/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "codegen_x86.h" #include <cstdarg> #include <inttypes.h> #include <string> #include "arch/instruction_set_features.h" #include "art_method.h" #include "backend_x86.h" #include "base/logging.h" #include "dex/compiler_ir.h" #include "dex/quick/mir_to_lir-inl.h" #include "dex/reg_storage_eq.h" #include "driver/compiler_driver.h" #include "mirror/array-inl.h" #include "mirror/string.h" #include "oat.h" #include "x86_lir.h" namespace art { static constexpr RegStorage core_regs_arr_32[] = { rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, }; static constexpr RegStorage core_regs_arr_64[] = { rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15 }; static constexpr RegStorage core_regs_arr_64q[] = { rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q, rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q }; static constexpr RegStorage sp_regs_arr_32[] = { rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, }; static constexpr RegStorage sp_regs_arr_64[] = { rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15 }; static constexpr RegStorage dp_regs_arr_32[] = { rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, }; static constexpr RegStorage dp_regs_arr_64[] = { rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15 }; static constexpr RegStorage xp_regs_arr_32[] = { rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, }; static constexpr RegStorage xp_regs_arr_64[] = { rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15 }; static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32}; static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32}; static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64}; static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX}; static constexpr RegStorage core_temps_arr_64[] = { rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI, rs_r8, rs_r9, rs_r10, rs_r11 }; // How to add register to be available for promotion: // 1) Remove register from array defining temp // 2) Update ClobberCallerSave // 3) Update JNI compiler ABI: // 3.1) add reg in JniCallingConvention method // 3.2) update CoreSpillMask/FpSpillMask // 4) Update entrypoints // 4.1) Update constants in asm_support_x86_64.h for new frame size // 4.2) Remove entry in SmashCallerSaves // 4.3) Update jni_entrypoints to spill/unspill new callee save reg // 4.4) Update quick_entrypoints to spill/unspill new callee save reg // 5) Update runtime ABI // 5.1) Update quick_method_frame_info with new required spills // 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms // Note that you cannot use register corresponding to incoming args // according to ABI and QCG needs one additional XMM temp for // bulk copy in preparation to call. static constexpr RegStorage core_temps_arr_64q[] = { rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q, rs_r8q, rs_r9q, rs_r10q, rs_r11q }; static constexpr RegStorage sp_temps_arr_32[] = { rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, }; static constexpr RegStorage sp_temps_arr_64[] = { rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, rs_fr8, rs_fr9, rs_fr10, rs_fr11 }; static constexpr RegStorage dp_temps_arr_32[] = { rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, }; static constexpr RegStorage dp_temps_arr_64[] = { rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, rs_dr8, rs_dr9, rs_dr10, rs_dr11 }; static constexpr RegStorage xp_temps_arr_32[] = { rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, }; static constexpr RegStorage xp_temps_arr_64[] = { rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, rs_xr8, rs_xr9, rs_xr10, rs_xr11 }; static constexpr ArrayRef<const RegStorage> empty_pool; static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32); static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64); static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q); static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32); static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64); static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32); static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64); static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32); static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64); static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32); static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64); static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q); static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32); static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64); static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q); static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32); static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64); static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32); static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64); static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32); static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64); RegLocation X86Mir2Lir::LocCReturn() { return x86_loc_c_return; } RegLocation X86Mir2Lir::LocCReturnRef() { return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref; } RegLocation X86Mir2Lir::LocCReturnWide() { return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide; } RegLocation X86Mir2Lir::LocCReturnFloat() { return x86_loc_c_return_float; } RegLocation X86Mir2Lir::LocCReturnDouble() { return x86_loc_c_return_double; } // 32-bit reg storage locations for 32-bit targets. static const RegStorage RegStorage32FromSpecialTargetRegister_Target32[] { RegStorage::InvalidReg(), // kSelf - Thread pointer. RegStorage::InvalidReg(), // kSuspend - Used to reduce suspend checks for some targets. RegStorage::InvalidReg(), // kLr - no register as the return address is pushed on entry. RegStorage::InvalidReg(), // kPc - not exposed on X86 see kX86StartOfMethod. rs_rX86_SP_32, // kSp rs_rAX, // kArg0 rs_rCX, // kArg1 rs_rDX, // kArg2 rs_rBX, // kArg3 RegStorage::InvalidReg(), // kArg4 RegStorage::InvalidReg(), // kArg5 RegStorage::InvalidReg(), // kArg6 RegStorage::InvalidReg(), // kArg7 rs_fr0, // kFArg0 rs_fr1, // kFArg1 rs_fr2, // kFArg2 rs_fr3, // kFArg3 RegStorage::InvalidReg(), // kFArg4 RegStorage::InvalidReg(), // kFArg5 RegStorage::InvalidReg(), // kFArg6 RegStorage::InvalidReg(), // kFArg7 RegStorage::InvalidReg(), // kFArg8 RegStorage::InvalidReg(), // kFArg9 RegStorage::InvalidReg(), // kFArg10 RegStorage::InvalidReg(), // kFArg11 RegStorage::InvalidReg(), // kFArg12 RegStorage::InvalidReg(), // kFArg13 RegStorage::InvalidReg(), // kFArg14 RegStorage::InvalidReg(), // kFArg15 rs_rAX, // kRet0 rs_rDX, // kRet1 rs_rAX, // kInvokeTgt rs_rAX, // kHiddenArg - used to hold the method index before copying to fr0. rs_fr7, // kHiddenFpArg rs_rCX, // kCount }; // 32-bit reg storage locations for 64-bit targets. static const RegStorage RegStorage32FromSpecialTargetRegister_Target64[] { RegStorage::InvalidReg(), // kSelf - Thread pointer. RegStorage::InvalidReg(), // kSuspend - Used to reduce suspend checks for some targets. RegStorage::InvalidReg(), // kLr - no register as the return address is pushed on entry. RegStorage(kRIPReg), // kPc rs_rX86_SP_32, // kSp rs_rDI, // kArg0 rs_rSI, // kArg1 rs_rDX, // kArg2 rs_rCX, // kArg3 rs_r8, // kArg4 rs_r9, // kArg5 RegStorage::InvalidReg(), // kArg6 RegStorage::InvalidReg(), // kArg7 rs_fr0, // kFArg0 rs_fr1, // kFArg1 rs_fr2, // kFArg2 rs_fr3, // kFArg3 rs_fr4, // kFArg4 rs_fr5, // kFArg5 rs_fr6, // kFArg6 rs_fr7, // kFArg7 RegStorage::InvalidReg(), // kFArg8 RegStorage::InvalidReg(), // kFArg9 RegStorage::InvalidReg(), // kFArg10 RegStorage::InvalidReg(), // kFArg11 RegStorage::InvalidReg(), // kFArg12 RegStorage::InvalidReg(), // kFArg13 RegStorage::InvalidReg(), // kFArg14 RegStorage::InvalidReg(), // kFArg15 rs_rAX, // kRet0 rs_rDX, // kRet1 rs_rAX, // kInvokeTgt rs_rAX, // kHiddenArg RegStorage::InvalidReg(), // kHiddenFpArg rs_rCX, // kCount }; static_assert(arraysize(RegStorage32FromSpecialTargetRegister_Target32) == arraysize(RegStorage32FromSpecialTargetRegister_Target64), "Mismatch in RegStorage array sizes"); // Return a target-dependent special register for 32-bit. RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) const { DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target32[kCount], rs_rCX); DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target64[kCount], rs_rCX); DCHECK_LT(reg, arraysize(RegStorage32FromSpecialTargetRegister_Target32)); return cu_->target64 ? RegStorage32FromSpecialTargetRegister_Target64[reg] : RegStorage32FromSpecialTargetRegister_Target32[reg]; } RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) { UNUSED(reg); LOG(FATAL) << "Do not use this function!!!"; UNREACHABLE(); } /* * Decode the register id. */ ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const { /* Double registers in x86 are just a single FP register. This is always just a single bit. */ return ResourceMask::Bit( /* FP register starts at bit position 16 */ ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum()); } ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const { return kEncodeNone; } void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags, ResourceMask* use_mask, ResourceMask* def_mask) { DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64); DCHECK(!lir->flags.use_def_invalid); // X86-specific resource map setup here. if (flags & REG_USE_SP) { use_mask->SetBit(kX86RegSP); } if (flags & REG_DEF_SP) { def_mask->SetBit(kX86RegSP); } if (flags & REG_DEFA) { SetupRegMask(def_mask, rs_rAX.GetReg()); } if (flags & REG_DEFD) { SetupRegMask(def_mask, rs_rDX.GetReg()); } if (flags & REG_USEA) { SetupRegMask(use_mask, rs_rAX.GetReg()); } if (flags & REG_USEC) { SetupRegMask(use_mask, rs_rCX.GetReg()); } if (flags & REG_USED) { SetupRegMask(use_mask, rs_rDX.GetReg()); } if (flags & REG_USEB) { SetupRegMask(use_mask, rs_rBX.GetReg()); } // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI. if (lir->opcode == kX86RepneScasw) { SetupRegMask(use_mask, rs_rAX.GetReg()); SetupRegMask(use_mask, rs_rCX.GetReg()); SetupRegMask(use_mask, rs_rDI.GetReg()); SetupRegMask(def_mask, rs_rDI.GetReg()); } if (flags & USE_FP_STACK) { use_mask->SetBit(kX86FPStack); def_mask->SetBit(kX86FPStack); } } /* For dumping instructions */ static const char* x86RegName[] = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }; static const char* x86CondName[] = { "O", "NO", "B/NAE/C", "NB/AE/NC", "Z/EQ", "NZ/NE", "BE/NA", "NBE/A", "S", "NS", "P/PE", "NP/PO", "L/NGE", "NL/GE", "LE/NG", "NLE/G" }; /* * Interpret a format string and build a string no longer than size * See format key in Assemble.cc. */ std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) { std::string buf; size_t i = 0; size_t fmt_len = strlen(fmt); while (i < fmt_len) { if (fmt[i] != '!') { buf += fmt[i]; i++; } else { i++; DCHECK_LT(i, fmt_len); char operand_number_ch = fmt[i]; i++; if (operand_number_ch == '!') { buf += "!"; } else { int operand_number = operand_number_ch - '0'; DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands. DCHECK_LT(i, fmt_len); int operand = lir->operands[operand_number]; switch (fmt[i]) { case 'c': DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName)); buf += x86CondName[operand]; break; case 'd': buf += StringPrintf("%d", operand); break; case 'q': { int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 | static_cast<uint32_t>(lir->operands[operand_number+1])); buf +=StringPrintf("%" PRId64, value); break; } case 'p': { const EmbeddedData* tab_rec = UnwrapPointer<EmbeddedData>(operand); buf += StringPrintf("0x%08x", tab_rec->offset); break; } case 'r': if (RegStorage::IsFloat(operand)) { int fp_reg = RegStorage::RegNum(operand); buf += StringPrintf("xmm%d", fp_reg); } else { int reg_num = RegStorage::RegNum(operand); DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName)); buf += x86RegName[reg_num]; } break; case 't': buf += StringPrintf("0x%08" PRIxPTR " (L%p)", reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand, lir->target); break; default: buf += StringPrintf("DecodeError '%c'", fmt[i]); break; } i++; } } } return buf; } void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) { char buf[256]; buf[0] = 0; if (mask.Equals(kEncodeAll)) { strcpy(buf, "all"); } else { char num[8]; int i; for (i = 0; i < kX86RegEnd; i++) { if (mask.HasBit(i)) { snprintf(num, arraysize(num), "%d ", i); strcat(buf, num); } } if (mask.HasBit(ResourceMask::kCCode)) { strcat(buf, "cc "); } /* Memory bits */ if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) { snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s", DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info), (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : ""); } if (mask.HasBit(ResourceMask::kLiteral)) { strcat(buf, "lit "); } if (mask.HasBit(ResourceMask::kHeapRef)) { strcat(buf, "heap "); } if (mask.HasBit(ResourceMask::kMustNotAlias)) { strcat(buf, "noalias "); } } if (buf[0]) { LOG(INFO) << prefix << ": " << buf; } } void X86Mir2Lir::AdjustSpillMask() { // Adjustment for LR spilling, x86 has no LR so nothing to do here core_spill_mask_ |= (1 << rs_rRET.GetRegNum()); num_core_spills_++; } RegStorage X86Mir2Lir::AllocateByteRegister() { RegStorage reg = AllocTypedTemp(false, kCoreReg); if (!cu_->target64) { DCHECK_LT(reg.GetRegNum(), rs_rX86_SP_32.GetRegNum()); } return reg; } RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) { return GetRegInfo(reg)->Master()->GetReg(); } bool X86Mir2Lir::IsByteRegister(RegStorage reg) const { return cu_->target64 || reg.GetRegNum() < rs_rX86_SP_32.GetRegNum(); } /* Clobber all regs that might be used by an external C call */ void X86Mir2Lir::ClobberCallerSave() { if (cu_->target64) { Clobber(rs_rAX); Clobber(rs_rCX); Clobber(rs_rDX); Clobber(rs_rSI); Clobber(rs_rDI); Clobber(rs_r8); Clobber(rs_r9); Clobber(rs_r10); Clobber(rs_r11); Clobber(rs_fr8); Clobber(rs_fr9); Clobber(rs_fr10); Clobber(rs_fr11); } else { Clobber(rs_rAX); Clobber(rs_rCX); Clobber(rs_rDX); Clobber(rs_rBX); } Clobber(rs_fr0); Clobber(rs_fr1); Clobber(rs_fr2); Clobber(rs_fr3); Clobber(rs_fr4); Clobber(rs_fr5); Clobber(rs_fr6); Clobber(rs_fr7); } RegLocation X86Mir2Lir::GetReturnWideAlt() { RegLocation res = LocCReturnWide(); DCHECK_EQ(res.reg.GetLowReg(), rs_rAX.GetReg()); DCHECK_EQ(res.reg.GetHighReg(), rs_rDX.GetReg()); Clobber(rs_rAX); Clobber(rs_rDX); MarkInUse(rs_rAX); MarkInUse(rs_rDX); MarkWide(res.reg); return res; } RegLocation X86Mir2Lir::GetReturnAlt() { RegLocation res = LocCReturn(); res.reg.SetReg(rs_rDX.GetReg()); Clobber(rs_rDX); MarkInUse(rs_rDX); return res; } /* To be used when explicitly managing register use */ void X86Mir2Lir::LockCallTemps() { LockTemp(TargetReg32(kArg0)); LockTemp(TargetReg32(kArg1)); LockTemp(TargetReg32(kArg2)); LockTemp(TargetReg32(kArg3)); LockTemp(TargetReg32(kFArg0)); LockTemp(TargetReg32(kFArg1)); LockTemp(TargetReg32(kFArg2)); LockTemp(TargetReg32(kFArg3)); if (cu_->target64) { LockTemp(TargetReg32(kArg4)); LockTemp(TargetReg32(kArg5)); LockTemp(TargetReg32(kFArg4)); LockTemp(TargetReg32(kFArg5)); LockTemp(TargetReg32(kFArg6)); LockTemp(TargetReg32(kFArg7)); } } /* To be used when explicitly managing register use */ void X86Mir2Lir::FreeCallTemps() { FreeTemp(TargetReg32(kArg0)); FreeTemp(TargetReg32(kArg1)); FreeTemp(TargetReg32(kArg2)); FreeTemp(TargetReg32(kArg3)); FreeTemp(TargetReg32(kHiddenArg)); FreeTemp(TargetReg32(kFArg0)); FreeTemp(TargetReg32(kFArg1)); FreeTemp(TargetReg32(kFArg2)); FreeTemp(TargetReg32(kFArg3)); if (cu_->target64) { FreeTemp(TargetReg32(kArg4)); FreeTemp(TargetReg32(kArg5)); FreeTemp(TargetReg32(kFArg4)); FreeTemp(TargetReg32(kFArg5)); FreeTemp(TargetReg32(kFArg6)); FreeTemp(TargetReg32(kFArg7)); } } bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) { switch (opcode) { case kX86LockCmpxchgMR: case kX86LockCmpxchgAR: case kX86LockCmpxchg64M: case kX86LockCmpxchg64A: case kX86XchgMR: case kX86Mfence: // Atomic memory instructions provide full barrier. return true; default: break; } // Conservative if cannot prove it provides full barrier. return false; } bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { if (!cu_->compiler_driver->GetInstructionSetFeatures()->IsSmp()) { return false; } // Start off with using the last LIR as the barrier. If it is not enough, then we will update it. LIR* mem_barrier = last_lir_insn_; bool ret = false; /* * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. * For those cases, all we need to ensure is that there is a scheduling barrier in place. */ if (barrier_kind == kAnyAny) { // If no LIR exists already that can be used a barrier, then generate an mfence. if (mem_barrier == nullptr) { mem_barrier = NewLIR0(kX86Mfence); ret = true; } // If last instruction does not provide full barrier, then insert an mfence. if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) { mem_barrier = NewLIR0(kX86Mfence); ret = true; } } else if (barrier_kind == kNTStoreStore) { mem_barrier = NewLIR0(kX86Sfence); ret = true; } // Now ensure that a scheduling barrier is in place. if (mem_barrier == nullptr) { GenBarrier(); } else { // Mark as a scheduling barrier. DCHECK(!mem_barrier->flags.use_def_invalid); mem_barrier->u.m.def_mask = &kEncodeAll; } return ret; } void X86Mir2Lir::CompilerInitializeRegAlloc() { if (cu_->target64) { reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64, dp_regs_64, reserved_regs_64, reserved_regs_64q, core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64)); } else { reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32, dp_regs_32, reserved_regs_32, empty_pool, core_temps_32, empty_pool, sp_temps_32, dp_temps_32)); } // Target-specific adjustments. // Add in XMM registers. const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32; for (RegStorage reg : *xp_regs) { RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg)); reginfo_map_[reg.GetReg()] = info; } const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32; for (RegStorage reg : *xp_temps) { RegisterInfo* xp_reg_info = GetRegInfo(reg); xp_reg_info->SetIsTemp(true); } // Special Handling for x86_64 RIP addressing. if (cu_->target64) { RegisterInfo* info = new (arena_) RegisterInfo(RegStorage(kRIPReg), kEncodeNone); reginfo_map_[kRIPReg] = info; } // Alias single precision xmm to double xmms. // TODO: as needed, add larger vector sizes - alias all to the largest. for (RegisterInfo* info : reg_pool_->sp_regs_) { int sp_reg_num = info->GetReg().GetRegNum(); RegStorage xp_reg = RegStorage::Solo128(sp_reg_num); RegisterInfo* xp_reg_info = GetRegInfo(xp_reg); // 128-bit xmm vector register's master storage should refer to itself. DCHECK_EQ(xp_reg_info, xp_reg_info->Master()); // Redirect 32-bit vector's master storage to 128-bit vector. info->SetMaster(xp_reg_info); RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num); RegisterInfo* dp_reg_info = GetRegInfo(dp_reg); // Redirect 64-bit vector's master storage to 128-bit vector. dp_reg_info->SetMaster(xp_reg_info); // Singles should show a single 32-bit mask bit, at first referring to the low half. DCHECK_EQ(info->StorageMask(), 0x1U); } if (cu_->target64) { // Alias 32bit W registers to corresponding 64bit X registers. for (RegisterInfo* info : reg_pool_->core_regs_) { int x_reg_num = info->GetReg().GetRegNum(); RegStorage x_reg = RegStorage::Solo64(x_reg_num); RegisterInfo* x_reg_info = GetRegInfo(x_reg); // 64bit X register's master storage should refer to itself. DCHECK_EQ(x_reg_info, x_reg_info->Master()); // Redirect 32bit W master storage to 64bit X. info->SetMaster(x_reg_info); // 32bit W should show a single 32-bit mask bit, at first referring to the low half. DCHECK_EQ(info->StorageMask(), 0x1U); } } // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods. // TODO: adjust for x86/hard float calling convention. reg_pool_->next_core_reg_ = 2; reg_pool_->next_sp_reg_ = 2; reg_pool_->next_dp_reg_ = 1; } int X86Mir2Lir::VectorRegisterSize() { return 128; } int X86Mir2Lir::NumReservableVectorRegisters(bool long_or_fp) { int num_vector_temps = cu_->target64 ? xp_temps_64.size() : xp_temps_32.size(); // Leave a few temps for use by backend as scratch. return long_or_fp ? num_vector_temps - 2 : num_vector_temps - 1; } static dwarf::Reg DwarfCoreReg(bool is_x86_64, int num) { return is_x86_64 ? dwarf::Reg::X86_64Core(num) : dwarf::Reg::X86Core(num); } static dwarf::Reg DwarfFpReg(bool is_x86_64, int num) { return is_x86_64 ? dwarf::Reg::X86_64Fp(num) : dwarf::Reg::X86Fp(num); } void X86Mir2Lir::SpillCoreRegs() { if (num_core_spills_ == 0) { return; } // Spill mask not including fake return address register uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); OpSize size = cu_->target64 ? k64 : k32; const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; for (int reg = 0; mask != 0u; mask >>= 1, reg++) { if ((mask & 0x1) != 0u) { DCHECK_NE(offset, 0) << "offset 0 should be for method"; RegStorage r_src = cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg); StoreBaseDisp(rs_rSP, offset, r_src, size, kNotVolatile); cfi_.RelOffset(DwarfCoreReg(cu_->target64, reg), offset); offset += GetInstructionSetPointerSize(cu_->instruction_set); } } } void X86Mir2Lir::UnSpillCoreRegs() { if (num_core_spills_ == 0) { return; } // Spill mask not including fake return address register uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); OpSize size = cu_->target64 ? k64 : k32; const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; for (int reg = 0; mask != 0u; mask >>= 1, reg++) { if ((mask & 0x1) != 0u) { RegStorage r_dest = cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg); LoadBaseDisp(rs_rSP, offset, r_dest, size, kNotVolatile); cfi_.Restore(DwarfCoreReg(cu_->target64, reg)); offset += GetInstructionSetPointerSize(cu_->instruction_set); } } } void X86Mir2Lir::SpillFPRegs() { if (num_fp_spills_ == 0) { return; } uint32_t mask = fp_spill_mask_; int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_)); const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; for (int reg = 0; mask != 0u; mask >>= 1, reg++) { if ((mask & 0x1) != 0u) { StoreBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg), k64, kNotVolatile); cfi_.RelOffset(DwarfFpReg(cu_->target64, reg), offset); offset += sizeof(double); } } } void X86Mir2Lir::UnSpillFPRegs() { if (num_fp_spills_ == 0) { return; } uint32_t mask = fp_spill_mask_; int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_)); const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; for (int reg = 0; mask != 0u; mask >>= 1, reg++) { if ((mask & 0x1) != 0u) { LoadBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg), k64, kNotVolatile); cfi_.Restore(DwarfFpReg(cu_->target64, reg)); offset += sizeof(double); } } } bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) { return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32); } RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) { // Prefer XMM registers. Fixes a problem with iget/iput to a FP when cached temporary // with same VR is a Core register. if (size == kSingle || size == kDouble) { return kFPReg; } // X86_64 can handle any size. if (cu_->target64) { return RegClassBySize(size); } if (UNLIKELY(is_volatile)) { // On x86, atomic 64-bit load/store requires an fp register. // Smaller aligned load/store is atomic for both core and fp registers. if (size == k64 || size == kDouble) { return kFPReg; } } return RegClassBySize(size); } X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) : Mir2Lir(cu, mir_graph, arena), in_to_reg_storage_x86_64_mapper_(this), in_to_reg_storage_x86_mapper_(this), pc_rel_base_reg_(RegStorage::InvalidReg()), pc_rel_base_reg_used_(false), setup_pc_rel_base_reg_(nullptr), method_address_insns_(arena->Adapter()), class_type_address_insns_(arena->Adapter()), call_method_insns_(arena->Adapter()), dex_cache_access_insns_(arena->Adapter()), const_vectors_(nullptr) { method_address_insns_.reserve(100); class_type_address_insns_.reserve(100); call_method_insns_.reserve(100); for (int i = 0; i < kX86Last; i++) { DCHECK_EQ(X86Mir2Lir::EncodingMap[i].opcode, i) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name << " is wrong: expecting " << i << ", seeing " << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode); } } Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, ArenaAllocator* const arena) { return new X86Mir2Lir(cu, mir_graph, arena); } // Not used in x86(-64) RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) { UNUSED(trampoline); LOG(FATAL) << "Unexpected use of LoadHelper in x86"; UNREACHABLE(); } LIR* X86Mir2Lir::CheckSuspendUsingLoad() { // First load the pointer in fs:[suspend-trigger] into eax // Then use a test instruction to indirect via that address. if (cu_->target64) { NewLIR2(kX86Mov64RT, rs_rAX.GetReg(), Thread::ThreadSuspendTriggerOffset<8>().Int32Value()); } else { NewLIR2(kX86Mov32RT, rs_rAX.GetReg(), Thread::ThreadSuspendTriggerOffset<4>().Int32Value()); } return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0); } uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) { DCHECK(!IsPseudoLirOp(opcode)); return X86Mir2Lir::EncodingMap[opcode].flags; } const char* X86Mir2Lir::GetTargetInstName(int opcode) { DCHECK(!IsPseudoLirOp(opcode)); return X86Mir2Lir::EncodingMap[opcode].name; } const char* X86Mir2Lir::GetTargetInstFmt(int opcode) { DCHECK(!IsPseudoLirOp(opcode)); return X86Mir2Lir::EncodingMap[opcode].fmt; } void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) { // Can we do this directly to memory? rl_dest = UpdateLocWide(rl_dest); if ((rl_dest.location == kLocDalvikFrame) || (rl_dest.location == kLocCompilerTemp)) { int32_t val_lo = Low32Bits(value); int32_t val_hi = High32Bits(value); int r_base = rs_rX86_SP_32.GetReg(); int displacement = SRegOffset(rl_dest.s_reg_low); ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo); AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2, false /* is_load */, true /* is64bit */); store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi); AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2, false /* is_load */, true /* is64bit */); return; } // Just use the standard code to do the generation. Mir2Lir::GenConstWide(rl_dest, value); } // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc void X86Mir2Lir::DumpRegLocation(RegLocation loc) { LOG(INFO) << "location: " << loc.location << ',' << (loc.wide ? " w" : " ") << (loc.defined ? " D" : " ") << (loc.is_const ? " c" : " ") << (loc.fp ? " F" : " ") << (loc.core ? " C" : " ") << (loc.ref ? " r" : " ") << (loc.high_word ? " h" : " ") << (loc.home ? " H" : " ") << ", low: " << static_cast<int>(loc.reg.GetLowReg()) << ", high: " << static_cast<int>(loc.reg.GetHighReg()) << ", s_reg: " << loc.s_reg_low << ", orig: " << loc.orig_sreg; } void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type, SpecialTargetRegister symbolic_reg) { /* * For x86, just generate a 32 bit move immediate instruction, that will be filled * in at 'link time'. For now, put a unique value based on target to ensure that * code deduplication works. */ int target_method_idx = target_method.dex_method_index; const DexFile* target_dex_file = target_method.dex_file; const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id); // Generate the move instruction with the unique pointer and save index, dex_file, and type. LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, kNotWide).GetReg(), static_cast<int>(target_method_id_ptr), target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type); AppendLIR(move); method_address_insns_.push_back(move); } void X86Mir2Lir::LoadClassType(const DexFile& dex_file, uint32_t type_idx, SpecialTargetRegister symbolic_reg) { /* * For x86, just generate a 32 bit move immediate instruction, that will be filled * in at 'link time'. For now, put a unique value based on target to ensure that * code deduplication works. */ const DexFile::TypeId& id = dex_file.GetTypeId(type_idx); uintptr_t ptr = reinterpret_cast<uintptr_t>(&id); // Generate the move instruction with the unique pointer and save index and type. LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, kNotWide).GetReg(), static_cast<int>(ptr), type_idx, WrapPointer(const_cast<DexFile*>(&dex_file))); AppendLIR(move); class_type_address_insns_.push_back(move); } LIR* X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) { /* * For x86, just generate a 32 bit call relative instruction, that will be filled * in at 'link time'. */ int target_method_idx = target_method.dex_method_index; const DexFile* target_dex_file = target_method.dex_file; // Generate the call instruction with the unique pointer and save index, dex_file, and type. // NOTE: Method deduplication takes linker patches into account, so we can just pass 0 // as a placeholder for the offset. LIR* call = RawLIR(current_dalvik_offset_, kX86CallI, 0, target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type); AppendLIR(call); call_method_insns_.push_back(call); return call; } static LIR* GenInvokeNoInlineCall(Mir2Lir* mir_to_lir, InvokeType type) { QuickEntrypointEnum trampoline; switch (type) { case kInterface: trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck; break; case kDirect: trampoline = kQuickInvokeDirectTrampolineWithAccessCheck; break; case kStatic: trampoline = kQuickInvokeStaticTrampolineWithAccessCheck; break; case kSuper: trampoline = kQuickInvokeSuperTrampolineWithAccessCheck; break; case kVirtual: trampoline = kQuickInvokeVirtualTrampolineWithAccessCheck; break; default: LOG(FATAL) << "Unexpected invoke type"; trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck; } return mir_to_lir->InvokeTrampoline(kOpBlx, RegStorage::InvalidReg(), trampoline); } LIR* X86Mir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) { LIR* call_insn; if (method_info.FastPath()) { if (method_info.DirectCode() == static_cast<uintptr_t>(-1)) { // We can have the linker fixup a call relative. call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType()); } else { call_insn = OpMem(kOpBlx, TargetReg(kArg0, kRef), ArtMethod::EntryPointFromQuickCompiledCodeOffset( cu_->target64 ? 8 : 4).Int32Value()); } } else { call_insn = GenInvokeNoInlineCall(this, method_info.GetSharpType()); } return call_insn; } void X86Mir2Lir::InstallLiteralPools() { // These are handled differently for x86. DCHECK(code_literal_list_ == nullptr); DCHECK(method_literal_list_ == nullptr); DCHECK(class_literal_list_ == nullptr); if (const_vectors_ != nullptr) { // Vector literals must be 16-byte aligned. The header that is placed // in the code section causes misalignment so we take it into account. // Otherwise, we are sure that for x86 method is aligned to 16. DCHECK_EQ(GetInstructionSetAlignment(cu_->instruction_set), 16u); uint32_t bytes_to_fill = (0x10 - ((code_buffer_.size() + sizeof(OatQuickMethodHeader)) & 0xF)) & 0xF; while (bytes_to_fill > 0) { code_buffer_.push_back(0); bytes_to_fill--; } for (LIR *p = const_vectors_; p != nullptr; p = p->next) { Push32(&code_buffer_, p->operands[0]); Push32(&code_buffer_, p->operands[1]); Push32(&code_buffer_, p->operands[2]); Push32(&code_buffer_, p->operands[3]); } } patches_.reserve(method_address_insns_.size() + class_type_address_insns_.size() + call_method_insns_.size() + dex_cache_access_insns_.size()); // Handle the fixups for methods. for (LIR* p : method_address_insns_) { DCHECK_EQ(p->opcode, kX86Mov32RI); uint32_t target_method_idx = p->operands[2]; const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[3]); // The offset to patch is the last 4 bytes of the instruction. int patch_offset = p->offset + p->flags.size - 4; patches_.push_back(LinkerPatch::MethodPatch(patch_offset, target_dex_file, target_method_idx)); } // Handle the fixups for class types. for (LIR* p : class_type_address_insns_) { DCHECK_EQ(p->opcode, kX86Mov32RI); const DexFile* class_dex_file = UnwrapPointer<DexFile>(p->operands[3]); uint32_t target_type_idx = p->operands[2]; // The offset to patch is the last 4 bytes of the instruction. int patch_offset = p->offset + p->flags.size - 4; patches_.push_back(LinkerPatch::TypePatch(patch_offset, class_dex_file, target_type_idx)); } // And now the PC-relative calls to methods. for (LIR* p : call_method_insns_) { DCHECK_EQ(p->opcode, kX86CallI); uint32_t target_method_idx = p->operands[1]; const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[2]); // The offset to patch is the last 4 bytes of the instruction. int patch_offset = p->offset + p->flags.size - 4; patches_.push_back(LinkerPatch::RelativeCodePatch(patch_offset, target_dex_file, target_method_idx)); } // PC-relative references to dex cache arrays. for (LIR* p : dex_cache_access_insns_) { DCHECK(p->opcode == kX86Mov32RM || p->opcode == kX86Mov64RM); const DexFile* dex_file = UnwrapPointer<DexFile>(p->operands[3]); uint32_t offset = p->operands[4]; // The offset to patch is the last 4 bytes of the instruction. int patch_offset = p->offset + p->flags.size - 4; DCHECK(!p->flags.is_nop); patches_.push_back(LinkerPatch::DexCacheArrayPatch(patch_offset, dex_file, p->target->offset, offset)); } // And do the normal processing. Mir2Lir::InstallLiteralPools(); } bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { RegLocation rl_src = info->args[0]; RegLocation rl_srcPos = info->args[1]; RegLocation rl_dst = info->args[2]; RegLocation rl_dstPos = info->args[3]; RegLocation rl_length = info->args[4]; if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) { return false; } if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) { return false; } ClobberCallerSave(); LockCallTemps(); // Using fixed registers. RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX; LoadValueDirectFixed(rl_src, rs_rAX); LoadValueDirectFixed(rl_dst, rs_rCX); LIR* src_dst_same = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr); LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr); LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr); LoadValueDirectFixed(rl_length, rs_rDX); // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path. LIR* len_too_big = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr); LoadValueDirectFixed(rl_src, rs_rAX); LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX); LIR* src_bad_len = nullptr; LIR* src_bad_off = nullptr; LIR* srcPos_negative = nullptr; if (!rl_srcPos.is_const) { LoadValueDirectFixed(rl_srcPos, tmp_reg); srcPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr); // src_pos < src_len src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr); // src_len - src_pos < copy_len OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg); src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); } else { int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg); if (pos_val == 0) { src_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr); } else { // src_pos < src_len src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr); // src_len - src_pos < copy_len OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val); src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); } } LIR* dstPos_negative = nullptr; LIR* dst_bad_len = nullptr; LIR* dst_bad_off = nullptr; LoadValueDirectFixed(rl_dst, rs_rAX); LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX); if (!rl_dstPos.is_const) { LoadValueDirectFixed(rl_dstPos, tmp_reg); dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr); // dst_pos < dst_len dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr); // dst_len - dst_pos < copy_len OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg); dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); } else { int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg); if (pos_val == 0) { dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr); } else { // dst_pos < dst_len dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr); // dst_len - dst_pos < copy_len OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val); dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); } } // Everything is checked now. LoadValueDirectFixed(rl_src, rs_rAX); LoadValueDirectFixed(rl_dst, tmp_reg); LoadValueDirectFixed(rl_srcPos, rs_rCX); NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(), rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value()); // RAX now holds the address of the first src element to be copied. LoadValueDirectFixed(rl_dstPos, rs_rCX); NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(), rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() ); // RBX now holds the address of the first dst element to be copied. // Check if the number of elements to be copied is odd or even. If odd // then copy the first element (so that the remaining number of elements // is even). LoadValueDirectFixed(rl_length, rs_rCX); OpRegImm(kOpAnd, rs_rCX, 1); LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr); OpRegImm(kOpSub, rs_rDX, 1); LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf); StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf); // Since the remaining number of elements is even, we will copy by // two elements at a time. LIR* beginLoop = NewLIR0(kPseudoTargetLabel); LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr); OpRegImm(kOpSub, rs_rDX, 2); LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle); StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle); OpUnconditionalBranch(beginLoop); LIR *check_failed = NewLIR0(kPseudoTargetLabel); LIR* launchpad_branch = OpUnconditionalBranch(nullptr); LIR *return_point = NewLIR0(kPseudoTargetLabel); jmp_to_ret->target = return_point; jmp_to_begin_loop->target = beginLoop; src_dst_same->target = check_failed; len_too_big->target = check_failed; src_null_branch->target = check_failed; if (srcPos_negative != nullptr) srcPos_negative ->target = check_failed; if (src_bad_off != nullptr) src_bad_off->target = check_failed; if (src_bad_len != nullptr) src_bad_len->target = check_failed; dst_null_branch->target = check_failed; if (dstPos_negative != nullptr) dstPos_negative->target = check_failed; if (dst_bad_off != nullptr) dst_bad_off->target = check_failed; if (dst_bad_len != nullptr) dst_bad_len->target = check_failed; AddIntrinsicSlowPath(info, launchpad_branch, return_point); ClobberCallerSave(); // We must clobber everything because slow path will return here return true; } /* * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff, * otherwise bails to standard library code. */ bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { RegLocation rl_obj = info->args[0]; RegLocation rl_char = info->args[1]; RegLocation rl_start; // Note: only present in III flavor or IndexOf. // RBX is promotable in 64-bit mode. RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX; int start_value = -1; uint32_t char_value = rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0; if (char_value > 0xFFFF) { // We have to punt to the real String.indexOf. return false; } // Okay, we are commited to inlining this. // EAX: 16 bit character being searched. // ECX: count: number of words to be searched. // EDI: String being searched. // EDX: temporary during execution. // EBX or R11: temporary during execution (depending on mode). // REP SCASW: search instruction. FlushAllRegs(); RegLocation rl_return = GetReturn(kCoreReg); RegLocation rl_dest = InlineTarget(info); // Is the string non-null? LoadValueDirectFixed(rl_obj, rs_rDX); GenNullCheck(rs_rDX, info->opt_flags); info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. LIR *slowpath_branch = nullptr, *length_compare = nullptr; // We need the value in EAX. if (rl_char.is_const) { LoadConstantNoClobber(rs_rAX, char_value); } else { // Does the character fit in 16 bits? Compare it at runtime. LoadValueDirectFixed(rl_char, rs_rAX); slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr); } // From here down, we know that we are looking for a char that fits in 16 bits. // Location of reference to data array within the String object. int value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count within the String object. int count_offset = mirror::String::CountOffset().Int32Value(); // Compute the number of words to search in to rCX. Load32Disp(rs_rDX, count_offset, rs_rCX); // Possible signal here due to null pointer dereference. // Note that the signal handler will expect the top word of // the stack to be the ArtMethod*. If the PUSH edi instruction // below is ahead of the load above then this will not be true // and the signal handler will not work. MarkPossibleNullPointerException(0); if (!cu_->target64) { // EDI is promotable in 32-bit mode. NewLIR1(kX86Push32R, rs_rDI.GetReg()); cfi_.AdjustCFAOffset(4); // Record cfi only if it is not already spilled. if (!CoreSpillMaskContains(rs_rDI.GetReg())) { cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rDI.GetReg()), 0); } } if (zero_based) { // Start index is not present. // We have to handle an empty string. Use special instruction JECXZ. length_compare = NewLIR0(kX86Jecxz8); // Copy the number of words to search in a temporary register. // We will use the register at the end to calculate result. OpRegReg(kOpMov, rs_tmp, rs_rCX); } else { // Start index is present. rl_start = info->args[2]; // We have to offset by the start index. if (rl_start.is_const) { start_value = mir_graph_->ConstantValue(rl_start.orig_sreg); start_value = std::max(start_value, 0); // Is the start > count? length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr); OpRegImm(kOpMov, rs_rDI, start_value); // Copy the number of words to search in a temporary register. // We will use the register at the end to calculate result. OpRegReg(kOpMov, rs_tmp, rs_rCX); if (start_value != 0) { // Decrease the number of words to search by the start index. OpRegImm(kOpSub, rs_rCX, start_value); } } else { // Handle "start index < 0" case. if (!cu_->target64 && rl_start.location != kLocPhysReg) { // Load the start index from stack, remembering that we pushed EDI. int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t); ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); Load32Disp(rs_rX86_SP_32, displacement, rs_rDI); // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it. DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info)); int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1; AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false); } else { LoadValueDirectFixed(rl_start, rs_rDI); } OpRegReg(kOpXor, rs_tmp, rs_tmp); OpRegReg(kOpCmp, rs_rDI, rs_tmp); OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp); // The length of the string should be greater than the start index. length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr); // Copy the number of words to search in a temporary register. // We will use the register at the end to calculate result. OpRegReg(kOpMov, rs_tmp, rs_rCX); // Decrease the number of words to search by the start index. OpRegReg(kOpSub, rs_rCX, rs_rDI); } } // Load the address of the string into EDI. // In case of start index we have to add the address to existing value in EDI. if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) { OpRegRegImm(kOpAdd, rs_rDI, rs_rDX, value_offset); } else { OpRegImm(kOpLsl, rs_rDI, 1); OpRegReg(kOpAdd, rs_rDI, rs_rDX); OpRegImm(kOpAdd, rs_rDI, value_offset); } // EDI now contains the start of the string to be searched. // We are all prepared to do the search for the character. NewLIR0(kX86RepneScasw); // Did we find a match? LIR* failed_branch = OpCondBranch(kCondNe, nullptr); // yes, we matched. Compute the index of the result. OpRegReg(kOpSub, rs_tmp, rs_rCX); NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1); LIR *all_done = NewLIR1(kX86Jmp8, 0); // Failed to match; return -1. LIR *not_found = NewLIR0(kPseudoTargetLabel); length_compare->target = not_found; failed_branch->target = not_found; LoadConstantNoClobber(rl_return.reg, -1); // And join up at the end. all_done->target = NewLIR0(kPseudoTargetLabel); if (!cu_->target64) { NewLIR1(kX86Pop32R, rs_rDI.GetReg()); cfi_.AdjustCFAOffset(-4); if (!CoreSpillMaskContains(rs_rDI.GetReg())) { cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rDI.GetReg())); } } // Out of line code returns here. if (slowpath_branch != nullptr) { LIR *return_point = NewLIR0(kPseudoTargetLabel); AddIntrinsicSlowPath(info, slowpath_branch, return_point); ClobberCallerSave(); // We must clobber everything because slow path will return here } StoreValue(rl_dest, rl_return); return true; } void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) { switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) { case kMirOpReserveVectorRegisters: ReserveVectorRegisters(mir); break; case kMirOpReturnVectorRegisters: ReturnVectorRegisters(mir); break; case kMirOpConstVector: GenConst128(mir); break; case kMirOpMoveVector: GenMoveVector(mir); break; case kMirOpPackedMultiply: GenMultiplyVector(mir); break; case kMirOpPackedAddition: GenAddVector(mir); break; case kMirOpPackedSubtract: GenSubtractVector(mir); break; case kMirOpPackedShiftLeft: GenShiftLeftVector(mir); break; case kMirOpPackedSignedShiftRight: GenSignedShiftRightVector(mir); break; case kMirOpPackedUnsignedShiftRight: GenUnsignedShiftRightVector(mir); break; case kMirOpPackedAnd: GenAndVector(mir); break; case kMirOpPackedOr: GenOrVector(mir); break; case kMirOpPackedXor: GenXorVector(mir); break; case kMirOpPackedAddReduce: GenAddReduceVector(mir); break; case kMirOpPackedReduce: GenReduceVector(mir); break; case kMirOpPackedSet: GenSetVector(mir); break; case kMirOpMemBarrier: GenMemBarrier(static_cast<MemBarrierKind>(mir->dalvikInsn.vA)); break; case kMirOpPackedArrayGet: GenPackedArrayGet(bb, mir); break; case kMirOpPackedArrayPut: GenPackedArrayPut(bb, mir); break; default: break; } } void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) { for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) { RegStorage xp_reg = RegStorage::Solo128(i); RegisterInfo *xp_reg_info = GetRegInfo(xp_reg); Clobber(xp_reg); for (RegisterInfo *info = xp_reg_info->GetAliasChain(); info != nullptr; info = info->GetAliasChain()) { ArenaVector<RegisterInfo*>* regs = info->GetReg().IsSingle() ? ®_pool_->sp_regs_ : ®_pool_->dp_regs_; auto it = std::find(regs->begin(), regs->end(), info); DCHECK(it != regs->end()); regs->erase(it); } } } void X86Mir2Lir::ReturnVectorRegisters(MIR* mir) { for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) { RegStorage xp_reg = RegStorage::Solo128(i); RegisterInfo *xp_reg_info = GetRegInfo(xp_reg); for (RegisterInfo *info = xp_reg_info->GetAliasChain(); info != nullptr; info = info->GetAliasChain()) { if (info->GetReg().IsSingle()) { reg_pool_->sp_regs_.push_back(info); } else { reg_pool_->dp_regs_.push_back(info); } } } } void X86Mir2Lir::GenConst128(MIR* mir) { RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest); uint32_t *args = mir->dalvikInsn.arg; int reg = rs_dest.GetReg(); // Check for all 0 case. if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) { NewLIR2(kX86XorpsRR, reg, reg); return; } // Append the mov const vector to reg opcode. AppendOpcodeWithConst(kX86MovdqaRM, reg, mir); } void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) { // To deal with correct memory ordering, reverse order of constants. int32_t constants[4]; constants[3] = mir->dalvikInsn.arg[0]; constants[2] = mir->dalvikInsn.arg[1]; constants[1] = mir->dalvikInsn.arg[2]; constants[0] = mir->dalvikInsn.arg[3]; // Search if there is already a constant in pool with this value. LIR *data_target = ScanVectorLiteral(constants); if (data_target == nullptr) { data_target = AddVectorLiteral(constants); } // Load the proper value from the literal area. // We don't know the proper offset for the value, so pick one that will force // 4 byte offset. We will fix this up in the assembler later to have the // right value. LIR* load; ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); if (cu_->target64) { load = NewLIR3(opcode, reg, kRIPReg, kDummy32BitOffset); } else { // Get the PC to a register and get the anchor. LIR* anchor; RegStorage r_pc = GetPcAndAnchor(&anchor); load = NewLIR3(opcode, reg, r_pc.GetReg(), kDummy32BitOffset); load->operands[4] = WrapPointer(anchor); if (IsTemp(r_pc)) { FreeTemp(r_pc); } } load->flags.fixup = kFixupLoad; load->target = data_target; } void X86Mir2Lir::GenMoveVector(MIR* mir) { // We only support 128 bit registers. DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest); RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB); NewLIR2(kX86MovdqaRR, rs_dest.GetReg(), rs_src.GetReg()); } void X86Mir2Lir::GenMultiplyVectorSignedByte(RegStorage rs_dest_src1, RegStorage rs_src2) { /* * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM * and multiplying 8 at a time before recombining back into one XMM register. * * let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes) * xmm3 is tmp (operate on high bits of 16bit lanes) * * xmm3 = xmm1 * xmm1 = xmm1 .* xmm2 * xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff // xmm1 now has low bits * xmm3 = xmm3 .>> 8 * xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00 * xmm2 = xmm2 .* xmm3 // xmm2 now has high bits * xmm1 = xmm1 | xmm2 // combine results */ // Copy xmm1. RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempDouble()); RegStorage rs_dest_high_tmp = Get128BitRegister(AllocTempDouble()); NewLIR2(kX86MovdqaRR, rs_src1_high_tmp.GetReg(), rs_src2.GetReg()); NewLIR2(kX86MovdqaRR, rs_dest_high_tmp.GetReg(), rs_dest_src1.GetReg()); // Multiply low bits. // x7 *= x3 NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); // xmm1 now has low bits. AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF); // Prepare high bits for multiplication. NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), 0x8); AndMaskVectorRegister(rs_dest_high_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00); // Multiply high bits and xmm2 now has high bits. NewLIR2(kX86PmullwRR, rs_src1_high_tmp.GetReg(), rs_dest_high_tmp.GetReg()); // Combine back into dest XMM register. NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src1_high_tmp.GetReg()); } void X86Mir2Lir::GenMultiplyVectorLong(RegStorage rs_dest_src1, RegStorage rs_src2) { /* * We need to emulate the packed long multiply. * For kMirOpPackedMultiply xmm1, xmm0: * - xmm1 is src/dest * - xmm0 is src * - Get xmm2 and xmm3 as temp * - Idea is to multiply the lower 32 of each operand with the higher 32 of the other. * - Then add the two results. * - Move it to the upper 32 of the destination * - Then multiply the lower 32-bits of the operands and add the result to the destination. * * (op dest src ) * movdqa %xmm2, %xmm1 * movdqa %xmm3, %xmm0 * psrlq %xmm3, $0x20 * pmuludq %xmm3, %xmm2 * psrlq %xmm1, $0x20 * pmuludq %xmm1, %xmm0 * paddq %xmm1, %xmm3 * psllq %xmm1, $0x20 * pmuludq %xmm2, %xmm0 * paddq %xmm1, %xmm2 * * When both the operands are the same, then we need to calculate the lower-32 * higher-32 * calculation only once. Thus we don't need the xmm3 temp above. That sequence becomes: * * (op dest src ) * movdqa %xmm2, %xmm1 * psrlq %xmm1, $0x20 * pmuludq %xmm1, %xmm0 * paddq %xmm1, %xmm1 * psllq %xmm1, $0x20 * pmuludq %xmm2, %xmm0 * paddq %xmm1, %xmm2 * */ bool both_operands_same = (rs_dest_src1.GetReg() == rs_src2.GetReg()); RegStorage rs_tmp_vector_1; RegStorage rs_tmp_vector_2; rs_tmp_vector_1 = Get128BitRegister(AllocTempDouble()); NewLIR2(kX86MovdqaRR, rs_tmp_vector_1.GetReg(), rs_dest_src1.GetReg()); if (both_operands_same == false) { rs_tmp_vector_2 = Get128BitRegister(AllocTempDouble()); NewLIR2(kX86MovdqaRR, rs_tmp_vector_2.GetReg(), rs_src2.GetReg()); NewLIR2(kX86PsrlqRI, rs_tmp_vector_2.GetReg(), 0x20); NewLIR2(kX86PmuludqRR, rs_tmp_vector_2.GetReg(), rs_tmp_vector_1.GetReg()); } NewLIR2(kX86PsrlqRI, rs_dest_src1.GetReg(), 0x20); NewLIR2(kX86PmuludqRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); if (both_operands_same == false) { NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_2.GetReg()); } else { NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg()); } NewLIR2(kX86PsllqRI, rs_dest_src1.GetReg(), 0x20); NewLIR2(kX86PmuludqRR, rs_tmp_vector_1.GetReg(), rs_src2.GetReg()); NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_1.GetReg()); } void X86Mir2Lir::GenMultiplyVector(MIR* mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest_src1); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); int opcode = 0; switch (opsize) { case k32: opcode = kX86PmulldRR; break; case kSignedHalf: opcode = kX86PmullwRR; break; case kSingle: opcode = kX86MulpsRR; break; case kDouble: opcode = kX86MulpdRR; break; case kSignedByte: // HW doesn't support 16x16 byte multiplication so emulate it. GenMultiplyVectorSignedByte(rs_dest_src1, rs_src2); return; case k64: GenMultiplyVectorLong(rs_dest_src1, rs_src2); return; default: LOG(FATAL) << "Unsupported vector multiply " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenAddVector(MIR* mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest_src1); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); int opcode = 0; switch (opsize) { case k32: opcode = kX86PadddRR; break; case k64: opcode = kX86PaddqRR; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PaddwRR; break; case kUnsignedByte: case kSignedByte: opcode = kX86PaddbRR; break; case kSingle: opcode = kX86AddpsRR; break; case kDouble: opcode = kX86AddpdRR; break; default: LOG(FATAL) << "Unsupported vector addition " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenSubtractVector(MIR* mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest_src1); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); int opcode = 0; switch (opsize) { case k32: opcode = kX86PsubdRR; break; case k64: opcode = kX86PsubqRR; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PsubwRR; break; case kUnsignedByte: case kSignedByte: opcode = kX86PsubbRR; break; case kSingle: opcode = kX86SubpsRR; break; case kDouble: opcode = kX86SubpdRR; break; default: LOG(FATAL) << "Unsupported vector subtraction " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenShiftByteVector(MIR* mir) { // Destination does not need clobbered because it has already been as part // of the general packed shift handler (caller of this method). RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); int opcode = 0; switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) { case kMirOpPackedShiftLeft: opcode = kX86PsllwRI; break; case kMirOpPackedSignedShiftRight: case kMirOpPackedUnsignedShiftRight: // TODO Add support for emulated byte shifts. default: LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode; break; } // Clear xmm register and return if shift more than byte length. int imm = mir->dalvikInsn.vB; if (imm >= 8) { NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg()); return; } // Shift lower values. NewLIR2(opcode, rs_dest_src1.GetReg(), imm); /* * The above shift will shift the whole word, but that means * both the bytes will shift as well. To emulate a byte level * shift, we can just throw away the lower (8 - N) bits of the * upper byte, and we are done. */ uint8_t byte_mask = 0xFF << imm; uint32_t int_mask = byte_mask; int_mask = int_mask << 8 | byte_mask; int_mask = int_mask << 8 | byte_mask; int_mask = int_mask << 8 | byte_mask; // And the destination with the mask AndMaskVectorRegister(rs_dest_src1, int_mask, int_mask, int_mask, int_mask); } void X86Mir2Lir::GenShiftLeftVector(MIR* mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest_src1); int imm = mir->dalvikInsn.vB; int opcode = 0; switch (opsize) { case k32: opcode = kX86PslldRI; break; case k64: opcode = kX86PsllqRI; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PsllwRI; break; case kSignedByte: case kUnsignedByte: GenShiftByteVector(mir); return; default: LOG(FATAL) << "Unsupported vector shift left " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), imm); } void X86Mir2Lir::GenSignedShiftRightVector(MIR* mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest_src1); int imm = mir->dalvikInsn.vB; int opcode = 0; switch (opsize) { case k32: opcode = kX86PsradRI; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PsrawRI; break; case kSignedByte: case kUnsignedByte: GenShiftByteVector(mir); return; case k64: // TODO Implement emulated shift algorithm. default: LOG(FATAL) << "Unsupported vector signed shift right " << opsize; UNREACHABLE(); } NewLIR2(opcode, rs_dest_src1.GetReg(), imm); } void X86Mir2Lir::GenUnsignedShiftRightVector(MIR* mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest_src1); int imm = mir->dalvikInsn.vB; int opcode = 0; switch (opsize) { case k32: opcode = kX86PsrldRI; break; case k64: opcode = kX86PsrlqRI; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PsrlwRI; break; case kSignedByte: case kUnsignedByte: GenShiftByteVector(mir); return; default: LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), imm); } void X86Mir2Lir::GenAndVector(MIR* mir) { // We only support 128 bit registers. DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest_src1); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenOrVector(MIR* mir) { // We only support 128 bit registers. DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest_src1); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenXorVector(MIR* mir) { // We only support 128 bit registers. DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest_src1); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) { MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4); } void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) { // Create temporary MIR as container for 128-bit binary mask. MIR const_mir; MIR* const_mirp = &const_mir; const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector); const_mirp->dalvikInsn.arg[0] = m0; const_mirp->dalvikInsn.arg[1] = m1; const_mirp->dalvikInsn.arg[2] = m2; const_mirp->dalvikInsn.arg[3] = m3; // Mask vector with const from literal pool. AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp); } void X86Mir2Lir::GenAddReduceVector(MIR* mir) { OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB); bool is_wide = opsize == k64 || opsize == kDouble; // Get the location of the virtual register. Since this bytecode is overloaded // for different types (and sizes), we need different logic for each path. // The design of bytecode uses same VR for source and destination. RegLocation rl_src, rl_dest, rl_result; if (is_wide) { rl_src = mir_graph_->GetSrcWide(mir, 0); rl_dest = mir_graph_->GetDestWide(mir); } else { rl_src = mir_graph_->GetSrc(mir, 0); rl_dest = mir_graph_->GetDest(mir); } // We need a temp for byte and short values RegStorage temp; // There is a different path depending on type and size. if (opsize == kSingle) { // Handle float case. // TODO Add support for fast math (not value safe) and do horizontal add in that case. rl_src = LoadValue(rl_src, kFPReg); rl_result = EvalLoc(rl_dest, kFPReg, true); // Since we are doing an add-reduce, we move the reg holding the VR // into the result so we include it in result. OpRegCopy(rl_result.reg, rl_src.reg); NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg()); // Since FP must keep order of operation for value safety, we shift to low // 32-bits and add to result. for (int i = 0; i < 3; i++) { NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), 0x39); NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg()); } StoreValue(rl_dest, rl_result); } else if (opsize == kDouble) { // Handle double case. rl_src = LoadValueWide(rl_src, kFPReg); rl_result = EvalLocWide(rl_dest, kFPReg, true); LOG(FATAL) << "Unsupported vector add reduce for double."; } else if (opsize == k64) { /* * Handle long case: * 1) Reduce the vector register to lower half (with addition). * 1-1) Get an xmm temp and fill it with vector register. * 1-2) Shift the xmm temp by 8-bytes. * 1-3) Add the xmm temp to vector register that is being reduced. * 2) Allocate temp GP / GP pair. * 2-1) In 64-bit case, use movq to move result to a 64-bit GP. * 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair. * 3) Finish the add reduction by doing what add-long/2addr does, * but instead of having a VR as one of the sources, we have our temp GP. */ RegStorage rs_tmp_vector = Get128BitRegister(AllocTempDouble()); NewLIR2(kX86MovdqaRR, rs_tmp_vector.GetReg(), vector_src.GetReg()); NewLIR2(kX86PsrldqRI, rs_tmp_vector.GetReg(), 8); NewLIR2(kX86PaddqRR, vector_src.GetReg(), rs_tmp_vector.GetReg()); FreeTemp(rs_tmp_vector); // We would like to be able to reuse the add-long implementation, so set up a fake // register location to pass it. RegLocation temp_loc = mir_graph_->GetBadLoc(); temp_loc.core = 1; temp_loc.wide = 1; temp_loc.location = kLocPhysReg; temp_loc.reg = AllocTempWide(); if (cu_->target64) { DCHECK(!temp_loc.reg.IsPair()); NewLIR2(kX86MovqrxRR, temp_loc.reg.GetReg(), vector_src.GetReg()); } else { NewLIR2(kX86MovdrxRR, temp_loc.reg.GetLowReg(), vector_src.GetReg()); NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20); NewLIR2(kX86MovdrxRR, temp_loc.reg.GetHighReg(), vector_src.GetReg()); } GenArithOpLong(Instruction::ADD_LONG_2ADDR, rl_dest, temp_loc, temp_loc, mir->optimization_flags); } else if (opsize == kSignedByte || opsize == kUnsignedByte) { RegStorage rs_tmp = Get128BitRegister(AllocTempDouble()); NewLIR2(kX86PxorRR, rs_tmp.GetReg(), rs_tmp.GetReg()); NewLIR2(kX86PsadbwRR, vector_src.GetReg(), rs_tmp.GetReg()); NewLIR3(kX86PshufdRRI, rs_tmp.GetReg(), vector_src.GetReg(), 0x4e); NewLIR2(kX86PaddbRR, vector_src.GetReg(), rs_tmp.GetReg()); // Move to a GPR temp = AllocTemp(); NewLIR2(kX86MovdrxRR, temp.GetReg(), vector_src.GetReg()); } else { // Handle and the int and short cases together // Initialize as if we were handling int case. Below we update // the opcode if handling byte or short. int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8; int vec_unit_size; int horizontal_add_opcode; int extract_opcode; if (opsize == kSignedHalf || opsize == kUnsignedHalf) { extract_opcode = kX86PextrwRRI; horizontal_add_opcode = kX86PhaddwRR; vec_unit_size = 2; } else if (opsize == k32) { vec_unit_size = 4; horizontal_add_opcode = kX86PhadddRR; extract_opcode = kX86PextrdRRI; } else { LOG(FATAL) << "Unsupported vector add reduce " << opsize; return; } int elems = vec_bytes / vec_unit_size; while (elems > 1) { NewLIR2(horizontal_add_opcode, vector_src.GetReg(), vector_src.GetReg()); elems >>= 1; } // Handle this as arithmetic unary case. ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); // Extract to a GP register because this is integral typed. temp = AllocTemp(); NewLIR3(extract_opcode, temp.GetReg(), vector_src.GetReg(), 0); } if (opsize != k64 && opsize != kSingle && opsize != kDouble) { // The logic below looks very similar to the handling of ADD_INT_2ADDR // except the rhs is not a VR but a physical register allocated above. // No load of source VR is done because it assumes that rl_result will // share physical register / memory location. rl_result = UpdateLocTyped(rl_dest); if (rl_result.location == kLocPhysReg) { // Ensure res is in a core reg. rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegReg(kOpAdd, rl_result.reg, temp); StoreFinalValue(rl_dest, rl_result); } else { // Do the addition directly to memory. ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); OpMemReg(kOpAdd, rl_result, temp.GetReg()); } } } void X86Mir2Lir::GenReduceVector(MIR* mir) { OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); RegLocation rl_dest = mir_graph_->GetDest(mir); RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB); RegLocation rl_result; bool is_wide = false; // There is a different path depending on type and size. if (opsize == kSingle) { // Handle float case. // TODO Add support for fast math (not value safe) and do horizontal add in that case. int extract_index = mir->dalvikInsn.arg[0]; rl_result = EvalLoc(rl_dest, kFPReg, true); NewLIR2(kX86PxorRR, rl_result.reg.GetReg(), rl_result.reg.GetReg()); if (LIKELY(extract_index != 0)) { // We know the index of element which we want to extract. We want to extract it and // keep values in vector register correct for future use. So the way we act is: // 1. Generate shuffle mask that allows to swap zeroth and required elements; // 2. Shuffle vector register with this mask; // 3. Extract zeroth element where required value lies; // 4. Shuffle with same mask again to restore original values in vector register. // The mask is generated from equivalence mask 0b11100100 swapping 0th and extracted // element indices. int shuffle[4] = {0b00, 0b01, 0b10, 0b11}; shuffle[0] = extract_index; shuffle[extract_index] = 0; int mask = 0; for (int i = 0; i < 4; i++) { mask |= (shuffle[i] << (2 * i)); } NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask); NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg()); NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask); } else { // We need to extract zeroth element and don't need any complex stuff to do it. NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg()); } StoreFinalValue(rl_dest, rl_result); } else if (opsize == kDouble) { // TODO Handle double case. LOG(FATAL) << "Unsupported add reduce for double."; } else if (opsize == k64) { /* * Handle long case: * 1) Reduce the vector register to lower half (with addition). * 1-1) Get an xmm temp and fill it with vector register. * 1-2) Shift the xmm temp by 8-bytes. * 1-3) Add the xmm temp to vector register that is being reduced. * 2) Evaluate destination to a GP / GP pair. * 2-1) In 64-bit case, use movq to move result to a 64-bit GP. * 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair. * 3) Store the result to the final destination. */ NewLIR2(kX86PsrldqRI, vector_src.GetReg(), 8); rl_result = EvalLocWide(rl_dest, kCoreReg, true); if (cu_->target64) { DCHECK(!rl_result.reg.IsPair()); NewLIR2(kX86MovqrxRR, rl_result.reg.GetReg(), vector_src.GetReg()); } else { NewLIR2(kX86MovdrxRR, rl_result.reg.GetLowReg(), vector_src.GetReg()); NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20); NewLIR2(kX86MovdrxRR, rl_result.reg.GetHighReg(), vector_src.GetReg()); } StoreValueWide(rl_dest, rl_result); } else { int extract_index = mir->dalvikInsn.arg[0]; int extr_opcode = 0; rl_result = UpdateLocTyped(rl_dest); // Handle the rest of integral types now. switch (opsize) { case k32: extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdRRI : kX86PextrdMRI; break; case kSignedHalf: case kUnsignedHalf: extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwRRI : kX86PextrwMRI; break; case kSignedByte: extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrbRRI : kX86PextrbMRI; break; default: LOG(FATAL) << "Unsupported vector reduce " << opsize; UNREACHABLE(); } if (rl_result.location == kLocPhysReg) { NewLIR3(extr_opcode, rl_result.reg.GetReg(), vector_src.GetReg(), extract_index); StoreFinalValue(rl_dest, rl_result); } else { int displacement = SRegOffset(rl_result.s_reg_low); ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); LIR *l = NewLIR4(extr_opcode, rs_rX86_SP_32.GetReg(), displacement, vector_src.GetReg(), extract_index); AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */); } } } void X86Mir2Lir::LoadVectorRegister(RegStorage rs_dest, RegStorage rs_src, OpSize opsize, int op_mov) { if (!cu_->target64 && opsize == k64) { // Logic assumes that longs are loaded in GP register pairs. NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rs_src.GetLowReg()); RegStorage r_tmp = AllocTempDouble(); NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), rs_src.GetHighReg()); NewLIR2(kX86PunpckldqRR, rs_dest.GetReg(), r_tmp.GetReg()); FreeTemp(r_tmp); } else { NewLIR2(op_mov, rs_dest.GetReg(), rs_src.GetReg()); } } void X86Mir2Lir::GenSetVector(MIR* mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); Clobber(rs_dest); int op_shuffle = 0, op_shuffle_high = 0, op_mov = kX86MovdxrRR; RegisterClass reg_type = kCoreReg; bool is_wide = false; switch (opsize) { case k32: op_shuffle = kX86PshufdRRI; break; case kSingle: op_shuffle = kX86PshufdRRI; op_mov = kX86MovdqaRR; reg_type = kFPReg; break; case k64: op_shuffle = kX86PunpcklqdqRR; op_mov = kX86MovqxrRR; is_wide = true; break; case kSignedByte: case kUnsignedByte: // We will have the source loaded up in a // double-word before we use this shuffle op_shuffle = kX86PshufdRRI; break; case kSignedHalf: case kUnsignedHalf: // Handles low quadword. op_shuffle = kX86PshuflwRRI; // Handles upper quadword. op_shuffle_high = kX86PshufdRRI; break; default: LOG(FATAL) << "Unsupported vector set " << opsize; break; } // Load the value from the VR into a physical register. RegLocation rl_src; if (!is_wide) { rl_src = mir_graph_->GetSrc(mir, 0); rl_src = LoadValue(rl_src, reg_type); } else { rl_src = mir_graph_->GetSrcWide(mir, 0); rl_src = LoadValueWide(rl_src, reg_type); } RegStorage reg_to_shuffle = rl_src.reg; // Load the value into the XMM register. LoadVectorRegister(rs_dest, reg_to_shuffle, opsize, op_mov); if (opsize == kSignedByte || opsize == kUnsignedByte) { // In the byte case, first duplicate it to be a word // Then duplicate it to be a double-word NewLIR2(kX86PunpcklbwRR, rs_dest.GetReg(), rs_dest.GetReg()); NewLIR2(kX86PunpcklwdRR, rs_dest.GetReg(), rs_dest.GetReg()); } // Now shuffle the value across the destination. if (op_shuffle == kX86PunpcklqdqRR) { NewLIR2(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg()); } else { NewLIR3(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg(), 0); } // And then repeat as needed. if (op_shuffle_high != 0) { NewLIR3(op_shuffle_high, rs_dest.GetReg(), rs_dest.GetReg(), 0); } } void X86Mir2Lir::GenPackedArrayGet(BasicBlock* bb, MIR* mir) { UNUSED(bb, mir); UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayGet not supported."; } void X86Mir2Lir::GenPackedArrayPut(BasicBlock* bb, MIR* mir) { UNUSED(bb, mir); UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayPut not supported."; } LIR* X86Mir2Lir::ScanVectorLiteral(int32_t* constants) { for (LIR *p = const_vectors_; p != nullptr; p = p->next) { if (constants[0] == p->operands[0] && constants[1] == p->operands[1] && constants[2] == p->operands[2] && constants[3] == p->operands[3]) { return p; } } return nullptr; } LIR* X86Mir2Lir::AddVectorLiteral(int32_t* constants) { LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData)); new_value->operands[0] = constants[0]; new_value->operands[1] = constants[1]; new_value->operands[2] = constants[2]; new_value->operands[3] = constants[3]; new_value->next = const_vectors_; if (const_vectors_ == nullptr) { estimated_native_code_size_ += 12; // Maximum needed to align to 16 byte boundary. } estimated_native_code_size_ += 16; // Space for one vector. const_vectors_ = new_value; return new_value; } // ------------ ABI support: mapping of args to physical registers ------------- RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(ShortyArg arg) { const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5}; const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg); const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3, kFArg4, kFArg5, kFArg6, kFArg7}; const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg); if (arg.IsFP()) { if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) { return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], arg.IsWide() ? kWide : kNotWide); } } else { if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) { return m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], arg.IsRef() ? kRef : (arg.IsWide() ? kWide : kNotWide)); } } return RegStorage::InvalidReg(); } RegStorage X86Mir2Lir::InToRegStorageX86Mapper::GetNextReg(ShortyArg arg) { const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3}; const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg); const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3}; const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg); RegStorage result = RegStorage::InvalidReg(); if (arg.IsFP()) { if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) { return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], arg.IsWide() ? kWide : kNotWide); } } else if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) { result = m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], arg.IsRef() ? kRef : kNotWide); if (arg.IsWide()) { // This must be a long, as double is handled above. // Ensure that we don't split a long across the last register and the stack. if (cur_core_reg_ == coreArgMappingToPhysicalRegSize) { // Leave the last core register unused and force the whole long to the stack. cur_core_reg_++; result = RegStorage::InvalidReg(); } else if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) { result = RegStorage::MakeRegPair( result, m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], kNotWide)); } } } return result; } // ---------End of ABI support: mapping of args to physical registers ------------- bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) { // Location of reference to data array int value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count int count_offset = mirror::String::CountOffset().Int32Value(); RegLocation rl_obj = info->args[0]; RegLocation rl_idx = info->args[1]; rl_obj = LoadValue(rl_obj, kRefReg); rl_idx = LoadValue(rl_idx, kCoreReg); RegStorage reg_max; GenNullCheck(rl_obj.reg, info->opt_flags); bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); LIR* range_check_branch = nullptr; if (range_check) { // On x86, we can compare to memory directly // Set up a launch pad to allow retry in case of bounds violation */ if (rl_idx.is_const) { LIR* comparison; range_check_branch = OpCmpMemImmBranch( kCondLs, RegStorage::InvalidReg(), rl_obj.reg, count_offset, mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison); MarkPossibleNullPointerExceptionAfter(0, comparison); } else { OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset); MarkPossibleNullPointerException(0); range_check_branch = OpCondBranch(kCondUge, nullptr); } } RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadBaseIndexedDisp(rl_obj.reg, rl_idx.reg, 1, value_offset, rl_result.reg, kUnsignedHalf); FreeTemp(rl_idx.reg); FreeTemp(rl_obj.reg); StoreValue(rl_dest, rl_result); if (range_check) { DCHECK(range_check_branch != nullptr); info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked. AddIntrinsicSlowPath(info, range_check_branch); } return true; } bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { RegLocation rl_dest = InlineTarget(info); // Early exit if the result is unused. if (rl_dest.orig_sreg < 0) { return true; } RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); if (cu_->target64) { OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>()); } else { OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>()); } StoreValue(rl_dest, rl_result); return true; } /** * Lock temp registers for explicit usage. Registers will be freed in destructor. */ X86Mir2Lir::ExplicitTempRegisterLock::ExplicitTempRegisterLock(X86Mir2Lir* mir_to_lir, int n_regs, ...) : temp_regs_(n_regs), mir_to_lir_(mir_to_lir) { va_list regs; va_start(regs, n_regs); for (int i = 0; i < n_regs; i++) { RegStorage reg = *(va_arg(regs, RegStorage*)); RegisterInfo* info = mir_to_lir_->GetRegInfo(reg); // Make sure we don't have promoted register here. DCHECK(info->IsTemp()); temp_regs_.push_back(reg); mir_to_lir_->FlushReg(reg); if (reg.IsPair()) { RegStorage partner = info->Partner(); temp_regs_.push_back(partner); mir_to_lir_->FlushReg(partner); } mir_to_lir_->Clobber(reg); mir_to_lir_->LockTemp(reg); } va_end(regs); } /* * Free all locked registers. */ X86Mir2Lir::ExplicitTempRegisterLock::~ExplicitTempRegisterLock() { // Free all locked temps. for (auto it : temp_regs_) { mir_to_lir_->FreeTemp(it); } } int X86Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) { if (count < 4) { // It does not make sense to use this utility if we have no chance to use // 128-bit move. return count; } GenDalvikArgsFlushPromoted(info, first); // The rest can be copied together int current_src_offset = SRegOffset(info->args[first].s_reg_low); int current_dest_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set); // Only davik regs are accessed in this loop; no next_call_insn() calls. ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); while (count > 0) { // This is based on the knowledge that the stack itself is 16-byte aligned. bool src_is_16b_aligned = (current_src_offset & 0xF) == 0; bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0; size_t bytes_to_move; /* * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a * a 128-bit move because we won't get the chance to try to aligned. If there are more than * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned. * We do this because we could potentially do a smaller move to align. */ if (count == 4 || (count > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) { // Moving 128-bits via xmm register. bytes_to_move = sizeof(uint32_t) * 4; // Allocate a free xmm temp. Since we are working through the calling sequence, // we expect to have an xmm temporary available. AllocTempDouble will abort if // there are no free registers. RegStorage temp = AllocTempDouble(); LIR* ld1 = nullptr; LIR* ld2 = nullptr; LIR* st1 = nullptr; LIR* st2 = nullptr; /* * The logic is similar for both loads and stores. If we have 16-byte alignment, * do an aligned move. If we have 8-byte alignment, then do the move in two * parts. This approach prevents possible cache line splits. Finally, fall back * to doing an unaligned move. In most cases we likely won't split the cache * line but we cannot prove it and thus take a conservative approach. */ bool src_is_8b_aligned = (current_src_offset & 0x7) == 0; bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0; if (src_is_16b_aligned) { ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovA128FP); } else if (src_is_8b_aligned) { ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovLo128FP); ld2 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset + (bytes_to_move >> 1), kMovHi128FP); } else { ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovU128FP); } if (dest_is_16b_aligned) { st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovA128FP); } else if (dest_is_8b_aligned) { st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovLo128FP); st2 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset + (bytes_to_move >> 1), temp, kMovHi128FP); } else { st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovU128FP); } // TODO If we could keep track of aliasing information for memory accesses that are wider // than 64-bit, we wouldn't need to set up a barrier. if (ld1 != nullptr) { if (ld2 != nullptr) { // For 64-bit load we can actually set up the aliasing information. AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true); AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true); } else { // Set barrier for 128-bit load. ld1->u.m.def_mask = &kEncodeAll; } } if (st1 != nullptr) { if (st2 != nullptr) { // For 64-bit store we can actually set up the aliasing information. AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true); AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true); } else { // Set barrier for 128-bit store. st1->u.m.def_mask = &kEncodeAll; } } // Free the temporary used for the data movement. FreeTemp(temp); } else { // Moving 32-bits via general purpose register. bytes_to_move = sizeof(uint32_t); // Instead of allocating a new temp, simply reuse one of the registers being used // for argument passing. RegStorage temp = TargetReg(kArg3, kNotWide); // Now load the argument VR and store to the outs. Load32Disp(TargetPtrReg(kSp), current_src_offset, temp); Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp); } current_src_offset += bytes_to_move; current_dest_offset += bytes_to_move; count -= (bytes_to_move >> 2); } DCHECK_EQ(count, 0); return count; } } // namespace art