/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "codegen_x86.h" #include "base/logging.h" #include "dex/mir_graph.h" #include "dex/quick/mir_to_lir-inl.h" #include "dex/dataflow_iterator-inl.h" #include "dex/quick/dex_file_method_inliner.h" #include "dex/quick/dex_file_to_method_inliner_map.h" #include "dex/reg_storage_eq.h" #include "driver/compiler_driver.h" #include "x86_lir.h" namespace art { /* This file contains codegen for the X86 ISA */ LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) { int opcode; /* must be both DOUBLE or both not DOUBLE */ DCHECK(r_dest.IsFloat() || r_src.IsFloat()); DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble()); if (r_dest.IsDouble()) { opcode = kX86MovsdRR; } else { if (r_dest.IsSingle()) { if (r_src.IsSingle()) { opcode = kX86MovssRR; } else { // Fpr <- Gpr opcode = kX86MovdxrRR; } } else { // Gpr <- Fpr DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits(); opcode = kX86MovdrxRR; } } DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL); LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg()); if (r_dest == r_src) { res->flags.is_nop = true; } return res; } bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) { UNUSED(value); return true; } bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) { return value == 0; } bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) { UNUSED(value); return true; } bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) { return value == 0; } /* * Load a immediate using a shortcut if possible; otherwise * grab from the per-translation literal pool. If target is * a high register, build constant into a low register and copy. * * No additional register clobbering operation performed. Use this version when * 1) r_dest is freshly returned from AllocTemp or * 2) The codegen is under fixed register usage */ LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) { RegStorage r_dest_save = r_dest; if (r_dest.IsFloat()) { if (value == 0) { return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg()); } r_dest = AllocTemp(); } LIR *res; if (value == 0) { res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg()); } else { // Note, there is no byte immediate form of a 32 bit immediate move. // 64-bit immediate is not supported by LIR structure res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value); } if (r_dest_save.IsFloat()) { NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg()); FreeTemp(r_dest); } return res; } LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) { LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/); res->target = target; return res; } LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) { LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */, X86ConditionEncoding(cc)); branch->target = target; return branch; } LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) { X86OpCode opcode = kX86Bkpt; switch (op) { case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break; case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break; case kOpRev: opcode = r_dest_src.Is64Bit() ? kX86Bswap64R : kX86Bswap32R; break; case kOpBlx: opcode = kX86CallR; break; default: LOG(FATAL) << "Bad case in OpReg " << op; } return NewLIR1(opcode, r_dest_src.GetReg()); } LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) { X86OpCode opcode = kX86Bkpt; bool byte_imm = IS_SIMM8(value); DCHECK(!r_dest_src1.IsFloat()); if (r_dest_src1.Is64Bit()) { switch (op) { case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break; case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break; case kOpLsl: opcode = kX86Sal64RI; break; case kOpLsr: opcode = kX86Shr64RI; break; case kOpAsr: opcode = kX86Sar64RI; break; case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break; default: LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op; } } else { switch (op) { case kOpLsl: opcode = kX86Sal32RI; break; case kOpLsr: opcode = kX86Shr32RI; break; case kOpAsr: opcode = kX86Sar32RI; break; case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break; case kOpOr: opcode = byte_imm ? kX86Or32RI8 : kX86Or32RI; break; case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break; // case kOpSbb: opcode = kX86Sbb32RI; break; case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break; case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break; case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break; case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break; case kOpMov: /* * Moving the constant zero into register can be specialized as an xor of the register. * However, that sets eflags while the move does not. For that reason here, always do * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead. */ opcode = kX86Mov32RI; break; case kOpMul: opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI; return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value); case kOp2Byte: opcode = kX86Mov32RI; value = static_cast<int8_t>(value); break; case kOp2Short: opcode = kX86Mov32RI; value = static_cast<int16_t>(value); break; case kOp2Char: opcode = kX86Mov32RI; value = static_cast<uint16_t>(value); break; case kOpNeg: opcode = kX86Mov32RI; value = -value; break; default: LOG(FATAL) << "Bad case in OpRegImm " << op; } } return NewLIR2(opcode, r_dest_src1.GetReg(), value); } LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) { bool is64Bit = r_dest_src1.Is64Bit(); X86OpCode opcode = kX86Nop; bool src2_must_be_cx = false; switch (op) { // X86 unary opcodes case kOpMvn: OpRegCopy(r_dest_src1, r_src2); return OpReg(kOpNot, r_dest_src1); case kOpNeg: OpRegCopy(r_dest_src1, r_src2); return OpReg(kOpNeg, r_dest_src1); case kOpRev: OpRegCopy(r_dest_src1, r_src2); return OpReg(kOpRev, r_dest_src1); case kOpRevsh: OpRegCopy(r_dest_src1, r_src2); OpReg(kOpRev, r_dest_src1); return OpRegImm(kOpAsr, r_dest_src1, 16); // X86 binary opcodes case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break; case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break; case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break; case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break; case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break; case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break; case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break; case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break; case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break; case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break; case kOpOr: opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break; case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break; case kOp2Byte: // TODO: there are several instances of this check. A utility function perhaps? // TODO: Similar to Arm's reg < 8 check. Perhaps add attribute checks to RegStorage? // Use shifts instead of a byte operand if the source can't be byte accessed. if (r_src2.GetRegNum() >= rs_rX86_SP_32.GetRegNum()) { NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg()); NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24); return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24); } else { opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR; } break; case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break; case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break; case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break; default: LOG(FATAL) << "Bad case in OpRegReg " << op; break; } CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg()); return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg()); } LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) { DCHECK(!r_base.IsFloat()); X86OpCode opcode = kX86Nop; int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg(); switch (move_type) { case kMov8GP: CHECK(!r_dest.IsFloat()); opcode = kX86Mov8RM; break; case kMov16GP: CHECK(!r_dest.IsFloat()); opcode = kX86Mov16RM; break; case kMov32GP: CHECK(!r_dest.IsFloat()); opcode = kX86Mov32RM; break; case kMov32FP: CHECK(r_dest.IsFloat()); opcode = kX86MovssRM; break; case kMov64FP: CHECK(r_dest.IsFloat()); opcode = kX86MovsdRM; break; case kMovU128FP: CHECK(r_dest.IsFloat()); opcode = kX86MovupsRM; break; case kMovA128FP: CHECK(r_dest.IsFloat()); opcode = kX86MovapsRM; break; case kMovLo128FP: CHECK(r_dest.IsFloat()); opcode = kX86MovlpsRM; break; case kMovHi128FP: CHECK(r_dest.IsFloat()); opcode = kX86MovhpsRM; break; case kMov64GP: case kMovLo64FP: case kMovHi64FP: default: LOG(FATAL) << "Bad case in OpMovRegMem"; break; } return NewLIR3(opcode, dest, r_base.GetReg(), offset); } LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) { DCHECK(!r_base.IsFloat()); int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg(); X86OpCode opcode = kX86Nop; switch (move_type) { case kMov8GP: CHECK(!r_src.IsFloat()); opcode = kX86Mov8MR; break; case kMov16GP: CHECK(!r_src.IsFloat()); opcode = kX86Mov16MR; break; case kMov32GP: CHECK(!r_src.IsFloat()); opcode = kX86Mov32MR; break; case kMov32FP: CHECK(r_src.IsFloat()); opcode = kX86MovssMR; break; case kMov64FP: CHECK(r_src.IsFloat()); opcode = kX86MovsdMR; break; case kMovU128FP: CHECK(r_src.IsFloat()); opcode = kX86MovupsMR; break; case kMovA128FP: CHECK(r_src.IsFloat()); opcode = kX86MovapsMR; break; case kMovLo128FP: CHECK(r_src.IsFloat()); opcode = kX86MovlpsMR; break; case kMovHi128FP: CHECK(r_src.IsFloat()); opcode = kX86MovhpsMR; break; case kMov64GP: case kMovLo64FP: case kMovHi64FP: default: LOG(FATAL) << "Bad case in OpMovMemReg"; break; } return NewLIR3(opcode, r_base.GetReg(), offset, src); } LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) { // The only conditional reg to reg operation supported is Cmov DCHECK_EQ(op, kOpCmov); DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit()); return NewLIR3(r_dest.Is64Bit() ? kX86Cmov64RRC : kX86Cmov32RRC, r_dest.GetReg(), r_src.GetReg(), X86ConditionEncoding(cc)); } LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) { bool is64Bit = r_dest.Is64Bit(); X86OpCode opcode = kX86Nop; switch (op) { // X86 binary opcodes case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break; case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break; case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break; case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break; case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break; case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break; case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break; case kOp2Byte: opcode = kX86Movsx8RM; break; case kOp2Short: opcode = kX86Movsx16RM; break; case kOp2Char: opcode = kX86Movzx16RM; break; case kOpMul: default: LOG(FATAL) << "Bad case in OpRegMem " << op; break; } LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset); if (mem_ref_type_ == ResourceMask::kDalvikReg) { DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32); AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */); } return l; } LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) { DCHECK_NE(rl_dest.location, kLocPhysReg); int displacement = SRegOffset(rl_dest.s_reg_low); bool is64Bit = rl_dest.wide != 0; X86OpCode opcode = kX86Nop; switch (op) { case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break; case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break; case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break; case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break; case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break; case kOpOr: opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break; case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break; case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break; case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break; case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break; default: LOG(FATAL) << "Bad case in OpMemReg " << op; break; } LIR *l = NewLIR3(opcode, rs_rX86_SP_32.GetReg(), displacement, r_value); if (mem_ref_type_ == ResourceMask::kDalvikReg) { AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */); AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */); } return l; } LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) { DCHECK_NE(rl_value.location, kLocPhysReg); bool is64Bit = r_dest.Is64Bit(); int displacement = SRegOffset(rl_value.s_reg_low); X86OpCode opcode = kX86Nop; switch (op) { case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break; case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break; case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break; case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break; case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break; case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break; case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break; case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break; default: LOG(FATAL) << "Bad case in OpRegMem " << op; break; } LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP_32.GetReg(), displacement); if (mem_ref_type_ == ResourceMask::kDalvikReg) { AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */); } return l; } LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) { bool is64Bit = r_dest.Is64Bit(); if (r_dest != r_src1 && r_dest != r_src2) { if (op == kOpAdd) { // lea special case, except can't encode rbp as base if (r_src1 == r_src2) { OpRegCopy(r_dest, r_src1); return OpRegImm(kOpLsl, r_dest, 1); } else if (r_src1 != rs_rBP) { return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(), r_src1.GetReg() /* base */, r_src2.GetReg() /* index */, 0 /* scale */, 0 /* disp */); } else { return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(), r_src2.GetReg() /* base */, r_src1.GetReg() /* index */, 0 /* scale */, 0 /* disp */); } } else { OpRegCopy(r_dest, r_src1); return OpRegReg(op, r_dest, r_src2); } } else if (r_dest == r_src1) { return OpRegReg(op, r_dest, r_src2); } else { // r_dest == r_src2 switch (op) { case kOpSub: // non-commutative OpReg(kOpNeg, r_dest); op = kOpAdd; break; case kOpSbc: case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: { RegStorage t_reg = AllocTemp(); OpRegCopy(t_reg, r_src1); OpRegReg(op, t_reg, r_src2); LIR* res = OpRegCopyNoInsert(r_dest, t_reg); AppendLIR(res); FreeTemp(t_reg); return res; } case kOpAdd: // commutative case kOpOr: case kOpAdc: case kOpAnd: case kOpXor: case kOpMul: break; default: LOG(FATAL) << "Bad case in OpRegRegReg " << op; } return OpRegReg(op, r_dest, r_src1); } } LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) { if (op == kOpMul && !cu_->target64) { X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI; return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value); } else if (op == kOpAnd && !cu_->target64) { if (value == 0xFF && r_src.Low4()) { return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg()); } else if (value == 0xFFFF) { return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg()); } } if (r_dest != r_src) { if ((false) && op == kOpLsl && value >= 0 && value <= 3) { // lea shift special case // TODO: fix bug in LEA encoding when disp == 0 return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r5sib_no_base /* base */, r_src.GetReg() /* index */, value /* scale */, 0 /* disp */); } else if (op == kOpAdd) { // lea add special case return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(), r_src.GetReg() /* base */, rs_rX86_SP_32.GetReg()/*r4sib_no_index*/ /* index */, 0 /* scale */, value /* disp */); } OpRegCopy(r_dest, r_src); } return OpRegImm(op, r_dest, value); } LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) { DCHECK_EQ(kX86, cu_->instruction_set); X86OpCode opcode = kX86Bkpt; switch (op) { case kOpBlx: opcode = kX86CallT; break; case kOpBx: opcode = kX86JmpT; break; default: LOG(FATAL) << "Bad opcode: " << op; break; } return NewLIR1(opcode, thread_offset.Int32Value()); } LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) { DCHECK_EQ(kX86_64, cu_->instruction_set); X86OpCode opcode = kX86Bkpt; switch (op) { case kOpBlx: opcode = kX86CallT; break; case kOpBx: opcode = kX86JmpT; break; default: LOG(FATAL) << "Bad opcode: " << op; break; } return NewLIR1(opcode, thread_offset.Int32Value()); } LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) { X86OpCode opcode = kX86Bkpt; switch (op) { case kOpBlx: opcode = kX86CallM; break; default: LOG(FATAL) << "Bad opcode: " << op; break; } return NewLIR2(opcode, r_base.GetReg(), disp); } LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) { int32_t val_lo = Low32Bits(value); int32_t val_hi = High32Bits(value); int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg(); LIR *res; bool is_fp = r_dest.IsFloat(); // TODO: clean this up once we fully recognize 64-bit storage containers. if (is_fp) { DCHECK(r_dest.IsDouble()); if (value == 0) { return NewLIR2(kX86XorpdRR, low_reg_val, low_reg_val); } else if (pc_rel_base_reg_.Valid() || cu_->target64) { // We will load the value from the literal area. LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi); if (data_target == nullptr) { data_target = AddWideData(&literal_list_, val_lo, val_hi); } // Load the proper value from the literal area. // We don't know the proper offset for the value, so pick one that // will force 4 byte offset. We will fix this up in the assembler // later to have the right value. ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); if (cu_->target64) { res = NewLIR3(kX86MovsdRM, low_reg_val, kRIPReg, 256 /* bogus */); } else { // Get the PC to a register and get the anchor. LIR* anchor; RegStorage r_pc = GetPcAndAnchor(&anchor); res = LoadBaseDisp(r_pc, kDummy32BitOffset, RegStorage::FloatSolo64(low_reg_val), kDouble, kNotVolatile); res->operands[4] = WrapPointer(anchor); if (IsTemp(r_pc)) { FreeTemp(r_pc); } } res->target = data_target; res->flags.fixup = kFixupLoad; } else { if (r_dest.IsPair()) { if (val_lo == 0) { res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val); } else { res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo); } if (val_hi != 0) { RegStorage r_dest_hi = AllocTempDouble(); LoadConstantNoClobber(r_dest_hi, val_hi); NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg()); FreeTemp(r_dest_hi); } } else { RegStorage r_temp = AllocTypedTempWide(false, kCoreReg); res = LoadConstantWide(r_temp, value); OpRegCopyWide(r_dest, r_temp); FreeTemp(r_temp); } } } else { if (r_dest.IsPair()) { res = LoadConstantNoClobber(r_dest.GetLow(), val_lo); LoadConstantNoClobber(r_dest.GetHigh(), val_hi); } else { if (value == 0) { res = NewLIR2(kX86Xor64RR, r_dest.GetReg(), r_dest.GetReg()); } else if (value >= INT_MIN && value <= INT_MAX) { res = NewLIR2(kX86Mov64RI32, r_dest.GetReg(), val_lo); } else { res = NewLIR3(kX86Mov64RI64, r_dest.GetReg(), val_hi, val_lo); } } } return res; } LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement, RegStorage r_dest, OpSize size) { LIR *load = nullptr; LIR *load2 = nullptr; bool is_array = r_index.Valid(); bool pair = r_dest.IsPair(); bool is64bit = ((size == k64) || (size == kDouble)); X86OpCode opcode = kX86Nop; switch (size) { case k64: case kDouble: if (r_dest.IsFloat()) { opcode = is_array ? kX86MovsdRA : kX86MovsdRM; } else if (!pair) { opcode = is_array ? kX86Mov64RA : kX86Mov64RM; } else { opcode = is_array ? kX86Mov32RA : kX86Mov32RM; } // TODO: double store is to unaligned address DCHECK_EQ((displacement & 0x3), 0); break; case kWord: if (cu_->target64) { opcode = is_array ? kX86Mov64RA : kX86Mov64RM; CHECK_EQ(is_array, false); CHECK_EQ(r_dest.IsFloat(), false); break; } FALLTHROUGH_INTENDED; // else fall-through to k32 case case k32: case kSingle: case kReference: // TODO: update for reference decompression on 64-bit targets. opcode = is_array ? kX86Mov32RA : kX86Mov32RM; if (r_dest.IsFloat()) { opcode = is_array ? kX86MovssRA : kX86MovssRM; DCHECK(r_dest.IsFloat()); } DCHECK_EQ((displacement & 0x3), 0); break; case kUnsignedHalf: opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM; DCHECK_EQ((displacement & 0x1), 0); break; case kSignedHalf: opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM; DCHECK_EQ((displacement & 0x1), 0); break; case kUnsignedByte: opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM; break; case kSignedByte: opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM; break; default: LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody"; } if (!is_array) { if (!pair) { load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET); } else { DCHECK(!r_dest.IsFloat()); // Make sure we're not still using a pair here. if (r_base == r_dest.GetLow()) { load = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(), displacement + HIWORD_OFFSET); load2 = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET); } else { load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET); load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(), displacement + HIWORD_OFFSET); } } if (mem_ref_type_ == ResourceMask::kDalvikReg) { DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32); AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2, true /* is_load */, is64bit); if (pair) { AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2, true /* is_load */, is64bit); } } } else { if (!pair) { load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale, displacement + LOWORD_OFFSET); } else { DCHECK(!r_dest.IsFloat()); // Make sure we're not still using a pair here. if (r_base == r_dest.GetLow()) { if (r_dest.GetHigh() == r_index) { // We can't use either register for the first load. RegStorage temp = AllocTemp(); load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale, displacement + HIWORD_OFFSET); load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale, displacement + LOWORD_OFFSET); OpRegCopy(r_dest.GetHigh(), temp); FreeTemp(temp); } else { load = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale, displacement + HIWORD_OFFSET); load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale, displacement + LOWORD_OFFSET); } } else { if (r_dest.GetLow() == r_index) { // We can't use either register for the first load. RegStorage temp = AllocTemp(); load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale, displacement + LOWORD_OFFSET); load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale, displacement + HIWORD_OFFSET); OpRegCopy(r_dest.GetLow(), temp); FreeTemp(temp); } else { load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale, displacement + LOWORD_OFFSET); load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale, displacement + HIWORD_OFFSET); } } } } // Always return first load generated as this might cause a fault if base is null. return load; } /* Load value from base + scaled index. */ LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale, OpSize size) { return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size); } LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, OpSize size, VolatileKind is_volatile) { // LoadBaseDisp() will emit correct insn for atomic load on x86 // assuming r_dest is correctly prepared using RegClassForFieldLoadStore(). LIR* load = LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest, size); if (UNLIKELY(is_volatile == kVolatile)) { GenMemBarrier(kLoadAny); // Only a scheduling barrier. } return load; } LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement, RegStorage r_src, OpSize size, int opt_flags) { LIR *store = nullptr; LIR *store2 = nullptr; bool is_array = r_index.Valid(); bool pair = r_src.IsPair(); bool is64bit = (size == k64) || (size == kDouble); bool consider_non_temporal = false; X86OpCode opcode = kX86Nop; switch (size) { case k64: consider_non_temporal = true; FALLTHROUGH_INTENDED; case kDouble: if (r_src.IsFloat()) { opcode = is_array ? kX86MovsdAR : kX86MovsdMR; } else if (!pair) { opcode = is_array ? kX86Mov64AR : kX86Mov64MR; } else { opcode = is_array ? kX86Mov32AR : kX86Mov32MR; } // TODO: double store is to unaligned address DCHECK_EQ((displacement & 0x3), 0); break; case kWord: if (cu_->target64) { opcode = is_array ? kX86Mov64AR : kX86Mov64MR; CHECK_EQ(is_array, false); CHECK_EQ(r_src.IsFloat(), false); consider_non_temporal = true; break; } FALLTHROUGH_INTENDED; // else fall-through to k32 case case k32: case kSingle: case kReference: opcode = is_array ? kX86Mov32AR : kX86Mov32MR; if (r_src.IsFloat()) { opcode = is_array ? kX86MovssAR : kX86MovssMR; DCHECK(r_src.IsSingle()); } DCHECK_EQ((displacement & 0x3), 0); consider_non_temporal = true; break; case kUnsignedHalf: case kSignedHalf: opcode = is_array ? kX86Mov16AR : kX86Mov16MR; DCHECK_EQ((displacement & 0x1), 0); break; case kUnsignedByte: case kSignedByte: opcode = is_array ? kX86Mov8AR : kX86Mov8MR; break; default: LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody"; } // Handle non temporal hint here. if (consider_non_temporal && ((opt_flags & MIR_STORE_NON_TEMPORAL) != 0)) { switch (opcode) { // We currently only handle 32/64 bit moves here. case kX86Mov64AR: opcode = kX86Movnti64AR; break; case kX86Mov64MR: opcode = kX86Movnti64MR; break; case kX86Mov32AR: opcode = kX86Movnti32AR; break; case kX86Mov32MR: opcode = kX86Movnti32MR; break; default: // Do nothing here. break; } } if (!is_array) { if (!pair) { store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg()); } else { DCHECK(!r_src.IsFloat()); // Make sure we're not still using a pair here. store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg()); store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg()); } if (mem_ref_type_ == ResourceMask::kDalvikReg) { DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32); AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2, false /* is_load */, is64bit); if (pair) { AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2, false /* is_load */, is64bit); } } } else { if (!pair) { store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale, displacement + LOWORD_OFFSET, r_src.GetReg()); } else { DCHECK(!r_src.IsFloat()); // Make sure we're not still using a pair here. store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale, displacement + LOWORD_OFFSET, r_src.GetLowReg()); store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale, displacement + HIWORD_OFFSET, r_src.GetHighReg()); } } return store; } /* store value base base + scaled index. */ LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale, OpSize size) { return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size); } LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size, VolatileKind is_volatile) { if (UNLIKELY(is_volatile == kVolatile)) { GenMemBarrier(kAnyStore); // Only a scheduling barrier. } // StoreBaseDisp() will emit correct insn for atomic store on x86 // assuming r_dest is correctly prepared using RegClassForFieldLoadStore(). // x86 only allows registers EAX-EDX to be used as byte registers, if the input src is not // valid, allocate a temp. bool allocated_temp = false; if (size == kUnsignedByte || size == kSignedByte) { if (!cu_->target64 && !r_src.Low4()) { RegStorage r_input = r_src; r_src = AllocateByteRegister(); OpRegCopy(r_src, r_input); allocated_temp = true; } } LIR* store = StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size); if (UNLIKELY(is_volatile == kVolatile)) { // A volatile load might follow the volatile store so insert a StoreLoad barrier. // This does require a fence, even on x86. GenMemBarrier(kAnyAny); } if (allocated_temp) { FreeTemp(r_src); } return store; } LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg, int offset, int check_value, LIR* target, LIR** compare) { UNUSED(temp_reg); // Comparison performed directly with memory. LIR* inst = NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(), offset, check_value); if (compare != nullptr) { *compare = inst; } LIR* branch = OpCondBranch(cond, target); return branch; } void X86Mir2Lir::AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight) { if (cu_->target64) { Mir2Lir::AnalyzeMIR(core_counts, mir, weight); return; } int opcode = mir->dalvikInsn.opcode; bool uses_pc_rel_load = false; switch (opcode) { // Instructions referencing doubles. case Instruction::CMPL_DOUBLE: case Instruction::CMPG_DOUBLE: case Instruction::NEG_DOUBLE: case Instruction::ADD_DOUBLE: case Instruction::SUB_DOUBLE: case Instruction::MUL_DOUBLE: case Instruction::DIV_DOUBLE: case Instruction::REM_DOUBLE: case Instruction::ADD_DOUBLE_2ADDR: case Instruction::SUB_DOUBLE_2ADDR: case Instruction::MUL_DOUBLE_2ADDR: case Instruction::DIV_DOUBLE_2ADDR: case Instruction::REM_DOUBLE_2ADDR: case kMirOpFusedCmplDouble: case kMirOpFusedCmpgDouble: uses_pc_rel_load = AnalyzeFPInstruction(opcode, mir); break; // Packed switch needs the PC-relative pointer if it's large. case Instruction::PACKED_SWITCH: if (mir_graph_->GetTable(mir, mir->dalvikInsn.vB)[1] > kSmallSwitchThreshold) { uses_pc_rel_load = true; } break; case kMirOpConstVector: uses_pc_rel_load = true; break; case kMirOpPackedMultiply: case kMirOpPackedShiftLeft: case kMirOpPackedSignedShiftRight: case kMirOpPackedUnsignedShiftRight: { // Byte emulation requires constants from the literal pool. OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); if (opsize == kSignedByte || opsize == kUnsignedByte) { uses_pc_rel_load = true; } } break; case Instruction::INVOKE_STATIC: case Instruction::INVOKE_STATIC_RANGE: if (mir_graph_->GetMethodLoweringInfo(mir).IsIntrinsic()) { uses_pc_rel_load = AnalyzeInvokeStaticIntrinsic(mir); break; } FALLTHROUGH_INTENDED; default: Mir2Lir::AnalyzeMIR(core_counts, mir, weight); break; } if (uses_pc_rel_load) { DCHECK(pc_rel_temp_ != nullptr); core_counts[SRegToPMap(pc_rel_temp_->s_reg_low)].count += weight; } } bool X86Mir2Lir::AnalyzeFPInstruction(int opcode, MIR* mir) { DCHECK(!cu_->target64); // Look at all the uses, and see if they are double constants. uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode)); int next_sreg = 0; if (attrs & DF_UA) { if (attrs & DF_A_WIDE) { if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) { return true; } next_sreg += 2; } else { next_sreg++; } } if (attrs & DF_UB) { if (attrs & DF_B_WIDE) { if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) { return true; } next_sreg += 2; } else { next_sreg++; } } if (attrs & DF_UC) { if (attrs & DF_C_WIDE) { if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) { return true; } } } return false; } inline bool X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) { // If this is a double literal, we will want it in the literal pool on 32b platforms. DCHECK(!cu_->target64); return use.is_const; } bool X86Mir2Lir::AnalyzeInvokeStaticIntrinsic(MIR* mir) { // 64 bit RIP addressing doesn't need this analysis. DCHECK(!cu_->target64); // Retrieve the type of the intrinsic. MethodReference method_ref = mir_graph_->GetMethodLoweringInfo(mir).GetTargetMethod(); DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr); DexFileMethodInliner* method_inliner = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(method_ref.dex_file); InlineMethod method; bool is_intrinsic = method_inliner->IsIntrinsic(method_ref.dex_method_index, &method); DCHECK(is_intrinsic); switch (method.opcode) { case kIntrinsicAbsDouble: case kIntrinsicMinMaxDouble: return true; default: return false; } } RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc) { loc = UpdateLoc(loc); if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) { if (GetRegInfo(loc.reg)->IsTemp()) { Clobber(loc.reg); FreeTemp(loc.reg); loc.reg = RegStorage::InvalidReg(); loc.location = kLocDalvikFrame; } } DCHECK(CheckCorePoolSanity()); return loc; } RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc) { loc = UpdateLocWide(loc); if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) { if (GetRegInfo(loc.reg)->IsTemp()) { Clobber(loc.reg); FreeTemp(loc.reg); loc.reg = RegStorage::InvalidReg(); loc.location = kLocDalvikFrame; } } DCHECK(CheckCorePoolSanity()); return loc; } LIR* X86Mir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) { UNUSED(r_tgt); // Call to absolute memory location doesn't need a temporary target register. if (cu_->target64) { return OpThreadMem(op, GetThreadOffset<8>(trampoline)); } else { return OpThreadMem(op, GetThreadOffset<4>(trampoline)); } } void X86Mir2Lir::CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) { // Start with the default counts. Mir2Lir::CountRefs(core_counts, fp_counts, num_regs); if (pc_rel_temp_ != nullptr) { // Now, if the dex cache array base temp is used only once outside any loops (weight = 1), // avoid the promotion, otherwise boost the weight by factor 2 because the full PC-relative // load sequence is 3 instructions long and by promoting the PC base we save 2 instructions // per use. int p_map_idx = SRegToPMap(pc_rel_temp_->s_reg_low); if (core_counts[p_map_idx].count == 1) { core_counts[p_map_idx].count = 0; } else { core_counts[p_map_idx].count *= 2; } } } void X86Mir2Lir::DoPromotion() { if (!cu_->target64) { pc_rel_temp_ = mir_graph_->GetNewCompilerTemp(kCompilerTempBackend, false); } Mir2Lir::DoPromotion(); if (pc_rel_temp_ != nullptr) { // Now, if the dex cache array base temp is promoted, remember the register but // always remove the temp's stack location to avoid unnecessarily bloating the stack. pc_rel_base_reg_ = mir_graph_->reg_location_[pc_rel_temp_->s_reg_low].reg; DCHECK(!pc_rel_base_reg_.Valid() || !pc_rel_base_reg_.IsFloat()); mir_graph_->RemoveLastCompilerTemp(kCompilerTempBackend, false, pc_rel_temp_); pc_rel_temp_ = nullptr; } } } // namespace art