/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_JNI_QUICK_CALLING_CONVENTION_H_ #define ART_COMPILER_JNI_QUICK_CALLING_CONVENTION_H_ #include <vector> #include "handle_scope.h" #include "primitive.h" #include "thread.h" #include "utils/managed_register.h" namespace art { // Top-level abstraction for different calling conventions. class CallingConvention { public: bool IsReturnAReference() const { return shorty_[0] == 'L'; } Primitive::Type GetReturnType() const { return Primitive::GetType(shorty_[0]); } size_t SizeOfReturnValue() const { size_t result = Primitive::ComponentSize(Primitive::GetType(shorty_[0])); if (result >= 1 && result < 4) { result = 4; } return result; } // Register that holds result of this method invocation. virtual ManagedRegister ReturnRegister() = 0; // Register reserved for scratch usage during procedure calls. virtual ManagedRegister InterproceduralScratchRegister() = 0; // Offset of Method within the frame. FrameOffset MethodStackOffset() { return displacement_; } // Iterator interface // Place iterator at start of arguments. The displacement is applied to // frame offset methods to account for frames which may be on the stack // below the one being iterated over. void ResetIterator(FrameOffset displacement) { displacement_ = displacement; itr_slots_ = 0; itr_args_ = 0; itr_refs_ = 0; itr_longs_and_doubles_ = 0; itr_float_and_doubles_ = 0; } virtual ~CallingConvention() {} protected: CallingConvention(bool is_static, bool is_synchronized, const char* shorty, size_t frame_pointer_size) : itr_slots_(0), itr_refs_(0), itr_args_(0), itr_longs_and_doubles_(0), itr_float_and_doubles_(0), displacement_(0), frame_pointer_size_(frame_pointer_size), handle_scope_pointer_size_(sizeof(StackReference<mirror::Object>)), is_static_(is_static), is_synchronized_(is_synchronized), shorty_(shorty) { num_args_ = (is_static ? 0 : 1) + strlen(shorty) - 1; num_ref_args_ = is_static ? 0 : 1; // The implicit this pointer. num_float_or_double_args_ = 0; num_long_or_double_args_ = 0; for (size_t i = 1; i < strlen(shorty); i++) { char ch = shorty_[i]; switch (ch) { case 'L': num_ref_args_++; break; case 'J': num_long_or_double_args_++; break; case 'D': num_long_or_double_args_++; num_float_or_double_args_++; break; case 'F': num_float_or_double_args_++; break; } } } bool IsStatic() const { return is_static_; } bool IsSynchronized() const { return is_synchronized_; } bool IsParamALongOrDouble(unsigned int param) const { DCHECK_LT(param, NumArgs()); if (IsStatic()) { param++; // 0th argument must skip return value at start of the shorty } else if (param == 0) { return false; // this argument } char ch = shorty_[param]; return (ch == 'J' || ch == 'D'); } bool IsParamAFloatOrDouble(unsigned int param) const { DCHECK_LT(param, NumArgs()); if (IsStatic()) { param++; // 0th argument must skip return value at start of the shorty } else if (param == 0) { return false; // this argument } char ch = shorty_[param]; return (ch == 'F' || ch == 'D'); } bool IsParamADouble(unsigned int param) const { DCHECK_LT(param, NumArgs()); if (IsStatic()) { param++; // 0th argument must skip return value at start of the shorty } else if (param == 0) { return false; // this argument } return shorty_[param] == 'D'; } bool IsParamALong(unsigned int param) const { DCHECK_LT(param, NumArgs()); if (IsStatic()) { param++; // 0th argument must skip return value at start of the shorty } else if (param == 0) { return false; // this argument } return shorty_[param] == 'J'; } bool IsParamAReference(unsigned int param) const { DCHECK_LT(param, NumArgs()); if (IsStatic()) { param++; // 0th argument must skip return value at start of the shorty } else if (param == 0) { return true; // this argument } return shorty_[param] == 'L'; } size_t NumArgs() const { return num_args_; } size_t NumLongOrDoubleArgs() const { return num_long_or_double_args_; } size_t NumFloatOrDoubleArgs() const { return num_float_or_double_args_; } size_t NumReferenceArgs() const { return num_ref_args_; } size_t ParamSize(unsigned int param) const { DCHECK_LT(param, NumArgs()); if (IsStatic()) { param++; // 0th argument must skip return value at start of the shorty } else if (param == 0) { return sizeof(mirror::HeapReference<mirror::Object>); // this argument } size_t result = Primitive::ComponentSize(Primitive::GetType(shorty_[param])); if (result >= 1 && result < 4) { result = 4; } return result; } const char* GetShorty() const { return shorty_.c_str(); } // The slot number for current calling_convention argument. // Note that each slot is 32-bit. When the current argument is bigger // than 32 bits, return the first slot number for this argument. unsigned int itr_slots_; // The number of references iterated past. unsigned int itr_refs_; // The argument number along argument list for current argument. unsigned int itr_args_; // Number of longs and doubles seen along argument list. unsigned int itr_longs_and_doubles_; // Number of float and doubles seen along argument list. unsigned int itr_float_and_doubles_; // Space for frames below this on the stack. FrameOffset displacement_; // The size of a pointer. const size_t frame_pointer_size_; // The size of a reference entry within the handle scope. const size_t handle_scope_pointer_size_; private: const bool is_static_; const bool is_synchronized_; std::string shorty_; size_t num_args_; size_t num_ref_args_; size_t num_float_or_double_args_; size_t num_long_or_double_args_; }; // Abstraction for managed code's calling conventions // | { Incoming stack args } | // | { Prior Method* } | <-- Prior SP // | { Return address } | // | { Callee saves } | // | { Spills ... } | // | { Outgoing stack args } | // | { Method* } | <-- SP class ManagedRuntimeCallingConvention : public CallingConvention { public: static ManagedRuntimeCallingConvention* Create(bool is_static, bool is_synchronized, const char* shorty, InstructionSet instruction_set); // Register that holds the incoming method argument virtual ManagedRegister MethodRegister() = 0; // Iterator interface bool HasNext(); void Next(); bool IsCurrentParamAReference(); bool IsCurrentParamAFloatOrDouble(); bool IsCurrentParamADouble(); bool IsCurrentParamALong(); bool IsCurrentArgExplicit(); // ie a non-implict argument such as this bool IsCurrentArgPossiblyNull(); size_t CurrentParamSize(); virtual bool IsCurrentParamInRegister() = 0; virtual bool IsCurrentParamOnStack() = 0; virtual ManagedRegister CurrentParamRegister() = 0; virtual FrameOffset CurrentParamStackOffset() = 0; virtual ~ManagedRuntimeCallingConvention() {} // Registers to spill to caller's out registers on entry. virtual const ManagedRegisterEntrySpills& EntrySpills() = 0; protected: ManagedRuntimeCallingConvention(bool is_static, bool is_synchronized, const char* shorty, size_t frame_pointer_size) : CallingConvention(is_static, is_synchronized, shorty, frame_pointer_size) {} }; // Abstraction for JNI calling conventions // | { Incoming stack args } | <-- Prior SP // | { Return address } | // | { Callee saves } | ([1]) // | { Return value spill } | (live on return slow paths) // | { Local Ref. Table State } | // | { Stack Indirect Ref. Table | // | num. refs./link } | (here to prior SP is frame size) // | { Method* } | <-- Anchor SP written to thread // | { Outgoing stack args } | <-- SP at point of call // | Native frame | // // [1] We must save all callee saves here to enable any exception throws to restore // callee saves for frames above this one. class JniCallingConvention : public CallingConvention { public: static JniCallingConvention* Create(bool is_static, bool is_synchronized, const char* shorty, InstructionSet instruction_set); // Size of frame excluding space for outgoing args (its assumed Method* is // always at the bottom of a frame, but this doesn't work for outgoing // native args). Includes alignment. virtual size_t FrameSize() = 0; // Size of outgoing arguments, including alignment virtual size_t OutArgSize() = 0; // Number of references in stack indirect reference table size_t ReferenceCount() const; // Location where the segment state of the local indirect reference table is saved FrameOffset SavedLocalReferenceCookieOffset() const; // Location where the return value of a call can be squirreled if another // call is made following the native call FrameOffset ReturnValueSaveLocation() const; // Register that holds result if it is integer. virtual ManagedRegister IntReturnRegister() = 0; // Whether the compiler needs to ensure zero-/sign-extension of a small result type virtual bool RequiresSmallResultTypeExtension() const = 0; // Callee save registers to spill prior to native code (which may clobber) virtual const std::vector<ManagedRegister>& CalleeSaveRegisters() const = 0; // Spill mask values virtual uint32_t CoreSpillMask() const = 0; virtual uint32_t FpSpillMask() const = 0; // An extra scratch register live after the call virtual ManagedRegister ReturnScratchRegister() const = 0; // Iterator interface bool HasNext(); virtual void Next(); bool IsCurrentParamAReference(); bool IsCurrentParamAFloatOrDouble(); bool IsCurrentParamADouble(); bool IsCurrentParamALong(); bool IsCurrentParamJniEnv(); size_t CurrentParamSize(); virtual bool IsCurrentParamInRegister() = 0; virtual bool IsCurrentParamOnStack() = 0; virtual ManagedRegister CurrentParamRegister() = 0; virtual FrameOffset CurrentParamStackOffset() = 0; // Iterator interface extension for JNI FrameOffset CurrentParamHandleScopeEntryOffset(); // Position of handle scope and interior fields FrameOffset HandleScopeOffset() const { return FrameOffset(this->displacement_.Int32Value() + frame_pointer_size_); // above Method reference } FrameOffset HandleScopeLinkOffset() const { return FrameOffset(HandleScopeOffset().Int32Value() + HandleScope::LinkOffset(frame_pointer_size_)); } FrameOffset HandleScopeNumRefsOffset() const { return FrameOffset(HandleScopeOffset().Int32Value() + HandleScope::NumberOfReferencesOffset(frame_pointer_size_)); } FrameOffset HandleReferencesOffset() const { return FrameOffset(HandleScopeOffset().Int32Value() + HandleScope::ReferencesOffset(frame_pointer_size_)); } virtual ~JniCallingConvention() {} protected: // Named iterator positions enum IteratorPos { kJniEnv = 0, kObjectOrClass = 1 }; explicit JniCallingConvention(bool is_static, bool is_synchronized, const char* shorty, size_t frame_pointer_size) : CallingConvention(is_static, is_synchronized, shorty, frame_pointer_size) {} // Number of stack slots for outgoing arguments, above which the handle scope is // located virtual size_t NumberOfOutgoingStackArgs() = 0; protected: size_t NumberOfExtraArgumentsForJni(); }; } // namespace art #endif // ART_COMPILER_JNI_QUICK_CALLING_CONVENTION_H_