/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_ #define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_ #include "base/logging.h" #include "dex/compiler_ir.h" #include "dex/mir_graph.h" #include "dex/quick/mir_to_lir.h" #include "x86_lir.h" #include <map> #include <vector> namespace art { class X86Mir2Lir FINAL : public Mir2Lir { protected: class InToRegStorageX86_64Mapper : public InToRegStorageMapper { public: explicit InToRegStorageX86_64Mapper(Mir2Lir* m2l) : m2l_(m2l), cur_core_reg_(0), cur_fp_reg_(0) {} virtual RegStorage GetNextReg(ShortyArg arg); virtual void Reset() OVERRIDE { cur_core_reg_ = 0; cur_fp_reg_ = 0; } protected: Mir2Lir* m2l_; size_t cur_core_reg_; size_t cur_fp_reg_; }; class InToRegStorageX86Mapper : public InToRegStorageX86_64Mapper { public: explicit InToRegStorageX86Mapper(Mir2Lir* m2l) : InToRegStorageX86_64Mapper(m2l) { } virtual RegStorage GetNextReg(ShortyArg arg); }; InToRegStorageX86_64Mapper in_to_reg_storage_x86_64_mapper_; InToRegStorageX86Mapper in_to_reg_storage_x86_mapper_; InToRegStorageMapper* GetResetedInToRegStorageMapper() OVERRIDE { InToRegStorageMapper* res; if (cu_->target64) { res = &in_to_reg_storage_x86_64_mapper_; } else { res = &in_to_reg_storage_x86_mapper_; } res->Reset(); return res; } class ExplicitTempRegisterLock { public: ExplicitTempRegisterLock(X86Mir2Lir* mir_to_lir, int n_regs, ...); ~ExplicitTempRegisterLock(); protected: std::vector<RegStorage> temp_regs_; X86Mir2Lir* const mir_to_lir_; }; virtual int GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) OVERRIDE; public: X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena); // Required for target - codegen helpers. bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE; bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE; void GenMultiplyByConstantFloat(RegLocation rl_dest, RegLocation rl_src1, int32_t constant) OVERRIDE; void GenMultiplyByConstantDouble(RegLocation rl_dest, RegLocation rl_src1, int64_t constant) OVERRIDE; LIR* CheckSuspendUsingLoad() OVERRIDE; RegStorage LoadHelper(QuickEntrypointEnum trampoline) OVERRIDE; LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, OpSize size, VolatileKind is_volatile) OVERRIDE; LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale, OpSize size) OVERRIDE; LIR* LoadConstantNoClobber(RegStorage r_dest, int value); LIR* LoadConstantWide(RegStorage r_dest, int64_t value); void GenLongToInt(RegLocation rl_dest, RegLocation rl_src); LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size, VolatileKind is_volatile) OVERRIDE; LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale, OpSize size) OVERRIDE; /// @copydoc Mir2Lir::UnconditionallyMarkGCCard(RegStorage) void UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) OVERRIDE; bool CanUseOpPcRelDexCacheArrayLoad() const OVERRIDE; void OpPcRelDexCacheArrayLoad(const DexFile* dex_file, int offset, RegStorage r_dest, bool wide) OVERRIDE; void GenImplicitNullCheck(RegStorage reg, int opt_flags) OVERRIDE; // Required for target - register utilities. RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE; RegStorage TargetReg(SpecialTargetRegister symbolic_reg, WideKind wide_kind) OVERRIDE { if (wide_kind == kWide) { if (cu_->target64) { return As64BitReg(TargetReg32(symbolic_reg)); } else { if (symbolic_reg >= kFArg0 && symbolic_reg <= kFArg3) { // We want an XMM, not a pair. return As64BitReg(TargetReg32(symbolic_reg)); } // x86: construct a pair. DCHECK((kArg0 <= symbolic_reg && symbolic_reg < kArg3) || (kRet0 == symbolic_reg)); return RegStorage::MakeRegPair(TargetReg32(symbolic_reg), TargetReg32(static_cast<SpecialTargetRegister>(symbolic_reg + 1))); } } else if (wide_kind == kRef && cu_->target64) { return As64BitReg(TargetReg32(symbolic_reg)); } else { return TargetReg32(symbolic_reg); } } RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE { return TargetReg(symbolic_reg, cu_->target64 ? kWide : kNotWide); } RegLocation GetReturnAlt() OVERRIDE; RegLocation GetReturnWideAlt() OVERRIDE; RegLocation LocCReturn() OVERRIDE; RegLocation LocCReturnRef() OVERRIDE; RegLocation LocCReturnDouble() OVERRIDE; RegLocation LocCReturnFloat() OVERRIDE; RegLocation LocCReturnWide() OVERRIDE; ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE; void AdjustSpillMask() OVERRIDE; void ClobberCallerSave() OVERRIDE; void FreeCallTemps() OVERRIDE; void LockCallTemps() OVERRIDE; void CompilerInitializeRegAlloc() OVERRIDE; int VectorRegisterSize() OVERRIDE; int NumReservableVectorRegisters(bool long_or_fp) OVERRIDE; // Required for target - miscellaneous. void AssembleLIR() OVERRIDE; void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE; void SetupTargetResourceMasks(LIR* lir, uint64_t flags, ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE; const char* GetTargetInstFmt(int opcode) OVERRIDE; const char* GetTargetInstName(int opcode) OVERRIDE; std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) OVERRIDE; ResourceMask GetPCUseDefEncoding() const OVERRIDE; uint64_t GetTargetInstFlags(int opcode) OVERRIDE; size_t GetInsnSize(LIR* lir) OVERRIDE; bool IsUnconditionalBranch(LIR* lir) OVERRIDE; // Get the register class for load/store of a field. RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE; // Required for target - Dalvik-level generators. void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index, RegLocation rl_dest, int scale) OVERRIDE; void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) OVERRIDE; void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) OVERRIDE; void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) OVERRIDE; void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) OVERRIDE; void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src) OVERRIDE; bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) OVERRIDE; bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) OVERRIDE; bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) OVERRIDE; bool GenInlinedReverseBits(CallInfo* info, OpSize size) OVERRIDE; bool GenInlinedSqrt(CallInfo* info) OVERRIDE; bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE; bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE; bool GenInlinedPeek(CallInfo* info, OpSize size) OVERRIDE; bool GenInlinedPoke(CallInfo* info, OpSize size) OVERRIDE; bool GenInlinedCharAt(CallInfo* info) OVERRIDE; // Long instructions. void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, int flags) OVERRIDE; void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, int flags) OVERRIDE; void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_shift, int flags) OVERRIDE; void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) OVERRIDE; void GenIntToLong(RegLocation rl_dest, RegLocation rl_src) OVERRIDE; void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_shift) OVERRIDE; /* * @brief Generate a two address long operation with a constant value * @param rl_dest location of result * @param rl_src constant source operand * @param op Opcode to be generated * @return success or not */ bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op); /* * @brief Generate a three address long operation with a constant value * @param rl_dest location of result * @param rl_src1 source operand * @param rl_src2 constant source operand * @param op Opcode to be generated * @return success or not */ bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, Instruction::Code op); /** * @brief Generate a long arithmetic operation. * @param rl_dest The destination. * @param rl_src1 First operand. * @param rl_src2 Second operand. * @param op The DEX opcode for the operation. * @param is_commutative The sources can be swapped if needed. */ virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, Instruction::Code op, bool is_commutative); /** * @brief Generate a two operand long arithmetic operation. * @param rl_dest The destination. * @param rl_src Second operand. * @param op The DEX opcode for the operation. */ void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op); /** * @brief Generate a long operation. * @param rl_dest The destination. Must be in a register * @param rl_src The other operand. May be in a register or in memory. * @param op The DEX opcode for the operation. */ virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op); // TODO: collapse reg_lo, reg_hi RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div) OVERRIDE; RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) OVERRIDE; void GenDivZeroCheckWide(RegStorage reg) OVERRIDE; void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) OVERRIDE; void GenExitSequence() OVERRIDE; void GenSpecialExitSequence() OVERRIDE; void GenSpecialEntryForSuspend() OVERRIDE; void GenSpecialExitForSuspend() OVERRIDE; void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) OVERRIDE; void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) OVERRIDE; void GenSelect(BasicBlock* bb, MIR* mir) OVERRIDE; void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code, int32_t true_val, int32_t false_val, RegStorage rs_dest, RegisterClass dest_reg_class) OVERRIDE; bool GenMemBarrier(MemBarrierKind barrier_kind) OVERRIDE; void GenMoveException(RegLocation rl_dest) OVERRIDE; void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit, int first_bit, int second_bit) OVERRIDE; void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) OVERRIDE; void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) OVERRIDE; void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE; void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE; /** * @brief Implement instanceof a final class with x86 specific code. * @param use_declaring_class 'true' if we can use the class itself. * @param type_idx Type index to use if use_declaring_class is 'false'. * @param rl_dest Result to be set to 0 or 1. * @param rl_src Object to be tested. */ void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) OVERRIDE; // Single operation generators. LIR* OpUnconditionalBranch(LIR* target) OVERRIDE; LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) OVERRIDE; LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) OVERRIDE; LIR* OpCondBranch(ConditionCode cc, LIR* target) OVERRIDE; LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) OVERRIDE; LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE; LIR* OpIT(ConditionCode cond, const char* guide) OVERRIDE; void OpEndIT(LIR* it) OVERRIDE; LIR* OpMem(OpKind op, RegStorage r_base, int disp) OVERRIDE; void OpPcRelLoad(RegStorage reg, LIR* target) OVERRIDE; LIR* OpReg(OpKind op, RegStorage r_dest_src) OVERRIDE; void OpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE; LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) OVERRIDE; LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) OVERRIDE; LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) OVERRIDE; LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) OVERRIDE; LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) OVERRIDE; LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) OVERRIDE; LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) OVERRIDE; LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) OVERRIDE; LIR* OpTestSuspend(LIR* target) OVERRIDE; LIR* OpVldm(RegStorage r_base, int count) OVERRIDE; LIR* OpVstm(RegStorage r_base, int count) OVERRIDE; void OpRegCopyWide(RegStorage dest, RegStorage src) OVERRIDE; bool GenInlinedCurrentThread(CallInfo* info) OVERRIDE; bool InexpensiveConstantInt(int32_t value) OVERRIDE; bool InexpensiveConstantFloat(int32_t value) OVERRIDE; bool InexpensiveConstantLong(int64_t value) OVERRIDE; bool InexpensiveConstantDouble(int64_t value) OVERRIDE; /* * @brief Should try to optimize for two address instructions? * @return true if we try to avoid generating three operand instructions. */ virtual bool GenerateTwoOperandInstructions() const { return true; } /* * @brief x86 specific codegen for int operations. * @param opcode Operation to perform. * @param rl_dest Destination for the result. * @param rl_lhs Left hand operand. * @param rl_rhs Right hand operand. * @param flags The instruction optimization flags. */ void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs, RegLocation rl_rhs, int flags) OVERRIDE; /* * @brief Load the Method* of a dex method into the register. * @param target_method The MethodReference of the method to be invoked. * @param type How the method will be invoked. * @param register that will contain the code address. * @note register will be passed to TargetReg to get physical register. */ void LoadMethodAddress(const MethodReference& target_method, InvokeType type, SpecialTargetRegister symbolic_reg) OVERRIDE; /* * @brief Load the Class* of a Dex Class type into the register. * @param dex DexFile that contains the class type. * @param type How the method will be invoked. * @param register that will contain the code address. * @note register will be passed to TargetReg to get physical register. */ void LoadClassType(const DexFile& dex_file, uint32_t type_idx, SpecialTargetRegister symbolic_reg) OVERRIDE; NextCallInsn GetNextSDCallInsn() OVERRIDE; /* * @brief Generate a relative call to the method that will be patched at link time. * @param target_method The MethodReference of the method to be invoked. * @param type How the method will be invoked. * @returns Call instruction */ LIR* CallWithLinkerFixup(const MethodReference& target_method, InvokeType type); /* * @brief Generate the actual call insn based on the method info. * @param method_info the lowering info for the method call. * @returns Call instruction */ LIR* GenCallInsn(const MirMethodLoweringInfo& method_info) OVERRIDE; void AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight) OVERRIDE; void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) OVERRIDE; void DoPromotion() OVERRIDE; /* * @brief Handle x86 specific literals */ void InstallLiteralPools() OVERRIDE; LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) OVERRIDE; protected: RegStorage TargetReg32(SpecialTargetRegister reg) const; // Casting of RegStorage RegStorage As32BitReg(RegStorage reg) { DCHECK(!reg.IsPair()); if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) { if (kFailOnSizeError) { LOG(FATAL) << "Expected 64b register " << reg.GetReg(); } else { LOG(WARNING) << "Expected 64b register " << reg.GetReg(); return reg; } } RegStorage ret_val = RegStorage(RegStorage::k32BitSolo, reg.GetRawBits() & RegStorage::kRegTypeMask); DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask) ->GetReg().GetReg(), ret_val.GetReg()); return ret_val; } RegStorage As64BitReg(RegStorage reg) { DCHECK(!reg.IsPair()); if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) { if (kFailOnSizeError) { LOG(FATAL) << "Expected 32b register " << reg.GetReg(); } else { LOG(WARNING) << "Expected 32b register " << reg.GetReg(); return reg; } } RegStorage ret_val = RegStorage(RegStorage::k64BitSolo, reg.GetRawBits() & RegStorage::kRegTypeMask); DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask) ->GetReg().GetReg(), ret_val.GetReg()); return ret_val; } LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement, RegStorage r_dest, OpSize size); LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement, RegStorage r_src, OpSize size, int opt_flags = 0); int AssignInsnOffsets(); void AssignOffsets(); AssemblerStatus AssembleInstructions(LIR* first_lir_insn, CodeOffset start_addr); size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index, int32_t raw_base, int32_t displacement); void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg); void EmitPrefix(const X86EncodingMap* entry, int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b); void EmitOpcode(const X86EncodingMap* entry); void EmitPrefixAndOpcode(const X86EncodingMap* entry, int32_t reg_r, int32_t reg_x, int32_t reg_b); void EmitDisp(uint8_t base, int32_t disp); void EmitModrmThread(uint8_t reg_or_opcode); void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp); void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale, int32_t disp); void EmitImm(const X86EncodingMap* entry, int64_t imm); void EmitNullary(const X86EncodingMap* entry); void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg); void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg); void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp); void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale, int32_t disp); void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg); void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp); void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t raw_index, int scale, int32_t disp); void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale, int32_t disp, int32_t raw_reg); void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm); void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale, int32_t raw_disp, int32_t imm); void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp); void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2); void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm); void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp, int32_t imm); void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1, int32_t imm); void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm); void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm); void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm); void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm); void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl); void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl); void EmitShiftRegRegCl(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t raw_cl); void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm); void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc); void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc); void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc); void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp, int32_t cc); void EmitJmp(const X86EncodingMap* entry, int32_t rel); void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc); void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp); void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp); void EmitCallThread(const X86EncodingMap* entry, int32_t disp); void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table, int32_t raw_index, int scale, int32_t table_or_disp); void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir); void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1, int64_t val, ConditionCode ccode); void GenConstWide(RegLocation rl_dest, int64_t value); void GenMultiplyVectorSignedByte(RegStorage rs_dest_src1, RegStorage rs_src2); void GenMultiplyVectorLong(RegStorage rs_dest_src1, RegStorage rs_src2); void GenShiftByteVector(MIR* mir); void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4); void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4); void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir); virtual void LoadVectorRegister(RegStorage rs_dest, RegStorage rs_src, OpSize opsize, int op_mov); static bool ProvidesFullMemoryBarrier(X86OpCode opcode); /* * @brief Ensure that a temporary register is byte addressable. * @returns a temporary guarenteed to be byte addressable. */ virtual RegStorage AllocateByteRegister(); /* * @brief Use a wide temporary as a 128-bit register * @returns a 128-bit temporary register. */ virtual RegStorage Get128BitRegister(RegStorage reg); /* * @brief Check if a register is byte addressable. * @returns true if a register is byte addressable. */ bool IsByteRegister(RegStorage reg) const; void GenDivRemLongLit(RegLocation rl_dest, RegLocation rl_src, int64_t imm, bool is_div); bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE; /* * @brief generate inline code for fast case of Strng.indexOf. * @param info Call parameters * @param zero_based 'true' if the index into the string is 0. * @returns 'true' if the call was inlined, 'false' if a regular call needs to be * generated. */ bool GenInlinedIndexOf(CallInfo* info, bool zero_based); /** * @brief Used to reserve a range of vector registers. * @see kMirOpReserveVectorRegisters * @param mir The extended MIR for reservation. */ void ReserveVectorRegisters(MIR* mir); /** * @brief Used to return a range of vector registers. * @see kMirOpReturnVectorRegisters * @param mir The extended MIR for returning vector regs. */ void ReturnVectorRegisters(MIR* mir); /* * @brief Load 128 bit constant into vector register. * @param mir The MIR whose opcode is kMirConstVector * @note vA is the TypeSize for the register. * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values. */ void GenConst128(MIR* mir); /* * @brief MIR to move a vectorized register to another. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination * @note vC: source */ void GenMoveVector(MIR* mir); /* * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know * the type of the vector. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination and source * @note vC: source */ void GenMultiplyVector(MIR* mir); /* * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the * type of the vector. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination and source * @note vC: source */ void GenAddVector(MIR* mir); /* * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the * type of the vector. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination and source * @note vC: source */ void GenSubtractVector(MIR* mir); /* * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the * type of the vector. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination and source * @note vC: immediate */ void GenShiftLeftVector(MIR* mir); /* * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to * know the type of the vector. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination and source * @note vC: immediate */ void GenSignedShiftRightVector(MIR* mir); /* * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA * to know the type of the vector. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination and source * @note vC: immediate */ void GenUnsignedShiftRightVector(MIR* mir); /* * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the * type of the vector. * @note vA: TypeSize * @note vB: destination and source * @note vC: source */ void GenAndVector(MIR* mir); /* * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the * type of the vector. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination and source * @note vC: source */ void GenOrVector(MIR* mir); /* * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the * type of the vector. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination and source * @note vC: source */ void GenXorVector(MIR* mir); /* * @brief Reduce a 128-bit packed element into a single VR by taking lower bits * @param mir The MIR whose opcode is kMirConstVector. * @details Instruction does a horizontal addition of the packed elements and then adds it to VR. * @note vA: TypeSize * @note vB: destination and source VR (not vector register) * @note vC: source (vector register) */ void GenAddReduceVector(MIR* mir); /* * @brief Extract a packed element into a single VR. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize * @note vB: destination VR (not vector register) * @note vC: source (vector register) * @note arg[0]: The index to use for extraction from vector register (which packed element). */ void GenReduceVector(MIR* mir); /* * @brief Create a vector value, with all TypeSize values equal to vC * @param bb The basic block in which the MIR is from. * @param mir The MIR whose opcode is kMirConstVector. * @note vA: TypeSize. * @note vB: destination vector register. * @note vC: source VR (not vector register). */ void GenSetVector(MIR* mir); /** * @brief Used to generate code for kMirOpPackedArrayGet. * @param bb The basic block of MIR. * @param mir The mir whose opcode is kMirOpPackedArrayGet. */ void GenPackedArrayGet(BasicBlock* bb, MIR* mir); /** * @brief Used to generate code for kMirOpPackedArrayPut. * @param bb The basic block of MIR. * @param mir The mir whose opcode is kMirOpPackedArrayPut. */ void GenPackedArrayPut(BasicBlock* bb, MIR* mir); /* * @brief Generate code for a vector opcode. * @param bb The basic block in which the MIR is from. * @param mir The MIR whose opcode is a non-standard opcode. */ void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir); /* * @brief Return the correct x86 opcode for the Dex operation * @param op Dex opcode for the operation * @param loc Register location of the operand * @param is_high_op 'true' if this is an operation on the high word * @param value Immediate value for the operation. Used for byte variants * @returns the correct x86 opcode to perform the operation */ X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value); /* * @brief Return the correct x86 opcode for the Dex operation * @param op Dex opcode for the operation * @param dest location of the destination. May be register or memory. * @param rhs Location for the rhs of the operation. May be in register or memory. * @param is_high_op 'true' if this is an operation on the high word * @returns the correct x86 opcode to perform the operation * @note at most one location may refer to memory */ X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs, bool is_high_op); /* * @brief Is this operation a no-op for this opcode and value * @param op Dex opcode for the operation * @param value Immediate value for the operation. * @returns 'true' if the operation will have no effect */ bool IsNoOp(Instruction::Code op, int32_t value); /** * @brief Calculate magic number and shift for a given divisor * @param divisor divisor number for calculation * @param magic hold calculated magic number * @param shift hold calculated shift * @param is_long 'true' if divisor is jlong, 'false' for jint. */ void CalculateMagicAndShift(int64_t divisor, int64_t& magic, int& shift, bool is_long); /* * @brief Generate an integer div or rem operation. * @param rl_dest Destination Location. * @param rl_src1 Numerator Location. * @param rl_src2 Divisor Location. * @param is_div 'true' if this is a division, 'false' for a remainder. * @param flags The instruction optimization flags. It can include information * if exception check can be elided. */ RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_div, int flags); /* * @brief Generate an integer div or rem operation by a literal. * @param rl_dest Destination Location. * @param rl_src Numerator Location. * @param lit Divisor. * @param is_div 'true' if this is a division, 'false' for a remainder. */ RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div); /* * Generate code to implement long shift operations. * @param opcode The DEX opcode to specify the shift type. * @param rl_dest The destination. * @param rl_src The value to be shifted. * @param shift_amount How much to shift. * @param flags The instruction optimization flags. * @returns the RegLocation of the result. */ RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src, int shift_amount, int flags); /* * Generate an imul of a register by a constant or a better sequence. * @param dest Destination Register. * @param src Source Register. * @param val Constant multiplier. */ void GenImulRegImm(RegStorage dest, RegStorage src, int val); /* * Generate an imul of a memory location by a constant or a better sequence. * @param dest Destination Register. * @param sreg Symbolic register. * @param displacement Displacement on stack of Symbolic Register. * @param val Constant multiplier. */ void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val); /* * @brief Compare memory to immediate, and branch if condition true. * @param cond The condition code that when true will branch to the target. * @param temp_reg A temporary register that can be used if compare memory is not * supported by the architecture. * @param base_reg The register holding the base address. * @param offset The offset from the base. * @param check_value The immediate to compare to. * @param target branch target (or nullptr) * @param compare output for getting LIR for comparison (or nullptr) */ LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg, int offset, int check_value, LIR* target, LIR** compare); void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double); /* * Can this operation be using core registers without temporaries? * @param rl_lhs Left hand operand. * @param rl_rhs Right hand operand. * @returns 'true' if the operation can proceed without needing temporary regs. */ bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs); /** * @brief Generates inline code for conversion of long to FP by using x87/ * @param rl_dest The destination of the FP. * @param rl_src The source of the long. * @param is_double 'true' if dealing with double, 'false' for float. */ virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double); void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset); void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset); LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset); LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value); LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value); LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset); LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset); void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset); void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset); void OpTlsCmp(ThreadOffset<4> offset, int val); void OpTlsCmp(ThreadOffset<8> offset, int val); void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset); // Try to do a long multiplication where rl_src2 is a constant. This simplified setup might fail, // in which case false will be returned. bool GenMulLongConst(RegLocation rl_dest, RegLocation rl_src1, int64_t val, int flags); void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, int flags); void GenNotLong(RegLocation rl_dest, RegLocation rl_src); void GenNegLong(RegLocation rl_dest, RegLocation rl_src); void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_div, int flags); void SpillCoreRegs(); void UnSpillCoreRegs(); void UnSpillFPRegs(); void SpillFPRegs(); /* * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register * without regard to data type. In practice, this can result in UpdateLoc returning a * location record for a Dalvik float value in a core register, and vis-versa. For targets * which can inexpensively move data between core and float registers, this can often be a win. * However, for x86 this is generally not a win. These variants of UpdateLoc() * take a register class argument - and will return an in-register location record only if * the value is live in a temp register of the correct class. Additionally, if the value is in * a temp register of the wrong register class, it will be clobbered. */ RegLocation UpdateLocTyped(RegLocation loc); RegLocation UpdateLocWideTyped(RegLocation loc); /* * @brief Analyze one MIR float/double instruction * @param opcode MIR instruction opcode. * @param mir Instruction to analyze. * @return true iff the instruction needs to load a literal using PC-relative addressing. */ bool AnalyzeFPInstruction(int opcode, MIR* mir); /* * @brief Analyze one use of a double operand. * @param rl_use Double RegLocation for the operand. * @return true iff the instruction needs to load a literal using PC-relative addressing. */ bool AnalyzeDoubleUse(RegLocation rl_use); /* * @brief Analyze one invoke-static MIR instruction * @param mir Instruction to analyze. * @return true iff the instruction needs to load a literal using PC-relative addressing. */ bool AnalyzeInvokeStaticIntrinsic(MIR* mir); // Information derived from analysis of MIR // The base register for PC-relative addressing if promoted (32-bit only). RegStorage pc_rel_base_reg_; // Have we actually used the pc_rel_base_reg_? bool pc_rel_base_reg_used_; // Pointer to the "call +0" insn that sets up the promoted register for PC-relative addressing. // The anchor "pop" insn is NEXT_LIR(setup_pc_rel_base_reg_). The whole "call +0; pop <reg>" // sequence will be removed in AssembleLIR() if we do not actually use PC-relative addressing. LIR* setup_pc_rel_base_reg_; // There are 2 chained insns (no reordering allowed). // Instructions needing patching with Method* values. ArenaVector<LIR*> method_address_insns_; // Instructions needing patching with Class Type* values. ArenaVector<LIR*> class_type_address_insns_; // Instructions needing patching with PC relative code addresses. ArenaVector<LIR*> call_method_insns_; // Instructions needing patching with PC relative code addresses. ArenaVector<LIR*> dex_cache_access_insns_; // The list of const vector literals. LIR* const_vectors_; /* * @brief Search for a matching vector literal * @param constants An array of size 4 which contains all of 32-bit constants. * @returns pointer to matching LIR constant, or nullptr if not found. */ LIR* ScanVectorLiteral(int32_t* constants); /* * @brief Add a constant vector literal * @param constants An array of size 4 which contains all of 32-bit constants. */ LIR* AddVectorLiteral(int32_t* constants); bool WideGPRsAreAliases() const OVERRIDE { return cu_->target64; // On 64b, we have 64b GPRs. } bool WideFPRsAreAliases() const OVERRIDE { return true; // xmm registers have 64b views even on x86. } /* * @brief Dump a RegLocation using printf * @param loc Register location to dump */ static void DumpRegLocation(RegLocation loc); private: void SwapBits(RegStorage result_reg, int shift, int32_t value); void SwapBits64(RegStorage result_reg, int shift, int64_t value); static int X86NextSDCallInsn(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t, uintptr_t direct_code, uintptr_t direct_method, InvokeType type); LIR* OpLoadPc(RegStorage r_dest); RegStorage GetPcAndAnchor(LIR** anchor, RegStorage r_tmp = RegStorage::InvalidReg()); // When we don't know the proper offset for the value, pick one that will force // 4 byte offset. We will fix this up in the assembler or linker later to have // the right value. static constexpr int kDummy32BitOffset = 256; static const X86EncodingMap EncodingMap[kX86Last]; friend std::ostream& operator<<(std::ostream& os, const X86OpCode& rhs); friend class QuickAssembleX86Test; friend class QuickAssembleX86MacroTest; friend class QuickAssembleX86LowLevelTest; DISALLOW_COPY_AND_ASSIGN(X86Mir2Lir); }; } // namespace art #endif // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_