/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator.h" #include "code_generator_arm.h" #include "code_generator_arm64.h" #include "code_generator_x86.h" #include "code_generator_x86_64.h" #include "code_generator_mips64.h" #include "compiled_method.h" #include "dex/verified_method.h" #include "driver/dex_compilation_unit.h" #include "gc_map_builder.h" #include "leb128.h" #include "mapping_table.h" #include "mirror/array-inl.h" #include "mirror/object_array-inl.h" #include "mirror/object_reference.h" #include "ssa_liveness_analysis.h" #include "utils/assembler.h" #include "verifier/dex_gc_map.h" #include "vmap_table.h" namespace art { // Return whether a location is consistent with a type. static bool CheckType(Primitive::Type type, Location location) { if (location.IsFpuRegister() || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) { return (type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble); } else if (location.IsRegister() || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) { return Primitive::IsIntegralType(type) || (type == Primitive::kPrimNot); } else if (location.IsRegisterPair()) { return type == Primitive::kPrimLong; } else if (location.IsFpuRegisterPair()) { return type == Primitive::kPrimDouble; } else if (location.IsStackSlot()) { return (Primitive::IsIntegralType(type) && type != Primitive::kPrimLong) || (type == Primitive::kPrimFloat) || (type == Primitive::kPrimNot); } else if (location.IsDoubleStackSlot()) { return (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); } else if (location.IsConstant()) { if (location.GetConstant()->IsIntConstant()) { return Primitive::IsIntegralType(type) && (type != Primitive::kPrimLong); } else if (location.GetConstant()->IsNullConstant()) { return type == Primitive::kPrimNot; } else if (location.GetConstant()->IsLongConstant()) { return type == Primitive::kPrimLong; } else if (location.GetConstant()->IsFloatConstant()) { return type == Primitive::kPrimFloat; } else { return location.GetConstant()->IsDoubleConstant() && (type == Primitive::kPrimDouble); } } else { return location.IsInvalid() || (location.GetPolicy() == Location::kAny); } } // Check that a location summary is consistent with an instruction. static bool CheckTypeConsistency(HInstruction* instruction) { LocationSummary* locations = instruction->GetLocations(); if (locations == nullptr) { return true; } if (locations->Out().IsUnallocated() && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) { DCHECK(CheckType(instruction->GetType(), locations->InAt(0))) << instruction->GetType() << " " << locations->InAt(0); } else { DCHECK(CheckType(instruction->GetType(), locations->Out())) << instruction->GetType() << " " << locations->Out(); } for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { DCHECK(CheckType(instruction->InputAt(i)->GetType(), locations->InAt(i))) << instruction->InputAt(i)->GetType() << " " << locations->InAt(i); } HEnvironment* environment = instruction->GetEnvironment(); for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) { if (environment->GetInstructionAt(i) != nullptr) { Primitive::Type type = environment->GetInstructionAt(i)->GetType(); DCHECK(CheckType(type, environment->GetLocationAt(i))) << type << " " << environment->GetLocationAt(i); } else { DCHECK(environment->GetLocationAt(i).IsInvalid()) << environment->GetLocationAt(i); } } return true; } size_t CodeGenerator::GetCacheOffset(uint32_t index) { return mirror::ObjectArray<mirror::Object>::OffsetOfElement(index).SizeValue(); } size_t CodeGenerator::GetCachePointerOffset(uint32_t index) { auto pointer_size = InstructionSetPointerSize(GetInstructionSet()); return mirror::Array::DataOffset(pointer_size).Uint32Value() + pointer_size * index; } void CodeGenerator::CompileBaseline(CodeAllocator* allocator, bool is_leaf) { Initialize(); if (!is_leaf) { MarkNotLeaf(); } const bool is_64_bit = Is64BitInstructionSet(GetInstructionSet()); InitializeCodeGeneration(GetGraph()->GetNumberOfLocalVRegs() + GetGraph()->GetTemporariesVRegSlots() + 1 /* filler */, 0, /* the baseline compiler does not have live registers at slow path */ 0, /* the baseline compiler does not have live registers at slow path */ GetGraph()->GetMaximumNumberOfOutVRegs() + (is_64_bit ? 2 : 1) /* current method */, GetGraph()->GetBlocks()); CompileInternal(allocator, /* is_baseline */ true); } bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const { DCHECK_EQ(block_order_->Get(current_block_index_), current); return GetNextBlockToEmit() == FirstNonEmptyBlock(next); } HBasicBlock* CodeGenerator::GetNextBlockToEmit() const { for (size_t i = current_block_index_ + 1; i < block_order_->Size(); ++i) { HBasicBlock* block = block_order_->Get(i); if (!block->IsSingleGoto()) { return block; } } return nullptr; } HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const { while (block->IsSingleGoto()) { block = block->GetSuccessors().Get(0); } return block; } void CodeGenerator::CompileInternal(CodeAllocator* allocator, bool is_baseline) { is_baseline_ = is_baseline; HGraphVisitor* instruction_visitor = GetInstructionVisitor(); DCHECK_EQ(current_block_index_, 0u); GenerateFrameEntry(); DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_)); for (size_t e = block_order_->Size(); current_block_index_ < e; ++current_block_index_) { HBasicBlock* block = block_order_->Get(current_block_index_); // Don't generate code for an empty block. Its predecessors will branch to its successor // directly. Also, the label of that block will not be emitted, so this helps catch // errors where we reference that label. if (block->IsSingleGoto()) continue; Bind(block); for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); if (is_baseline) { InitLocationsBaseline(current); } DCHECK(CheckTypeConsistency(current)); current->Accept(instruction_visitor); } } // Generate the slow paths. for (size_t i = 0, e = slow_paths_.Size(); i < e; ++i) { slow_paths_.Get(i)->EmitNativeCode(this); } // Finalize instructions in assember; Finalize(allocator); } void CodeGenerator::CompileOptimized(CodeAllocator* allocator) { // The register allocator already called `InitializeCodeGeneration`, // where the frame size has been computed. DCHECK(block_order_ != nullptr); Initialize(); CompileInternal(allocator, /* is_baseline */ false); } void CodeGenerator::Finalize(CodeAllocator* allocator) { size_t code_size = GetAssembler()->CodeSize(); uint8_t* buffer = allocator->Allocate(code_size); MemoryRegion code(buffer, code_size); GetAssembler()->FinalizeInstructions(code); } size_t CodeGenerator::FindFreeEntry(bool* array, size_t length) { for (size_t i = 0; i < length; ++i) { if (!array[i]) { array[i] = true; return i; } } LOG(FATAL) << "Could not find a register in baseline register allocator"; UNREACHABLE(); } size_t CodeGenerator::FindTwoFreeConsecutiveAlignedEntries(bool* array, size_t length) { for (size_t i = 0; i < length - 1; i += 2) { if (!array[i] && !array[i + 1]) { array[i] = true; array[i + 1] = true; return i; } } LOG(FATAL) << "Could not find a register in baseline register allocator"; UNREACHABLE(); } void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots, size_t maximum_number_of_live_core_registers, size_t maximum_number_of_live_fp_registers, size_t number_of_out_slots, const GrowableArray<HBasicBlock*>& block_order) { block_order_ = &block_order; DCHECK(block_order_->Get(0) == GetGraph()->GetEntryBlock()); ComputeSpillMask(); first_register_slot_in_slow_path_ = (number_of_out_slots + number_of_spill_slots) * kVRegSize; if (number_of_spill_slots == 0 && !HasAllocatedCalleeSaveRegisters() && IsLeafMethod() && !RequiresCurrentMethod()) { DCHECK_EQ(maximum_number_of_live_core_registers, 0u); DCHECK_EQ(maximum_number_of_live_fp_registers, 0u); SetFrameSize(CallPushesPC() ? GetWordSize() : 0); } else { SetFrameSize(RoundUp( number_of_spill_slots * kVRegSize + number_of_out_slots * kVRegSize + maximum_number_of_live_core_registers * GetWordSize() + maximum_number_of_live_fp_registers * GetFloatingPointSpillSlotSize() + FrameEntrySpillSize(), kStackAlignment)); } } Location CodeGenerator::GetTemporaryLocation(HTemporary* temp) const { uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); // The type of the previous instruction tells us if we need a single or double stack slot. Primitive::Type type = temp->GetType(); int32_t temp_size = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble) ? 2 : 1; // Use the temporary region (right below the dex registers). int32_t slot = GetFrameSize() - FrameEntrySpillSize() - kVRegSize // filler - (number_of_locals * kVRegSize) - ((temp_size + temp->GetIndex()) * kVRegSize); return temp_size == 2 ? Location::DoubleStackSlot(slot) : Location::StackSlot(slot); } int32_t CodeGenerator::GetStackSlot(HLocal* local) const { uint16_t reg_number = local->GetRegNumber(); uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); if (reg_number >= number_of_locals) { // Local is a parameter of the method. It is stored in the caller's frame. // TODO: Share this logic with StackVisitor::GetVRegOffsetFromQuickCode. return GetFrameSize() + InstructionSetPointerSize(GetInstructionSet()) // ART method + (reg_number - number_of_locals) * kVRegSize; } else { // Local is a temporary in this method. It is stored in this method's frame. return GetFrameSize() - FrameEntrySpillSize() - kVRegSize // filler. - (number_of_locals * kVRegSize) + (reg_number * kVRegSize); } } void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const { // The DCHECKS below check that a register is not specified twice in // the summary. The out location can overlap with an input, so we need // to special case it. if (location.IsRegister()) { DCHECK(is_out || !blocked_core_registers_[location.reg()]); blocked_core_registers_[location.reg()] = true; } else if (location.IsFpuRegister()) { DCHECK(is_out || !blocked_fpu_registers_[location.reg()]); blocked_fpu_registers_[location.reg()] = true; } else if (location.IsFpuRegisterPair()) { DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]); blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true; DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]); blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true; } else if (location.IsRegisterPair()) { DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]); blocked_core_registers_[location.AsRegisterPairLow<int>()] = true; DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]); blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true; } } void CodeGenerator::AllocateRegistersLocally(HInstruction* instruction) const { LocationSummary* locations = instruction->GetLocations(); if (locations == nullptr) return; for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) { blocked_core_registers_[i] = false; } for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) { blocked_fpu_registers_[i] = false; } for (size_t i = 0, e = number_of_register_pairs_; i < e; ++i) { blocked_register_pairs_[i] = false; } // Mark all fixed input, temp and output registers as used. for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { BlockIfInRegister(locations->InAt(i)); } for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { Location loc = locations->GetTemp(i); BlockIfInRegister(loc); } Location result_location = locations->Out(); if (locations->OutputCanOverlapWithInputs()) { BlockIfInRegister(result_location, /* is_out */ true); } SetupBlockedRegisters(/* is_baseline */ true); // Allocate all unallocated input locations. for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { Location loc = locations->InAt(i); HInstruction* input = instruction->InputAt(i); if (loc.IsUnallocated()) { if ((loc.GetPolicy() == Location::kRequiresRegister) || (loc.GetPolicy() == Location::kRequiresFpuRegister)) { loc = AllocateFreeRegister(input->GetType()); } else { DCHECK_EQ(loc.GetPolicy(), Location::kAny); HLoadLocal* load = input->AsLoadLocal(); if (load != nullptr) { loc = GetStackLocation(load); } else { loc = AllocateFreeRegister(input->GetType()); } } locations->SetInAt(i, loc); } } // Allocate all unallocated temp locations. for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { Location loc = locations->GetTemp(i); if (loc.IsUnallocated()) { switch (loc.GetPolicy()) { case Location::kRequiresRegister: // Allocate a core register (large enough to fit a 32-bit integer). loc = AllocateFreeRegister(Primitive::kPrimInt); break; case Location::kRequiresFpuRegister: // Allocate a core register (large enough to fit a 64-bit double). loc = AllocateFreeRegister(Primitive::kPrimDouble); break; default: LOG(FATAL) << "Unexpected policy for temporary location " << loc.GetPolicy(); } locations->SetTempAt(i, loc); } } if (result_location.IsUnallocated()) { switch (result_location.GetPolicy()) { case Location::kAny: case Location::kRequiresRegister: case Location::kRequiresFpuRegister: result_location = AllocateFreeRegister(instruction->GetType()); break; case Location::kSameAsFirstInput: result_location = locations->InAt(0); break; } locations->UpdateOut(result_location); } } void CodeGenerator::InitLocationsBaseline(HInstruction* instruction) { AllocateLocations(instruction); if (instruction->GetLocations() == nullptr) { if (instruction->IsTemporary()) { HInstruction* previous = instruction->GetPrevious(); Location temp_location = GetTemporaryLocation(instruction->AsTemporary()); Move(previous, temp_location, instruction); } return; } AllocateRegistersLocally(instruction); for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { Location location = instruction->GetLocations()->InAt(i); HInstruction* input = instruction->InputAt(i); if (location.IsValid()) { // Move the input to the desired location. if (input->GetNext()->IsTemporary()) { // If the input was stored in a temporary, use that temporary to // perform the move. Move(input->GetNext(), location, instruction); } else { Move(input, location, instruction); } } } } void CodeGenerator::AllocateLocations(HInstruction* instruction) { instruction->Accept(GetLocationBuilder()); DCHECK(CheckTypeConsistency(instruction)); LocationSummary* locations = instruction->GetLocations(); if (!instruction->IsSuspendCheckEntry()) { if (locations != nullptr && locations->CanCall()) { MarkNotLeaf(); } if (instruction->NeedsCurrentMethod()) { SetRequiresCurrentMethod(); } } } CodeGenerator* CodeGenerator::Create(HGraph* graph, InstructionSet instruction_set, const InstructionSetFeatures& isa_features, const CompilerOptions& compiler_options) { switch (instruction_set) { case kArm: case kThumb2: { return new arm::CodeGeneratorARM(graph, *isa_features.AsArmInstructionSetFeatures(), compiler_options); } case kArm64: { return new arm64::CodeGeneratorARM64(graph, *isa_features.AsArm64InstructionSetFeatures(), compiler_options); } case kMips: return nullptr; case kMips64: { return new mips64::CodeGeneratorMIPS64(graph, *isa_features.AsMips64InstructionSetFeatures(), compiler_options); } case kX86: { return new x86::CodeGeneratorX86(graph, *isa_features.AsX86InstructionSetFeatures(), compiler_options); } case kX86_64: { return new x86_64::CodeGeneratorX86_64(graph, *isa_features.AsX86_64InstructionSetFeatures(), compiler_options); } default: return nullptr; } } void CodeGenerator::BuildNativeGCMap( std::vector<uint8_t>* data, const DexCompilationUnit& dex_compilation_unit) const { const std::vector<uint8_t>& gc_map_raw = dex_compilation_unit.GetVerifiedMethod()->GetDexGcMap(); verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]); uint32_t max_native_offset = 0; for (size_t i = 0; i < pc_infos_.Size(); i++) { uint32_t native_offset = pc_infos_.Get(i).native_pc; if (native_offset > max_native_offset) { max_native_offset = native_offset; } } GcMapBuilder builder(data, pc_infos_.Size(), max_native_offset, dex_gc_map.RegWidth()); for (size_t i = 0; i < pc_infos_.Size(); i++) { struct PcInfo pc_info = pc_infos_.Get(i); uint32_t native_offset = pc_info.native_pc; uint32_t dex_pc = pc_info.dex_pc; const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc; builder.AddEntry(native_offset, references); } } void CodeGenerator::BuildSourceMap(DefaultSrcMap* src_map) const { for (size_t i = 0; i < pc_infos_.Size(); i++) { struct PcInfo pc_info = pc_infos_.Get(i); uint32_t pc2dex_offset = pc_info.native_pc; int32_t pc2dex_dalvik_offset = pc_info.dex_pc; src_map->push_back(SrcMapElem({pc2dex_offset, pc2dex_dalvik_offset})); } } void CodeGenerator::BuildMappingTable(std::vector<uint8_t>* data) const { uint32_t pc2dex_data_size = 0u; uint32_t pc2dex_entries = pc_infos_.Size(); uint32_t pc2dex_offset = 0u; int32_t pc2dex_dalvik_offset = 0; uint32_t dex2pc_data_size = 0u; uint32_t dex2pc_entries = 0u; uint32_t dex2pc_offset = 0u; int32_t dex2pc_dalvik_offset = 0; for (size_t i = 0; i < pc2dex_entries; i++) { struct PcInfo pc_info = pc_infos_.Get(i); pc2dex_data_size += UnsignedLeb128Size(pc_info.native_pc - pc2dex_offset); pc2dex_data_size += SignedLeb128Size(pc_info.dex_pc - pc2dex_dalvik_offset); pc2dex_offset = pc_info.native_pc; pc2dex_dalvik_offset = pc_info.dex_pc; } // Walk over the blocks and find which ones correspond to catch block entries. for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { HBasicBlock* block = graph_->GetBlocks().Get(i); if (block->IsCatchBlock()) { intptr_t native_pc = GetAddressOf(block); ++dex2pc_entries; dex2pc_data_size += UnsignedLeb128Size(native_pc - dex2pc_offset); dex2pc_data_size += SignedLeb128Size(block->GetDexPc() - dex2pc_dalvik_offset); dex2pc_offset = native_pc; dex2pc_dalvik_offset = block->GetDexPc(); } } uint32_t total_entries = pc2dex_entries + dex2pc_entries; uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries); uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size; data->resize(data_size); uint8_t* data_ptr = &(*data)[0]; uint8_t* write_pos = data_ptr; write_pos = EncodeUnsignedLeb128(write_pos, total_entries); write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries); DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size); uint8_t* write_pos2 = write_pos + pc2dex_data_size; pc2dex_offset = 0u; pc2dex_dalvik_offset = 0u; dex2pc_offset = 0u; dex2pc_dalvik_offset = 0u; for (size_t i = 0; i < pc2dex_entries; i++) { struct PcInfo pc_info = pc_infos_.Get(i); DCHECK(pc2dex_offset <= pc_info.native_pc); write_pos = EncodeUnsignedLeb128(write_pos, pc_info.native_pc - pc2dex_offset); write_pos = EncodeSignedLeb128(write_pos, pc_info.dex_pc - pc2dex_dalvik_offset); pc2dex_offset = pc_info.native_pc; pc2dex_dalvik_offset = pc_info.dex_pc; } for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { HBasicBlock* block = graph_->GetBlocks().Get(i); if (block->IsCatchBlock()) { intptr_t native_pc = GetAddressOf(block); write_pos2 = EncodeUnsignedLeb128(write_pos2, native_pc - dex2pc_offset); write_pos2 = EncodeSignedLeb128(write_pos2, block->GetDexPc() - dex2pc_dalvik_offset); dex2pc_offset = native_pc; dex2pc_dalvik_offset = block->GetDexPc(); } } DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size + pc2dex_data_size); DCHECK_EQ(static_cast<size_t>(write_pos2 - data_ptr), data_size); if (kIsDebugBuild) { // Verify the encoded table holds the expected data. MappingTable table(data_ptr); CHECK_EQ(table.TotalSize(), total_entries); CHECK_EQ(table.PcToDexSize(), pc2dex_entries); auto it = table.PcToDexBegin(); auto it2 = table.DexToPcBegin(); for (size_t i = 0; i < pc2dex_entries; i++) { struct PcInfo pc_info = pc_infos_.Get(i); CHECK_EQ(pc_info.native_pc, it.NativePcOffset()); CHECK_EQ(pc_info.dex_pc, it.DexPc()); ++it; } for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { HBasicBlock* block = graph_->GetBlocks().Get(i); if (block->IsCatchBlock()) { CHECK_EQ(GetAddressOf(block), it2.NativePcOffset()); CHECK_EQ(block->GetDexPc(), it2.DexPc()); ++it2; } } CHECK(it == table.PcToDexEnd()); CHECK(it2 == table.DexToPcEnd()); } } void CodeGenerator::BuildVMapTable(std::vector<uint8_t>* data) const { Leb128EncodingVector vmap_encoder; // We currently don't use callee-saved registers. size_t size = 0 + 1 /* marker */ + 0; vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128). vmap_encoder.PushBackUnsigned(size); vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker); *data = vmap_encoder.GetData(); } void CodeGenerator::BuildStackMaps(std::vector<uint8_t>* data) { uint32_t size = stack_map_stream_.PrepareForFillIn(); data->resize(size); MemoryRegion region(data->data(), size); stack_map_stream_.FillIn(region); } void CodeGenerator::RecordPcInfo(HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) { if (instruction != nullptr) { // The code generated for some type conversions and comparisons // may call the runtime, thus normally requiring a subsequent // call to this method. However, the method verifier does not // produce PC information for certain instructions, which are // considered "atomic" (they cannot join a GC). // Therefore we do not currently record PC information for such // instructions. As this may change later, we added this special // case so that code generators may nevertheless call // CodeGenerator::RecordPcInfo without triggering an error in // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x") // thereafter. if (instruction->IsTypeConversion() || instruction->IsCompare()) { return; } if (instruction->IsRem()) { Primitive::Type type = instruction->AsRem()->GetResultType(); if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) { return; } } } // Collect PC infos for the mapping table. struct PcInfo pc_info; pc_info.dex_pc = dex_pc; pc_info.native_pc = GetAssembler()->CodeSize(); pc_infos_.Add(pc_info); uint32_t inlining_depth = 0; if (instruction == nullptr) { // For stack overflow checks. stack_map_stream_.BeginStackMapEntry(dex_pc, pc_info.native_pc, 0, 0, 0, inlining_depth); stack_map_stream_.EndStackMapEntry(); return; } LocationSummary* locations = instruction->GetLocations(); HEnvironment* environment = instruction->GetEnvironment(); size_t environment_size = instruction->EnvironmentSize(); uint32_t register_mask = locations->GetRegisterMask(); if (locations->OnlyCallsOnSlowPath()) { // In case of slow path, we currently set the location of caller-save registers // to register (instead of their stack location when pushed before the slow-path // call). Therefore register_mask contains both callee-save and caller-save // registers that hold objects. We must remove the caller-save from the mask, since // they will be overwritten by the callee. register_mask &= core_callee_save_mask_; } // The register mask must be a subset of callee-save registers. DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask); stack_map_stream_.BeginStackMapEntry(dex_pc, pc_info.native_pc, register_mask, locations->GetStackMask(), environment_size, inlining_depth); if (environment != nullptr) { // TODO: Handle parent environment. DCHECK(environment->GetParent() == nullptr); DCHECK_EQ(environment->GetDexPc(), dex_pc); } // Walk over the environment, and record the location of dex registers. for (size_t i = 0; i < environment_size; ++i) { HInstruction* current = environment->GetInstructionAt(i); if (current == nullptr) { stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kNone, 0); continue; } Location location = environment->GetLocationAt(i); switch (location.GetKind()) { case Location::kConstant: { DCHECK_EQ(current, location.GetConstant()); if (current->IsLongConstant()) { int64_t value = current->AsLongConstant()->GetValue(); stack_map_stream_.AddDexRegisterEntry( i, DexRegisterLocation::Kind::kConstant, Low32Bits(value)); stack_map_stream_.AddDexRegisterEntry( ++i, DexRegisterLocation::Kind::kConstant, High32Bits(value)); DCHECK_LT(i, environment_size); } else if (current->IsDoubleConstant()) { int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue()); stack_map_stream_.AddDexRegisterEntry( i, DexRegisterLocation::Kind::kConstant, Low32Bits(value)); stack_map_stream_.AddDexRegisterEntry( ++i, DexRegisterLocation::Kind::kConstant, High32Bits(value)); DCHECK_LT(i, environment_size); } else if (current->IsIntConstant()) { int32_t value = current->AsIntConstant()->GetValue(); stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kConstant, value); } else if (current->IsNullConstant()) { stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kConstant, 0); } else { DCHECK(current->IsFloatConstant()) << current->DebugName(); int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue()); stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kConstant, value); } break; } case Location::kStackSlot: { stack_map_stream_.AddDexRegisterEntry( i, DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); break; } case Location::kDoubleStackSlot: { stack_map_stream_.AddDexRegisterEntry( i, DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); stack_map_stream_.AddDexRegisterEntry( ++i, DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize)); DCHECK_LT(i, environment_size); break; } case Location::kRegister : { int id = location.reg(); if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) { uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id); stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kInStack, offset); if (current->GetType() == Primitive::kPrimLong) { stack_map_stream_.AddDexRegisterEntry( ++i, DexRegisterLocation::Kind::kInStack, offset + kVRegSize); DCHECK_LT(i, environment_size); } } else { stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kInRegister, id); if (current->GetType() == Primitive::kPrimLong) { stack_map_stream_.AddDexRegisterEntry(++i, DexRegisterLocation::Kind::kInRegister, id); DCHECK_LT(i, environment_size); } } break; } case Location::kFpuRegister : { int id = location.reg(); if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) { uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id); stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kInStack, offset); if (current->GetType() == Primitive::kPrimDouble) { stack_map_stream_.AddDexRegisterEntry( ++i, DexRegisterLocation::Kind::kInStack, offset + kVRegSize); DCHECK_LT(i, environment_size); } } else { stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kInFpuRegister, id); if (current->GetType() == Primitive::kPrimDouble) { stack_map_stream_.AddDexRegisterEntry( ++i, DexRegisterLocation::Kind::kInFpuRegister, id); DCHECK_LT(i, environment_size); } } break; } case Location::kFpuRegisterPair : { int low = location.low(); int high = location.high(); if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) { uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low); stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kInStack, offset); } else { stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kInFpuRegister, low); } if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) { uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high); stack_map_stream_.AddDexRegisterEntry(++i, DexRegisterLocation::Kind::kInStack, offset); } else { stack_map_stream_.AddDexRegisterEntry( ++i, DexRegisterLocation::Kind::kInFpuRegister, high); } DCHECK_LT(i, environment_size); break; } case Location::kRegisterPair : { int low = location.low(); int high = location.high(); if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) { uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low); stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kInStack, offset); } else { stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kInRegister, low); } if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) { uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high); stack_map_stream_.AddDexRegisterEntry(++i, DexRegisterLocation::Kind::kInStack, offset); } else { stack_map_stream_.AddDexRegisterEntry( ++i, DexRegisterLocation::Kind::kInRegister, high); } DCHECK_LT(i, environment_size); break; } case Location::kInvalid: { stack_map_stream_.AddDexRegisterEntry(i, DexRegisterLocation::Kind::kNone, 0); break; } default: LOG(FATAL) << "Unexpected kind " << location.GetKind(); } } stack_map_stream_.EndStackMapEntry(); } bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) { HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves(); return (first_next_not_move != nullptr) && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0)); } void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) { // If we are from a static path don't record the pc as we can't throw NPE. // NB: having the checks here makes the code much less verbose in the arch // specific code generators. if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) { return; } if (!compiler_options_.GetImplicitNullChecks()) { return; } if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) { return; } // Find the first previous instruction which is not a move. HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves(); // If the instruction is a null check it means that `instr` is the first user // and needs to record the pc. if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) { HNullCheck* null_check = first_prev_not_move->AsNullCheck(); // TODO: The parallel moves modify the environment. Their changes need to be reverted // otherwise the stack maps at the throw point will not be correct. RecordPcInfo(null_check, null_check->GetDexPc()); } } void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const { LocationSummary* locations = suspend_check->GetLocations(); HBasicBlock* block = suspend_check->GetBlock(); DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check); DCHECK(block->IsLoopHeader()); for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); LiveInterval* interval = current->GetLiveInterval(); // We only need to clear bits of loop phis containing objects and allocated in register. // Loop phis allocated on stack already have the object in the stack. if (current->GetType() == Primitive::kPrimNot && interval->HasRegister() && interval->HasSpillSlot()) { locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize); } } } void CodeGenerator::EmitParallelMoves(Location from1, Location to1, Primitive::Type type1, Location from2, Location to2, Primitive::Type type2) { HParallelMove parallel_move(GetGraph()->GetArena()); parallel_move.AddMove(from1, to1, type1, nullptr); parallel_move.AddMove(from2, to2, type2, nullptr); GetMoveResolver()->EmitNativeCode(¶llel_move); } void SlowPathCode::RecordPcInfo(CodeGenerator* codegen, HInstruction* instruction, uint32_t dex_pc) { codegen->RecordPcInfo(instruction, dex_pc, this); } void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { RegisterSet* register_set = locations->GetLiveRegisters(); size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { if (!codegen->IsCoreCalleeSaveRegister(i)) { if (register_set->ContainsCoreRegister(i)) { // If the register holds an object, update the stack mask. if (locations->RegisterContainsObject(i)) { locations->SetStackBit(stack_offset / kVRegSize); } DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_core_stack_offsets_[i] = stack_offset; stack_offset += codegen->SaveCoreRegister(stack_offset, i); } } } for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) { if (!codegen->IsFloatingPointCalleeSaveRegister(i)) { if (register_set->ContainsFloatingPointRegister(i)) { DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_fpu_stack_offsets_[i] = stack_offset; stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i); } } } } void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { RegisterSet* register_set = locations->GetLiveRegisters(); size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { if (!codegen->IsCoreCalleeSaveRegister(i)) { if (register_set->ContainsCoreRegister(i)) { DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); stack_offset += codegen->RestoreCoreRegister(stack_offset, i); } } } for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) { if (!codegen->IsFloatingPointCalleeSaveRegister(i)) { if (register_set->ContainsFloatingPointRegister(i)) { DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i); } } } } } // namespace art