/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This file contains register alloction support. */ #include "mir_to_lir-inl.h" #include "dex/compiler_ir.h" #include "dex/dataflow_iterator-inl.h" #include "dex/mir_graph.h" #include "driver/compiler_driver.h" #include "driver/dex_compilation_unit.h" #include "utils/dex_cache_arrays_layout-inl.h" namespace art { /* * Free all allocated temps in the temp pools. Note that this does * not affect the "liveness" of a temp register, which will stay * live until it is either explicitly killed or reallocated. */ void Mir2Lir::ResetRegPool() { for (RegisterInfo* info : tempreg_info_) { info->MarkFree(); } // Reset temp tracking sanity check. if (kIsDebugBuild) { live_sreg_ = INVALID_SREG; } } Mir2Lir::RegisterInfo::RegisterInfo(RegStorage r, const ResourceMask& mask) : reg_(r), is_temp_(false), wide_value_(false), dirty_(false), aliased_(false), partner_(r), s_reg_(INVALID_SREG), def_use_mask_(mask), master_(this), def_start_(nullptr), def_end_(nullptr), alias_chain_(nullptr) { switch (r.StorageSize()) { case 0: storage_mask_ = 0xffffffff; break; case 4: storage_mask_ = 0x00000001; break; case 8: storage_mask_ = 0x00000003; break; case 16: storage_mask_ = 0x0000000f; break; case 32: storage_mask_ = 0x000000ff; break; case 64: storage_mask_ = 0x0000ffff; break; case 128: storage_mask_ = 0xffffffff; break; } used_storage_ = r.Valid() ? ~storage_mask_ : storage_mask_; liveness_ = used_storage_; } Mir2Lir::RegisterPool::RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena, const ArrayRef<const RegStorage>& core_regs, const ArrayRef<const RegStorage>& core64_regs, const ArrayRef<const RegStorage>& sp_regs, const ArrayRef<const RegStorage>& dp_regs, const ArrayRef<const RegStorage>& reserved_regs, const ArrayRef<const RegStorage>& reserved64_regs, const ArrayRef<const RegStorage>& core_temps, const ArrayRef<const RegStorage>& core64_temps, const ArrayRef<const RegStorage>& sp_temps, const ArrayRef<const RegStorage>& dp_temps) : core_regs_(arena->Adapter()), next_core_reg_(0), core64_regs_(arena->Adapter()), next_core64_reg_(0), sp_regs_(arena->Adapter()), next_sp_reg_(0), dp_regs_(arena->Adapter()), next_dp_reg_(0), m2l_(m2l) { // Initialize the fast lookup map. m2l_->reginfo_map_.clear(); m2l_->reginfo_map_.resize(RegStorage::kMaxRegs, nullptr); // Construct the register pool. core_regs_.reserve(core_regs.size()); for (const RegStorage& reg : core_regs) { RegisterInfo* info = new (arena) RegisterInfo(reg, m2l_->GetRegMaskCommon(reg)); m2l_->reginfo_map_[reg.GetReg()] = info; core_regs_.push_back(info); } core64_regs_.reserve(core64_regs.size()); for (const RegStorage& reg : core64_regs) { RegisterInfo* info = new (arena) RegisterInfo(reg, m2l_->GetRegMaskCommon(reg)); m2l_->reginfo_map_[reg.GetReg()] = info; core64_regs_.push_back(info); } sp_regs_.reserve(sp_regs.size()); for (const RegStorage& reg : sp_regs) { RegisterInfo* info = new (arena) RegisterInfo(reg, m2l_->GetRegMaskCommon(reg)); m2l_->reginfo_map_[reg.GetReg()] = info; sp_regs_.push_back(info); } dp_regs_.reserve(dp_regs.size()); for (const RegStorage& reg : dp_regs) { RegisterInfo* info = new (arena) RegisterInfo(reg, m2l_->GetRegMaskCommon(reg)); m2l_->reginfo_map_[reg.GetReg()] = info; dp_regs_.push_back(info); } // Keep special registers from being allocated. for (RegStorage reg : reserved_regs) { m2l_->MarkInUse(reg); } for (RegStorage reg : reserved64_regs) { m2l_->MarkInUse(reg); } // Mark temp regs - all others not in use can be used for promotion for (RegStorage reg : core_temps) { m2l_->MarkTemp(reg); } for (RegStorage reg : core64_temps) { m2l_->MarkTemp(reg); } for (RegStorage reg : sp_temps) { m2l_->MarkTemp(reg); } for (RegStorage reg : dp_temps) { m2l_->MarkTemp(reg); } // Add an entry for InvalidReg with zero'd mask. RegisterInfo* invalid_reg = new (arena) RegisterInfo(RegStorage::InvalidReg(), kEncodeNone); m2l_->reginfo_map_[RegStorage::InvalidReg().GetReg()] = invalid_reg; // Existence of core64 registers implies wide references. if (core64_regs_.size() != 0) { ref_regs_ = &core64_regs_; next_ref_reg_ = &next_core64_reg_; } else { ref_regs_ = &core_regs_; next_ref_reg_ = &next_core_reg_; } } void Mir2Lir::DumpRegPool(ArenaVector<RegisterInfo*>* regs) { LOG(INFO) << "================================================"; for (RegisterInfo* info : *regs) { LOG(INFO) << StringPrintf( "R[%d:%d:%c]: T:%d, U:%d, W:%d, p:%d, LV:%d, D:%d, SR:%d, DEF:%d", info->GetReg().GetReg(), info->GetReg().GetRegNum(), info->GetReg().IsFloat() ? 'f' : 'c', info->IsTemp(), info->InUse(), info->IsWide(), info->Partner().GetReg(), info->IsLive(), info->IsDirty(), info->SReg(), info->DefStart() != nullptr); } LOG(INFO) << "================================================"; } void Mir2Lir::DumpCoreRegPool() { DumpRegPool(®_pool_->core_regs_); DumpRegPool(®_pool_->core64_regs_); } void Mir2Lir::DumpFpRegPool() { DumpRegPool(®_pool_->sp_regs_); DumpRegPool(®_pool_->dp_regs_); } void Mir2Lir::DumpRegPools() { LOG(INFO) << "Core registers"; DumpCoreRegPool(); LOG(INFO) << "FP registers"; DumpFpRegPool(); } void Mir2Lir::Clobber(RegStorage reg) { if (UNLIKELY(reg.IsPair())) { DCHECK(!GetRegInfo(reg.GetLow())->IsAliased()); Clobber(reg.GetLow()); DCHECK(!GetRegInfo(reg.GetHigh())->IsAliased()); Clobber(reg.GetHigh()); } else { RegisterInfo* info = GetRegInfo(reg); if (info->IsTemp() && !info->IsDead()) { if (info->GetReg().NotExactlyEquals(info->Partner())) { ClobberBody(GetRegInfo(info->Partner())); } ClobberBody(info); if (info->IsAliased()) { ClobberAliases(info, info->StorageMask()); } else { RegisterInfo* master = info->Master(); if (info != master) { ClobberBody(info->Master()); ClobberAliases(info->Master(), info->StorageMask()); } } } } } void Mir2Lir::ClobberAliases(RegisterInfo* info, uint32_t clobber_mask) { for (RegisterInfo* alias = info->GetAliasChain(); alias != nullptr; alias = alias->GetAliasChain()) { DCHECK(!alias->IsAliased()); // Only the master should be marked as alised. // Only clobber if we have overlap. if ((alias->StorageMask() & clobber_mask) != 0) { ClobberBody(alias); } } } /* * Break the association between a Dalvik vreg and a physical temp register of either register * class. * TODO: Ideally, the public version of this code should not exist. Besides its local usage * in the register utilities, is is also used by code gen routines to work around a deficiency in * local register allocation, which fails to distinguish between the "in" and "out" identities * of Dalvik vregs. This can result in useless register copies when the same Dalvik vreg * is used both as the source and destination register of an operation in which the type * changes (for example: INT_TO_FLOAT v1, v1). Revisit when improved register allocation is * addressed. */ void Mir2Lir::ClobberSReg(int s_reg) { if (s_reg != INVALID_SREG) { if (kIsDebugBuild && s_reg == live_sreg_) { live_sreg_ = INVALID_SREG; } for (RegisterInfo* info : tempreg_info_) { if (info->SReg() == s_reg) { if (info->GetReg().NotExactlyEquals(info->Partner())) { // Dealing with a pair - clobber the other half. DCHECK(!info->IsAliased()); ClobberBody(GetRegInfo(info->Partner())); } ClobberBody(info); if (info->IsAliased()) { ClobberAliases(info, info->StorageMask()); } } } } } /* * SSA names associated with the initial definitions of Dalvik * registers are the same as the Dalvik register number (and * thus take the same position in the promotion_map. However, * the special Method* and compiler temp resisters use negative * v_reg numbers to distinguish them and can have an arbitrary * ssa name (above the last original Dalvik register). This function * maps SSA names to positions in the promotion_map array. */ int Mir2Lir::SRegToPMap(int s_reg) { DCHECK_LT(s_reg, mir_graph_->GetNumSSARegs()); DCHECK_GE(s_reg, 0); int v_reg = mir_graph_->SRegToVReg(s_reg); return v_reg; } // TODO: refactor following Alloc/Record routines - much commonality. void Mir2Lir::RecordCorePromotion(RegStorage reg, int s_reg) { int p_map_idx = SRegToPMap(s_reg); int v_reg = mir_graph_->SRegToVReg(s_reg); int reg_num = reg.GetRegNum(); GetRegInfo(reg)->MarkInUse(); core_spill_mask_ |= (1 << reg_num); // Include reg for later sort core_vmap_table_.push_back(reg_num << VREG_NUM_WIDTH | (v_reg & ((1 << VREG_NUM_WIDTH) - 1))); num_core_spills_++; promotion_map_[p_map_idx].core_location = kLocPhysReg; promotion_map_[p_map_idx].core_reg = reg_num; } /* Reserve a callee-save register. Return InvalidReg if none available */ RegStorage Mir2Lir::AllocPreservedCoreReg(int s_reg) { RegStorage res; /* * Note: it really doesn't matter much whether we allocate from the core or core64 * pool for 64-bit targets - but for some targets it does matter whether allocations * happens from the single or double pool. This entire section of code could stand * a good refactoring. */ for (RegisterInfo* info : reg_pool_->core_regs_) { if (!info->IsTemp() && !info->InUse()) { res = info->GetReg(); RecordCorePromotion(res, s_reg); break; } } return res; } void Mir2Lir::RecordFpPromotion(RegStorage reg, int s_reg) { DCHECK_NE(cu_->instruction_set, kThumb2); int p_map_idx = SRegToPMap(s_reg); int v_reg = mir_graph_->SRegToVReg(s_reg); int reg_num = reg.GetRegNum(); GetRegInfo(reg)->MarkInUse(); fp_spill_mask_ |= (1 << reg_num); // Include reg for later sort fp_vmap_table_.push_back(reg_num << VREG_NUM_WIDTH | (v_reg & ((1 << VREG_NUM_WIDTH) - 1))); num_fp_spills_++; promotion_map_[p_map_idx].fp_location = kLocPhysReg; promotion_map_[p_map_idx].fp_reg = reg.GetReg(); } // Reserve a callee-save floating point. RegStorage Mir2Lir::AllocPreservedFpReg(int s_reg) { /* * For targets other than Thumb2, it doesn't matter whether we allocate from * the sp_regs_ or dp_regs_ pool. Some refactoring is in order here. */ DCHECK_NE(cu_->instruction_set, kThumb2); RegStorage res; for (RegisterInfo* info : reg_pool_->sp_regs_) { if (!info->IsTemp() && !info->InUse()) { res = info->GetReg(); RecordFpPromotion(res, s_reg); break; } } return res; } // TODO: this is Thumb2 only. Remove when DoPromotion refactored. RegStorage Mir2Lir::AllocPreservedDouble(int s_reg) { UNUSED(s_reg); UNIMPLEMENTED(FATAL) << "Unexpected use of AllocPreservedDouble"; UNREACHABLE(); } // TODO: this is Thumb2 only. Remove when DoPromotion refactored. RegStorage Mir2Lir::AllocPreservedSingle(int s_reg) { UNUSED(s_reg); UNIMPLEMENTED(FATAL) << "Unexpected use of AllocPreservedSingle"; UNREACHABLE(); } RegStorage Mir2Lir::AllocTempBody(ArenaVector<RegisterInfo*>& regs, int* next_temp, bool required) { int num_regs = regs.size(); int next = *next_temp; for (int i = 0; i< num_regs; i++) { if (next >= num_regs) { next = 0; } RegisterInfo* info = regs[next]; // Try to allocate a register that doesn't hold a live value. if (info->IsTemp() && !info->InUse() && info->IsDead()) { // If it's wide, split it up. if (info->IsWide()) { // If the pair was associated with a wide value, unmark the partner as well. if (info->SReg() != INVALID_SREG) { RegisterInfo* partner = GetRegInfo(info->Partner()); DCHECK_EQ(info->GetReg().GetRegNum(), partner->Partner().GetRegNum()); DCHECK(partner->IsWide()); partner->SetIsWide(false); } info->SetIsWide(false); } Clobber(info->GetReg()); info->MarkInUse(); *next_temp = next + 1; return info->GetReg(); } next++; } next = *next_temp; // No free non-live regs. Anything we can kill? for (int i = 0; i< num_regs; i++) { if (next >= num_regs) { next = 0; } RegisterInfo* info = regs[next]; if (info->IsTemp() && !info->InUse()) { // Got one. Kill it. ClobberSReg(info->SReg()); Clobber(info->GetReg()); info->MarkInUse(); if (info->IsWide()) { RegisterInfo* partner = GetRegInfo(info->Partner()); DCHECK_EQ(info->GetReg().GetRegNum(), partner->Partner().GetRegNum()); DCHECK(partner->IsWide()); info->SetIsWide(false); partner->SetIsWide(false); } *next_temp = next + 1; return info->GetReg(); } next++; } if (required) { CodegenDump(); DumpRegPools(); LOG(FATAL) << "No free temp registers"; } return RegStorage::InvalidReg(); // No register available } RegStorage Mir2Lir::AllocTemp(bool required) { return AllocTempBody(reg_pool_->core_regs_, ®_pool_->next_core_reg_, required); } RegStorage Mir2Lir::AllocTempWide(bool required) { RegStorage res; if (reg_pool_->core64_regs_.size() != 0) { res = AllocTempBody(reg_pool_->core64_regs_, ®_pool_->next_core64_reg_, required); } else { RegStorage low_reg = AllocTemp(); RegStorage high_reg = AllocTemp(); res = RegStorage::MakeRegPair(low_reg, high_reg); } if (required) { CheckRegStorage(res, WidenessCheck::kCheckWide, RefCheck::kIgnoreRef, FPCheck::kCheckNotFP); } return res; } RegStorage Mir2Lir::AllocTempRef(bool required) { RegStorage res = AllocTempBody(*reg_pool_->ref_regs_, reg_pool_->next_ref_reg_, required); if (required) { DCHECK(!res.IsPair()); CheckRegStorage(res, WidenessCheck::kCheckNotWide, RefCheck::kCheckRef, FPCheck::kCheckNotFP); } return res; } RegStorage Mir2Lir::AllocTempSingle(bool required) { RegStorage res = AllocTempBody(reg_pool_->sp_regs_, ®_pool_->next_sp_reg_, required); if (required) { DCHECK(res.IsSingle()) << "Reg: 0x" << std::hex << res.GetRawBits(); CheckRegStorage(res, WidenessCheck::kCheckNotWide, RefCheck::kCheckNotRef, FPCheck::kIgnoreFP); } return res; } RegStorage Mir2Lir::AllocTempDouble(bool required) { RegStorage res = AllocTempBody(reg_pool_->dp_regs_, ®_pool_->next_dp_reg_, required); if (required) { DCHECK(res.IsDouble()) << "Reg: 0x" << std::hex << res.GetRawBits(); CheckRegStorage(res, WidenessCheck::kCheckWide, RefCheck::kCheckNotRef, FPCheck::kIgnoreFP); } return res; } RegStorage Mir2Lir::AllocTypedTempWide(bool fp_hint, int reg_class, bool required) { DCHECK_NE(reg_class, kRefReg); // NOTE: the Dalvik width of a reference is always 32 bits. if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) { return AllocTempDouble(required); } return AllocTempWide(required); } RegStorage Mir2Lir::AllocTypedTemp(bool fp_hint, int reg_class, bool required) { if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) { return AllocTempSingle(required); } else if (reg_class == kRefReg) { return AllocTempRef(required); } return AllocTemp(required); } RegStorage Mir2Lir::FindLiveReg(ArenaVector<RegisterInfo*>& regs, int s_reg) { RegStorage res; for (RegisterInfo* info : regs) { if ((info->SReg() == s_reg) && info->IsLive()) { res = info->GetReg(); break; } } return res; } RegStorage Mir2Lir::AllocLiveReg(int s_reg, int reg_class, bool wide) { RegStorage reg; if (reg_class == kRefReg) { reg = FindLiveReg(*reg_pool_->ref_regs_, s_reg); CheckRegStorage(reg, WidenessCheck::kCheckNotWide, RefCheck::kCheckRef, FPCheck::kCheckNotFP); } if (!reg.Valid() && ((reg_class == kAnyReg) || (reg_class == kFPReg))) { reg = FindLiveReg(wide ? reg_pool_->dp_regs_ : reg_pool_->sp_regs_, s_reg); } if (!reg.Valid() && (reg_class != kFPReg)) { if (cu_->target64) { reg = FindLiveReg(wide || reg_class == kRefReg ? reg_pool_->core64_regs_ : reg_pool_->core_regs_, s_reg); } else { reg = FindLiveReg(reg_pool_->core_regs_, s_reg); } } if (reg.Valid()) { if (wide && !reg.IsFloat() && !cu_->target64) { // Only allow reg pairs for core regs on 32-bit targets. RegStorage high_reg = FindLiveReg(reg_pool_->core_regs_, s_reg + 1); if (high_reg.Valid()) { reg = RegStorage::MakeRegPair(reg, high_reg); MarkWide(reg); } else { // Only half available. reg = RegStorage::InvalidReg(); } } if (reg.Valid() && (wide != GetRegInfo(reg)->IsWide())) { // Width mismatch - don't try to reuse. reg = RegStorage::InvalidReg(); } } if (reg.Valid()) { if (reg.IsPair()) { RegisterInfo* info_low = GetRegInfo(reg.GetLow()); RegisterInfo* info_high = GetRegInfo(reg.GetHigh()); if (info_low->IsTemp()) { info_low->MarkInUse(); } if (info_high->IsTemp()) { info_high->MarkInUse(); } } else { RegisterInfo* info = GetRegInfo(reg); if (info->IsTemp()) { info->MarkInUse(); } } } else { // Either not found, or something didn't match up. Clobber to prevent any stale instances. ClobberSReg(s_reg); if (wide) { ClobberSReg(s_reg + 1); } } CheckRegStorage(reg, WidenessCheck::kIgnoreWide, reg_class == kRefReg ? RefCheck::kCheckRef : RefCheck::kIgnoreRef, FPCheck::kIgnoreFP); return reg; } void Mir2Lir::FreeTemp(RegStorage reg) { if (reg.IsPair()) { FreeTemp(reg.GetLow()); FreeTemp(reg.GetHigh()); } else { RegisterInfo* p = GetRegInfo(reg); if (p->IsTemp()) { p->MarkFree(); p->SetIsWide(false); p->SetPartner(reg); } } } void Mir2Lir::FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) { DCHECK(rl_keep.wide); DCHECK(rl_free.wide); int free_low = rl_free.reg.GetLowReg(); int free_high = rl_free.reg.GetHighReg(); int keep_low = rl_keep.reg.GetLowReg(); int keep_high = rl_keep.reg.GetHighReg(); if ((free_low != keep_low) && (free_low != keep_high) && (free_high != keep_low) && (free_high != keep_high)) { // No overlap, free both FreeTemp(rl_free.reg); } } bool Mir2Lir::IsLive(RegStorage reg) { bool res; if (reg.IsPair()) { RegisterInfo* p_lo = GetRegInfo(reg.GetLow()); RegisterInfo* p_hi = GetRegInfo(reg.GetHigh()); DCHECK_EQ(p_lo->IsLive(), p_hi->IsLive()); res = p_lo->IsLive() || p_hi->IsLive(); } else { RegisterInfo* p = GetRegInfo(reg); res = p->IsLive(); } return res; } bool Mir2Lir::IsTemp(RegStorage reg) { bool res; if (reg.IsPair()) { RegisterInfo* p_lo = GetRegInfo(reg.GetLow()); RegisterInfo* p_hi = GetRegInfo(reg.GetHigh()); res = p_lo->IsTemp() || p_hi->IsTemp(); } else { RegisterInfo* p = GetRegInfo(reg); res = p->IsTemp(); } return res; } bool Mir2Lir::IsPromoted(RegStorage reg) { bool res; if (reg.IsPair()) { RegisterInfo* p_lo = GetRegInfo(reg.GetLow()); RegisterInfo* p_hi = GetRegInfo(reg.GetHigh()); res = !p_lo->IsTemp() || !p_hi->IsTemp(); } else { RegisterInfo* p = GetRegInfo(reg); res = !p->IsTemp(); } return res; } bool Mir2Lir::IsDirty(RegStorage reg) { bool res; if (reg.IsPair()) { RegisterInfo* p_lo = GetRegInfo(reg.GetLow()); RegisterInfo* p_hi = GetRegInfo(reg.GetHigh()); res = p_lo->IsDirty() || p_hi->IsDirty(); } else { RegisterInfo* p = GetRegInfo(reg); res = p->IsDirty(); } return res; } /* * Similar to AllocTemp(), but forces the allocation of a specific * register. No check is made to see if the register was previously * allocated. Use with caution. */ void Mir2Lir::LockTemp(RegStorage reg) { DCHECK(IsTemp(reg)); if (reg.IsPair()) { RegisterInfo* p_lo = GetRegInfo(reg.GetLow()); RegisterInfo* p_hi = GetRegInfo(reg.GetHigh()); p_lo->MarkInUse(); p_lo->MarkDead(); p_hi->MarkInUse(); p_hi->MarkDead(); } else { RegisterInfo* p = GetRegInfo(reg); p->MarkInUse(); p->MarkDead(); } } void Mir2Lir::ResetDef(RegStorage reg) { if (reg.IsPair()) { GetRegInfo(reg.GetLow())->ResetDefBody(); GetRegInfo(reg.GetHigh())->ResetDefBody(); } else { GetRegInfo(reg)->ResetDefBody(); } } void Mir2Lir::NullifyRange(RegStorage reg, int s_reg) { RegisterInfo* info = nullptr; RegStorage rs = reg.IsPair() ? reg.GetLow() : reg; if (IsTemp(rs)) { info = GetRegInfo(reg); } if ((info != nullptr) && (info->DefStart() != nullptr) && (info->DefEnd() != nullptr)) { DCHECK_EQ(info->SReg(), s_reg); // Make sure we're on the same page. for (LIR* p = info->DefStart();; p = p->next) { NopLIR(p); if (p == info->DefEnd()) { break; } } } } /* * Mark the beginning and end LIR of a def sequence. Note that * on entry start points to the LIR prior to the beginning of the * sequence. */ void Mir2Lir::MarkDef(RegLocation rl, LIR *start, LIR *finish) { DCHECK(!rl.wide); DCHECK(start && start->next); DCHECK(finish); RegisterInfo* p = GetRegInfo(rl.reg); p->SetDefStart(start->next); p->SetDefEnd(finish); } /* * Mark the beginning and end LIR of a def sequence. Note that * on entry start points to the LIR prior to the beginning of the * sequence. */ void Mir2Lir::MarkDefWide(RegLocation rl, LIR *start, LIR *finish) { DCHECK(rl.wide); DCHECK(start && start->next); DCHECK(finish); RegisterInfo* p; if (rl.reg.IsPair()) { p = GetRegInfo(rl.reg.GetLow()); ResetDef(rl.reg.GetHigh()); // Only track low of pair } else { p = GetRegInfo(rl.reg); } p->SetDefStart(start->next); p->SetDefEnd(finish); } void Mir2Lir::ResetDefLoc(RegLocation rl) { DCHECK(!rl.wide); if (IsTemp(rl.reg) && !(cu_->disable_opt & (1 << kSuppressLoads))) { NullifyRange(rl.reg, rl.s_reg_low); } ResetDef(rl.reg); } void Mir2Lir::ResetDefLocWide(RegLocation rl) { DCHECK(rl.wide); // If pair, only track low reg of pair. RegStorage rs = rl.reg.IsPair() ? rl.reg.GetLow() : rl.reg; if (IsTemp(rs) && !(cu_->disable_opt & (1 << kSuppressLoads))) { NullifyRange(rs, rl.s_reg_low); } ResetDef(rs); } void Mir2Lir::ResetDefTracking() { for (RegisterInfo* info : tempreg_info_) { info->ResetDefBody(); } } void Mir2Lir::ClobberAllTemps() { for (RegisterInfo* info : tempreg_info_) { ClobberBody(info); } } void Mir2Lir::FlushRegWide(RegStorage reg) { if (reg.IsPair()) { RegisterInfo* info1 = GetRegInfo(reg.GetLow()); RegisterInfo* info2 = GetRegInfo(reg.GetHigh()); DCHECK(info1 && info2 && info1->IsWide() && info2->IsWide() && (info1->Partner().ExactlyEquals(info2->GetReg())) && (info2->Partner().ExactlyEquals(info1->GetReg()))); if ((info1->IsLive() && info1->IsDirty()) || (info2->IsLive() && info2->IsDirty())) { if (!(info1->IsTemp() && info2->IsTemp())) { /* Should not happen. If it does, there's a problem in eval_loc */ LOG(FATAL) << "Long half-temp, half-promoted"; } info1->SetIsDirty(false); info2->SetIsDirty(false); if (mir_graph_->SRegToVReg(info2->SReg()) < mir_graph_->SRegToVReg(info1->SReg())) { info1 = info2; } int v_reg = mir_graph_->SRegToVReg(info1->SReg()); ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); StoreBaseDisp(TargetPtrReg(kSp), VRegOffset(v_reg), reg, k64, kNotVolatile); } } else { RegisterInfo* info = GetRegInfo(reg); if (info->IsLive() && info->IsDirty()) { info->SetIsDirty(false); int v_reg = mir_graph_->SRegToVReg(info->SReg()); ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); StoreBaseDisp(TargetPtrReg(kSp), VRegOffset(v_reg), reg, k64, kNotVolatile); } } } void Mir2Lir::FlushReg(RegStorage reg) { DCHECK(!reg.IsPair()); RegisterInfo* info = GetRegInfo(reg); if (info->IsLive() && info->IsDirty()) { info->SetIsDirty(false); int v_reg = mir_graph_->SRegToVReg(info->SReg()); ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); StoreBaseDisp(TargetPtrReg(kSp), VRegOffset(v_reg), reg, kWord, kNotVolatile); } } void Mir2Lir::FlushSpecificReg(RegisterInfo* info) { if (info->IsWide()) { FlushRegWide(info->GetReg()); } else { FlushReg(info->GetReg()); } } void Mir2Lir::FlushAllRegs() { for (RegisterInfo* info : tempreg_info_) { if (info->IsDirty() && info->IsLive()) { FlushSpecificReg(info); } info->MarkDead(); info->SetIsWide(false); } } bool Mir2Lir::RegClassMatches(int reg_class, RegStorage reg) { if (reg_class == kAnyReg) { return true; } else if ((reg_class == kCoreReg) || (reg_class == kRefReg)) { /* * For this purpose, consider Core and Ref to be the same class. We aren't dealing * with width here - that should be checked at a higher level (if needed). */ return !reg.IsFloat(); } else { return reg.IsFloat(); } } void Mir2Lir::MarkLive(RegLocation loc) { RegStorage reg = loc.reg; if (!IsTemp(reg)) { return; } int s_reg = loc.s_reg_low; if (s_reg == INVALID_SREG) { // Can't be live if no associated sreg. if (reg.IsPair()) { GetRegInfo(reg.GetLow())->MarkDead(); GetRegInfo(reg.GetHigh())->MarkDead(); } else { GetRegInfo(reg)->MarkDead(); } } else { if (reg.IsPair()) { RegisterInfo* info_lo = GetRegInfo(reg.GetLow()); RegisterInfo* info_hi = GetRegInfo(reg.GetHigh()); if (info_lo->IsLive() && (info_lo->SReg() == s_reg) && info_hi->IsLive() && (info_hi->SReg() == s_reg)) { return; // Already live. } ClobberSReg(s_reg); ClobberSReg(s_reg + 1); info_lo->MarkLive(s_reg); info_hi->MarkLive(s_reg + 1); } else { RegisterInfo* info = GetRegInfo(reg); if (info->IsLive() && (info->SReg() == s_reg)) { return; // Already live. } ClobberSReg(s_reg); if (loc.wide) { ClobberSReg(s_reg + 1); } info->MarkLive(s_reg); } if (loc.wide) { MarkWide(reg); } else { MarkNarrow(reg); } } } void Mir2Lir::MarkTemp(RegStorage reg) { DCHECK(!reg.IsPair()); RegisterInfo* info = GetRegInfo(reg); tempreg_info_.push_back(info); info->SetIsTemp(true); } void Mir2Lir::UnmarkTemp(RegStorage reg) { DCHECK(!reg.IsPair()); RegisterInfo* info = GetRegInfo(reg); auto pos = std::find(tempreg_info_.begin(), tempreg_info_.end(), info); DCHECK(pos != tempreg_info_.end()); tempreg_info_.erase(pos); info->SetIsTemp(false); } void Mir2Lir::MarkWide(RegStorage reg) { if (reg.IsPair()) { RegisterInfo* info_lo = GetRegInfo(reg.GetLow()); RegisterInfo* info_hi = GetRegInfo(reg.GetHigh()); // Unpair any old partners. if (info_lo->IsWide() && info_lo->Partner().NotExactlyEquals(info_hi->GetReg())) { GetRegInfo(info_lo->Partner())->SetIsWide(false); } if (info_hi->IsWide() && info_hi->Partner().NotExactlyEquals(info_lo->GetReg())) { GetRegInfo(info_hi->Partner())->SetIsWide(false); } info_lo->SetIsWide(true); info_hi->SetIsWide(true); info_lo->SetPartner(reg.GetHigh()); info_hi->SetPartner(reg.GetLow()); } else { RegisterInfo* info = GetRegInfo(reg); info->SetIsWide(true); info->SetPartner(reg); } } void Mir2Lir::MarkNarrow(RegStorage reg) { DCHECK(!reg.IsPair()); RegisterInfo* info = GetRegInfo(reg); info->SetIsWide(false); info->SetPartner(reg); } void Mir2Lir::MarkClean(RegLocation loc) { if (loc.reg.IsPair()) { RegisterInfo* info = GetRegInfo(loc.reg.GetLow()); info->SetIsDirty(false); info = GetRegInfo(loc.reg.GetHigh()); info->SetIsDirty(false); } else { RegisterInfo* info = GetRegInfo(loc.reg); info->SetIsDirty(false); } } // FIXME: need to verify rules/assumptions about how wide values are treated in 64BitSolos. void Mir2Lir::MarkDirty(RegLocation loc) { if (loc.home) { // If already home, can't be dirty return; } if (loc.reg.IsPair()) { RegisterInfo* info = GetRegInfo(loc.reg.GetLow()); info->SetIsDirty(true); info = GetRegInfo(loc.reg.GetHigh()); info->SetIsDirty(true); } else { RegisterInfo* info = GetRegInfo(loc.reg); info->SetIsDirty(true); } } void Mir2Lir::MarkInUse(RegStorage reg) { if (reg.IsPair()) { GetRegInfo(reg.GetLow())->MarkInUse(); GetRegInfo(reg.GetHigh())->MarkInUse(); } else { GetRegInfo(reg)->MarkInUse(); } } bool Mir2Lir::CheckCorePoolSanity() { for (RegisterInfo* info : tempreg_info_) { int my_sreg = info->SReg(); if (info->IsTemp() && info->IsLive() && info->IsWide() && my_sreg != INVALID_SREG) { RegStorage my_reg = info->GetReg(); RegStorage partner_reg = info->Partner(); RegisterInfo* partner = GetRegInfo(partner_reg); DCHECK(partner != nullptr); DCHECK(partner->IsWide()); DCHECK_EQ(my_reg.GetReg(), partner->Partner().GetReg()); DCHECK(partner->IsLive()); int partner_sreg = partner->SReg(); int diff = my_sreg - partner_sreg; DCHECK((diff == 0) || (diff == -1) || (diff == 1)); } if (info->Master() != info) { // Aliased. if (info->IsLive() && (info->SReg() != INVALID_SREG)) { // If I'm live, master should not be live, but should show liveness in alias set. DCHECK_EQ(info->Master()->SReg(), INVALID_SREG); DCHECK(!info->Master()->IsDead()); } // TODO: Add checks in !info->IsDead() case to ensure every live bit is owned by exactly 1 reg. } if (info->IsAliased()) { // Has child aliases. DCHECK_EQ(info->Master(), info); if (info->IsLive() && (info->SReg() != INVALID_SREG)) { // Master live, no child should be dead - all should show liveness in set. for (RegisterInfo* p = info->GetAliasChain(); p != nullptr; p = p->GetAliasChain()) { DCHECK(!p->IsDead()); DCHECK_EQ(p->SReg(), INVALID_SREG); } } else if (!info->IsDead()) { // Master not live, one or more aliases must be. bool live_alias = false; for (RegisterInfo* p = info->GetAliasChain(); p != nullptr; p = p->GetAliasChain()) { live_alias |= p->IsLive(); } DCHECK(live_alias); } } if (info->IsLive() && (info->SReg() == INVALID_SREG)) { // If not fully live, should have INVALID_SREG and def's should be null. DCHECK(info->DefStart() == nullptr); DCHECK(info->DefEnd() == nullptr); } } return true; } /* * Return an updated location record with current in-register status. * If the value lives in live temps, reflect that fact. No code * is generated. If the live value is part of an older pair, * clobber both low and high. * TUNING: clobbering both is a bit heavy-handed, but the alternative * is a bit complex when dealing with FP regs. Examine code to see * if it's worthwhile trying to be more clever here. */ RegLocation Mir2Lir::UpdateLoc(RegLocation loc) { DCHECK(!loc.wide); DCHECK(CheckCorePoolSanity()); if (loc.location != kLocPhysReg) { DCHECK((loc.location == kLocDalvikFrame) || (loc.location == kLocCompilerTemp)); RegStorage reg = AllocLiveReg(loc.s_reg_low, loc.ref ? kRefReg : kAnyReg, false); if (reg.Valid()) { bool match = true; RegisterInfo* info = GetRegInfo(reg); match &= !reg.IsPair(); match &= !info->IsWide(); if (match) { loc.location = kLocPhysReg; loc.reg = reg; } else { Clobber(reg); FreeTemp(reg); } } CheckRegLocation(loc); } return loc; } RegLocation Mir2Lir::UpdateLocWide(RegLocation loc) { DCHECK(loc.wide); DCHECK(CheckCorePoolSanity()); if (loc.location != kLocPhysReg) { DCHECK((loc.location == kLocDalvikFrame) || (loc.location == kLocCompilerTemp)); RegStorage reg = AllocLiveReg(loc.s_reg_low, kAnyReg, true); if (reg.Valid()) { bool match = true; if (reg.IsPair()) { // If we've got a register pair, make sure that it was last used as the same pair. RegisterInfo* info_lo = GetRegInfo(reg.GetLow()); RegisterInfo* info_hi = GetRegInfo(reg.GetHigh()); match &= info_lo->IsWide(); match &= info_hi->IsWide(); match &= (info_lo->Partner().ExactlyEquals(info_hi->GetReg())); match &= (info_hi->Partner().ExactlyEquals(info_lo->GetReg())); } else { RegisterInfo* info = GetRegInfo(reg); match &= info->IsWide(); match &= (info->GetReg().ExactlyEquals(info->Partner())); } if (match) { loc.location = kLocPhysReg; loc.reg = reg; } else { Clobber(reg); FreeTemp(reg); } } CheckRegLocation(loc); } return loc; } /* For use in cases we don't know (or care) width */ RegLocation Mir2Lir::UpdateRawLoc(RegLocation loc) { if (loc.wide) return UpdateLocWide(loc); else return UpdateLoc(loc); } RegLocation Mir2Lir::EvalLocWide(RegLocation loc, int reg_class, bool update) { DCHECK(loc.wide); loc = UpdateLocWide(loc); /* If already in registers, we can assume proper form. Right reg class? */ if (loc.location == kLocPhysReg) { if (!RegClassMatches(reg_class, loc.reg)) { // Wrong register class. Reallocate and transfer ownership. RegStorage new_regs = AllocTypedTempWide(loc.fp, reg_class); // Clobber the old regs. Clobber(loc.reg); // ...and mark the new ones live. loc.reg = new_regs; MarkWide(loc.reg); MarkLive(loc); } CheckRegLocation(loc); return loc; } DCHECK_NE(loc.s_reg_low, INVALID_SREG); DCHECK_NE(GetSRegHi(loc.s_reg_low), INVALID_SREG); loc.reg = AllocTypedTempWide(loc.fp, reg_class); MarkWide(loc.reg); if (update) { loc.location = kLocPhysReg; MarkLive(loc); } CheckRegLocation(loc); return loc; } RegLocation Mir2Lir::EvalLoc(RegLocation loc, int reg_class, bool update) { // Narrow reg_class if the loc is a ref. if (loc.ref && reg_class == kAnyReg) { reg_class = kRefReg; } if (loc.wide) { return EvalLocWide(loc, reg_class, update); } loc = UpdateLoc(loc); if (loc.location == kLocPhysReg) { if (!RegClassMatches(reg_class, loc.reg)) { // Wrong register class. Reallocate and transfer ownership. RegStorage new_reg = AllocTypedTemp(loc.fp, reg_class); // Clobber the old reg. Clobber(loc.reg); // ...and mark the new one live. loc.reg = new_reg; MarkLive(loc); } CheckRegLocation(loc); return loc; } DCHECK_NE(loc.s_reg_low, INVALID_SREG); loc.reg = AllocTypedTemp(loc.fp, reg_class); CheckRegLocation(loc); if (update) { loc.location = kLocPhysReg; MarkLive(loc); } CheckRegLocation(loc); return loc; } void Mir2Lir::AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight) { // NOTE: This should be in sync with functions that actually generate code for // the opcodes below. However, if we get this wrong, the generated code will // still be correct even if it may be sub-optimal. int opcode = mir->dalvikInsn.opcode; bool uses_method = false; bool uses_pc_rel_load = false; uint32_t dex_cache_array_offset = std::numeric_limits<uint32_t>::max(); switch (opcode) { case Instruction::CHECK_CAST: case Instruction::INSTANCE_OF: { if ((opcode == Instruction::CHECK_CAST) && (mir->optimization_flags & MIR_IGNORE_CHECK_CAST) != 0) { break; // No code generated. } uint32_t type_idx = (opcode == Instruction::CHECK_CAST) ? mir->dalvikInsn.vB : mir->dalvikInsn.vC; bool type_known_final, type_known_abstract, use_declaring_class; bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks( cu_->method_idx, *cu_->dex_file, type_idx, &type_known_final, &type_known_abstract, &use_declaring_class); if (opcode == Instruction::CHECK_CAST && !needs_access_check && cu_->compiler_driver->IsSafeCast( mir_graph_->GetCurrentDexCompilationUnit(), mir->offset)) { break; // No code generated. } if (!needs_access_check && !use_declaring_class && CanUseOpPcRelDexCacheArrayLoad()) { uses_pc_rel_load = true; // And ignore method use in slow path. dex_cache_array_offset = dex_cache_arrays_layout_.TypeOffset(type_idx); } else { uses_method = true; } break; } case Instruction::CONST_CLASS: if (CanUseOpPcRelDexCacheArrayLoad() && cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, mir->dalvikInsn.vB)) { uses_pc_rel_load = true; // And ignore method use in slow path. dex_cache_array_offset = dex_cache_arrays_layout_.TypeOffset(mir->dalvikInsn.vB); } else { uses_method = true; } break; case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: if (CanUseOpPcRelDexCacheArrayLoad()) { uses_pc_rel_load = true; // And ignore method use in slow path. dex_cache_array_offset = dex_cache_arrays_layout_.StringOffset(mir->dalvikInsn.vB); } else { uses_method = true; } break; case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_SUPER: case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_STATIC: case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_VIRTUAL_RANGE: case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_DIRECT_RANGE: case Instruction::INVOKE_STATIC_RANGE: case Instruction::INVOKE_INTERFACE_RANGE: case Instruction::INVOKE_VIRTUAL_QUICK: case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { const MirMethodLoweringInfo& info = mir_graph_->GetMethodLoweringInfo(mir); InvokeType sharp_type = info.GetSharpType(); if (info.IsIntrinsic()) { // Nothing to do, if an intrinsic uses ArtMethod* it's in the slow-path - don't count it. } else if (!info.FastPath() || (sharp_type != kStatic && sharp_type != kDirect)) { // Nothing to do, the generated code or entrypoint uses method from the stack. } else if (info.DirectCode() != 0 && info.DirectMethod() != 0) { // Nothing to do, the generated code uses method from the stack. } else if (CanUseOpPcRelDexCacheArrayLoad()) { uses_pc_rel_load = true; dex_cache_array_offset = dex_cache_arrays_layout_.MethodOffset(mir->dalvikInsn.vB); } else { uses_method = true; } break; } case Instruction::NEW_INSTANCE: case Instruction::NEW_ARRAY: case Instruction::FILLED_NEW_ARRAY: case Instruction::FILLED_NEW_ARRAY_RANGE: uses_method = true; break; case Instruction::FILL_ARRAY_DATA: // Nothing to do, the entrypoint uses method from the stack. break; case Instruction::THROW: // Nothing to do, the entrypoint uses method from the stack. break; case Instruction::SGET: case Instruction::SGET_WIDE: case Instruction::SGET_OBJECT: case Instruction::SGET_BOOLEAN: case Instruction::SGET_BYTE: case Instruction::SGET_CHAR: case Instruction::SGET_SHORT: case Instruction::SPUT: case Instruction::SPUT_WIDE: case Instruction::SPUT_OBJECT: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: { const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir); bool fast = IsInstructionSGet(static_cast<Instruction::Code>(opcode)) ? field_info.FastGet() : field_info.FastPut(); if (fast && (cu_->enable_debug & (1 << kDebugSlowFieldPath)) == 0) { if (!field_info.IsReferrersClass() && CanUseOpPcRelDexCacheArrayLoad()) { uses_pc_rel_load = true; // And ignore method use in slow path. dex_cache_array_offset = dex_cache_arrays_layout_.TypeOffset(field_info.StorageIndex()); } else { uses_method = true; } } else { // Nothing to do, the entrypoint uses method from the stack. } break; } default: break; } if (uses_method) { core_counts[SRegToPMap(mir_graph_->GetMethodLoc().s_reg_low)].count += weight; } if (uses_pc_rel_load) { if (pc_rel_temp_ != nullptr) { core_counts[SRegToPMap(pc_rel_temp_->s_reg_low)].count += weight; DCHECK_NE(dex_cache_array_offset, std::numeric_limits<uint32_t>::max()); dex_cache_arrays_min_offset_ = std::min(dex_cache_arrays_min_offset_, dex_cache_array_offset); } else { // Nothing to do, using PC-relative addressing without promoting base PC to register. } } } /* USE SSA names to count references of base Dalvik v_regs. */ void Mir2Lir::CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) { for (int i = 0; i < mir_graph_->GetNumSSARegs(); i++) { RegLocation loc = mir_graph_->reg_location_[i]; RefCounts* counts = loc.fp ? fp_counts : core_counts; int p_map_idx = SRegToPMap(loc.s_reg_low); int use_count = mir_graph_->GetUseCount(i); if (loc.fp) { if (loc.wide) { if (WideFPRsAreAliases()) { // Floats and doubles can be counted together. counts[p_map_idx].count += use_count; } else { // Treat doubles as a unit, using upper half of fp_counts array. counts[p_map_idx + num_regs].count += use_count; } i++; } else { counts[p_map_idx].count += use_count; } } else { if (loc.wide && WideGPRsAreAliases()) { i++; } if (!IsInexpensiveConstant(loc)) { counts[p_map_idx].count += use_count; } } } // Now analyze the ArtMethod* and pc_rel_temp_ uses. DCHECK_EQ(core_counts[SRegToPMap(mir_graph_->GetMethodLoc().s_reg_low)].count, 0); if (pc_rel_temp_ != nullptr) { DCHECK_EQ(core_counts[SRegToPMap(pc_rel_temp_->s_reg_low)].count, 0); } PreOrderDfsIterator iter(mir_graph_); for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { if (bb->block_type == kDead) { continue; } uint32_t weight = mir_graph_->GetUseCountWeight(bb); for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { AnalyzeMIR(core_counts, mir, weight); } } } /* qsort callback function, sort descending */ static int SortCounts(const void *val1, const void *val2) { const Mir2Lir::RefCounts* op1 = reinterpret_cast<const Mir2Lir::RefCounts*>(val1); const Mir2Lir::RefCounts* op2 = reinterpret_cast<const Mir2Lir::RefCounts*>(val2); // Note that we fall back to sorting on reg so we get stable output on differing qsort // implementations (such as on host and target or between local host and build servers). // Note also that if a wide val1 and a non-wide val2 have the same count, then val1 always // ``loses'' (as STARTING_WIDE_SREG is or-ed in val1->s_reg). return (op1->count == op2->count) ? (op1->s_reg - op2->s_reg) : (op1->count < op2->count ? 1 : -1); } void Mir2Lir::DumpCounts(const RefCounts* arr, int size, const char* msg) { LOG(INFO) << msg; for (int i = 0; i < size; i++) { if ((arr[i].s_reg & STARTING_WIDE_SREG) != 0) { LOG(INFO) << "s_reg[64_" << (arr[i].s_reg & ~STARTING_WIDE_SREG) << "]: " << arr[i].count; } else { LOG(INFO) << "s_reg[32_" << arr[i].s_reg << "]: " << arr[i].count; } } } /* * Note: some portions of this code required even if the kPromoteRegs * optimization is disabled. */ void Mir2Lir::DoPromotion() { int num_regs = mir_graph_->GetNumOfCodeAndTempVRs(); const int promotion_threshold = 1; // Allocate the promotion map - one entry for each Dalvik vReg or compiler temp promotion_map_ = arena_->AllocArray<PromotionMap>(num_regs, kArenaAllocRegAlloc); // Allow target code to add any special registers AdjustSpillMask(); /* * Simple register promotion. Just do a static count of the uses * of Dalvik registers. Note that we examine the SSA names, but * count based on original Dalvik register name. Count refs * separately based on type in order to give allocation * preference to fp doubles - which must be allocated sequential * physical single fp registers starting with an even-numbered * reg. * TUNING: replace with linear scan once we have the ability * to describe register live ranges for GC. */ size_t core_reg_count_size = WideGPRsAreAliases() ? num_regs : num_regs * 2; size_t fp_reg_count_size = WideFPRsAreAliases() ? num_regs : num_regs * 2; RefCounts *core_regs = arena_->AllocArray<RefCounts>(core_reg_count_size, kArenaAllocRegAlloc); RefCounts *fp_regs = arena_->AllocArray<RefCounts>(fp_reg_count_size, kArenaAllocRegAlloc); // Set ssa names for original Dalvik registers for (int i = 0; i < num_regs; i++) { core_regs[i].s_reg = fp_regs[i].s_reg = i; } // Duplicate in upper half to represent possible wide starting sregs. for (size_t i = num_regs; i < fp_reg_count_size; i++) { fp_regs[i].s_reg = fp_regs[i - num_regs].s_reg | STARTING_WIDE_SREG; } for (size_t i = num_regs; i < core_reg_count_size; i++) { core_regs[i].s_reg = core_regs[i - num_regs].s_reg | STARTING_WIDE_SREG; } // Sum use counts of SSA regs by original Dalvik vreg. CountRefs(core_regs, fp_regs, num_regs); // Sort the count arrays qsort(core_regs, core_reg_count_size, sizeof(RefCounts), SortCounts); qsort(fp_regs, fp_reg_count_size, sizeof(RefCounts), SortCounts); if (cu_->verbose) { DumpCounts(core_regs, core_reg_count_size, "Core regs after sort"); DumpCounts(fp_regs, fp_reg_count_size, "Fp regs after sort"); } if (!(cu_->disable_opt & (1 << kPromoteRegs))) { // Promote fp regs for (size_t i = 0; (i < fp_reg_count_size) && (fp_regs[i].count >= promotion_threshold); i++) { int low_sreg = fp_regs[i].s_reg & ~STARTING_WIDE_SREG; size_t p_map_idx = SRegToPMap(low_sreg); RegStorage reg = RegStorage::InvalidReg(); if (promotion_map_[p_map_idx].fp_location != kLocPhysReg) { // TODO: break out the Thumb2-specific code. if (cu_->instruction_set == kThumb2) { bool wide = fp_regs[i].s_reg & STARTING_WIDE_SREG; if (wide) { if (promotion_map_[p_map_idx + 1].fp_location != kLocPhysReg) { // Ignore result - if can't alloc double may still be able to alloc singles. AllocPreservedDouble(low_sreg); } // Continue regardless of success - might still be able to grab a single. continue; } else { reg = AllocPreservedSingle(low_sreg); } } else { reg = AllocPreservedFpReg(low_sreg); } if (!reg.Valid()) { break; // No more left } } } // Promote core regs for (size_t i = 0; (i < core_reg_count_size) && (core_regs[i].count >= promotion_threshold); i++) { int low_sreg = core_regs[i].s_reg & ~STARTING_WIDE_SREG; size_t p_map_idx = SRegToPMap(low_sreg); if (promotion_map_[p_map_idx].core_location != kLocPhysReg) { RegStorage reg = AllocPreservedCoreReg(low_sreg); if (!reg.Valid()) { break; // No more left } } } } // Now, update SSA names to new home locations for (int i = 0; i < mir_graph_->GetNumSSARegs(); i++) { RegLocation *curr = &mir_graph_->reg_location_[i]; int p_map_idx = SRegToPMap(curr->s_reg_low); int reg_num = curr->fp ? promotion_map_[p_map_idx].fp_reg : promotion_map_[p_map_idx].core_reg; bool wide = curr->wide || (cu_->target64 && curr->ref); RegStorage reg = RegStorage::InvalidReg(); if (curr->fp && promotion_map_[p_map_idx].fp_location == kLocPhysReg) { if (wide && cu_->instruction_set == kThumb2) { if (promotion_map_[p_map_idx + 1].fp_location == kLocPhysReg) { int high_reg = promotion_map_[p_map_idx+1].fp_reg; // TODO: move target-specific restrictions out of here. if (((reg_num & 0x1) == 0) && ((reg_num + 1) == high_reg)) { reg = RegStorage::FloatSolo64(RegStorage::RegNum(reg_num) >> 1); } } } else { reg = wide ? RegStorage::FloatSolo64(reg_num) : RegStorage::FloatSolo32(reg_num); } } else if (!curr->fp && promotion_map_[p_map_idx].core_location == kLocPhysReg) { if (wide && !cu_->target64) { if (promotion_map_[p_map_idx + 1].core_location == kLocPhysReg) { int high_reg = promotion_map_[p_map_idx+1].core_reg; reg = RegStorage(RegStorage::k64BitPair, reg_num, high_reg); } } else { reg = wide ? RegStorage::Solo64(reg_num) : RegStorage::Solo32(reg_num); } } if (reg.Valid()) { curr->reg = reg; curr->location = kLocPhysReg; curr->home = true; } } if (cu_->verbose) { DumpPromotionMap(); } } /* Returns sp-relative offset in bytes for a VReg */ int Mir2Lir::VRegOffset(int v_reg) { const DexFile::CodeItem* code_item = mir_graph_->GetCurrentDexCompilationUnit()->GetCodeItem(); return StackVisitor::GetVRegOffsetFromQuickCode(code_item, core_spill_mask_, fp_spill_mask_, frame_size_, v_reg, cu_->instruction_set); } /* Returns sp-relative offset in bytes for a SReg */ int Mir2Lir::SRegOffset(int s_reg) { return VRegOffset(mir_graph_->SRegToVReg(s_reg)); } /* Mark register usage state and return long retloc */ RegLocation Mir2Lir::GetReturnWide(RegisterClass reg_class) { RegLocation res; switch (reg_class) { case kRefReg: LOG(FATAL); break; case kFPReg: res = LocCReturnDouble(); break; default: res = LocCReturnWide(); break; } Clobber(res.reg); LockTemp(res.reg); MarkWide(res.reg); CheckRegLocation(res); return res; } RegLocation Mir2Lir::GetReturn(RegisterClass reg_class) { RegLocation res; switch (reg_class) { case kRefReg: res = LocCReturnRef(); break; case kFPReg: res = LocCReturnFloat(); break; default: res = LocCReturn(); break; } Clobber(res.reg); if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) { MarkInUse(res.reg); } else { LockTemp(res.reg); } CheckRegLocation(res); return res; } void Mir2Lir::SimpleRegAlloc() { DoPromotion(); if (cu_->verbose && !(cu_->disable_opt & (1 << kPromoteRegs))) { LOG(INFO) << "After Promotion"; mir_graph_->DumpRegLocTable(mir_graph_->reg_location_, mir_graph_->GetNumSSARegs()); } /* Set the frame size */ frame_size_ = ComputeFrameSize(); } /* * Get the "real" sreg number associated with an s_reg slot. In general, * s_reg values passed through codegen are the SSA names created by * dataflow analysis and refer to slot numbers in the mir_graph_->reg_location * array. However, renaming is accomplished by simply replacing RegLocation * entries in the reglocation[] array. Therefore, when location * records for operands are first created, we need to ask the locRecord * identified by the dataflow pass what it's new name is. */ int Mir2Lir::GetSRegHi(int lowSreg) { return (lowSreg == INVALID_SREG) ? INVALID_SREG : lowSreg + 1; } bool Mir2Lir::LiveOut(int s_reg) { UNUSED(s_reg); // For now. return true; } } // namespace art