) const { // We still reserve the space for parameters passed by registers. // Add space for the method pointer. return pointer_size_ + index * kVRegSize; } private: const C* registers_; const size_t number_of_registers_; const F* fpu_registers_; const size_t number_of_fpu_registers_; const size_t pointer_size_; DISALLOW_COPY_AND_ASSIGN(CallingConvention); }; } // namespace art #endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_