/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_DEX_MIR_GRAPH_H_ #define ART_COMPILER_DEX_MIR_GRAPH_H_ #include <stdint.h> #include "base/arena_containers.h" #include "base/bit_utils.h" #include "base/scoped_arena_containers.h" #include "dex_file.h" #include "dex_instruction.h" #include "dex_types.h" #include "invoke_type.h" #include "mir_field_info.h" #include "mir_method_info.h" #include "reg_location.h" #include "reg_storage.h" #include "utils/arena_bit_vector.h" namespace art { struct CompilationUnit; class DexCompilationUnit; class DexFileMethodInliner; class GlobalValueNumbering; class GvnDeadCodeElimination; class PassManager; class TypeInference; // Forward declaration. class MIRGraph; enum DataFlowAttributePos { kUA = 0, kUB, kUC, kAWide, kBWide, kCWide, kDA, kIsMove, kSetsConst, kFormat35c, kFormat3rc, kFormatExtended, // Extended format for extended MIRs. kNullCheckA, // Null check of A. kNullCheckB, // Null check of B. kNullCheckOut0, // Null check out outgoing arg0. kDstNonNull, // May assume dst is non-null. kRetNonNull, // May assume retval is non-null. kNullTransferSrc0, // Object copy src[0] -> dst. kNullTransferSrcN, // Phi null check state transfer. kRangeCheckC, // Range check of C. kCheckCastA, // Check cast of A. kFPA, kFPB, kFPC, kCoreA, kCoreB, kCoreC, kRefA, kRefB, kRefC, kSameTypeAB, // A and B have the same type but it can be core/ref/fp (IF_cc). kUsesMethodStar, // Implicit use of Method*. kUsesIField, // Accesses an instance field (IGET/IPUT). kUsesSField, // Accesses a static field (SGET/SPUT). kCanInitializeClass, // Can trigger class initialization (SGET/SPUT/INVOKE_STATIC). kDoLVN, // Worth computing local value numbers. }; #define DF_NOP UINT64_C(0) #define DF_UA (UINT64_C(1) << kUA) #define DF_UB (UINT64_C(1) << kUB) #define DF_UC (UINT64_C(1) << kUC) #define DF_A_WIDE (UINT64_C(1) << kAWide) #define DF_B_WIDE (UINT64_C(1) << kBWide) #define DF_C_WIDE (UINT64_C(1) << kCWide) #define DF_DA (UINT64_C(1) << kDA) #define DF_IS_MOVE (UINT64_C(1) << kIsMove) #define DF_SETS_CONST (UINT64_C(1) << kSetsConst) #define DF_FORMAT_35C (UINT64_C(1) << kFormat35c) #define DF_FORMAT_3RC (UINT64_C(1) << kFormat3rc) #define DF_FORMAT_EXTENDED (UINT64_C(1) << kFormatExtended) #define DF_NULL_CHK_A (UINT64_C(1) << kNullCheckA) #define DF_NULL_CHK_B (UINT64_C(1) << kNullCheckB) #define DF_NULL_CHK_OUT0 (UINT64_C(1) << kNullCheckOut0) #define DF_NON_NULL_DST (UINT64_C(1) << kDstNonNull) #define DF_NON_NULL_RET (UINT64_C(1) << kRetNonNull) #define DF_NULL_TRANSFER_0 (UINT64_C(1) << kNullTransferSrc0) #define DF_NULL_TRANSFER_N (UINT64_C(1) << kNullTransferSrcN) #define DF_RANGE_CHK_C (UINT64_C(1) << kRangeCheckC) #define DF_CHK_CAST (UINT64_C(1) << kCheckCastA) #define DF_FP_A (UINT64_C(1) << kFPA) #define DF_FP_B (UINT64_C(1) << kFPB) #define DF_FP_C (UINT64_C(1) << kFPC) #define DF_CORE_A (UINT64_C(1) << kCoreA) #define DF_CORE_B (UINT64_C(1) << kCoreB) #define DF_CORE_C (UINT64_C(1) << kCoreC) #define DF_REF_A (UINT64_C(1) << kRefA) #define DF_REF_B (UINT64_C(1) << kRefB) #define DF_REF_C (UINT64_C(1) << kRefC) #define DF_SAME_TYPE_AB (UINT64_C(1) << kSameTypeAB) #define DF_UMS (UINT64_C(1) << kUsesMethodStar) #define DF_IFIELD (UINT64_C(1) << kUsesIField) #define DF_SFIELD (UINT64_C(1) << kUsesSField) #define DF_CLINIT (UINT64_C(1) << kCanInitializeClass) #define DF_LVN (UINT64_C(1) << kDoLVN) #define DF_HAS_USES (DF_UA | DF_UB | DF_UC) #define DF_HAS_DEFS (DF_DA) #define DF_HAS_NULL_CHKS (DF_NULL_CHK_A | \ DF_NULL_CHK_B | \ DF_NULL_CHK_OUT0) #define DF_HAS_RANGE_CHKS (DF_RANGE_CHK_C) #define DF_HAS_NR_CHKS (DF_HAS_NULL_CHKS | \ DF_HAS_RANGE_CHKS) #define DF_A_IS_REG (DF_UA | DF_DA) #define DF_B_IS_REG (DF_UB) #define DF_C_IS_REG (DF_UC) #define DF_USES_FP (DF_FP_A | DF_FP_B | DF_FP_C) #define DF_NULL_TRANSFER (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N) #define DF_IS_INVOKE (DF_FORMAT_35C | DF_FORMAT_3RC) enum OatMethodAttributes { kIsLeaf, // Method is leaf. }; #define METHOD_IS_LEAF (1 << kIsLeaf) // Minimum field size to contain Dalvik v_reg number. #define VREG_NUM_WIDTH 16 #define INVALID_VREG (0xFFFFU) #define INVALID_OFFSET (0xDEADF00FU) #define MIR_IGNORE_NULL_CHECK (1 << kMIRIgnoreNullCheck) #define MIR_IGNORE_RANGE_CHECK (1 << kMIRIgnoreRangeCheck) #define MIR_IGNORE_CHECK_CAST (1 << kMIRIgnoreCheckCast) #define MIR_STORE_NON_NULL_VALUE (1 << kMIRStoreNonNullValue) #define MIR_CLASS_IS_INITIALIZED (1 << kMIRClassIsInitialized) #define MIR_CLASS_IS_IN_DEX_CACHE (1 << kMIRClassIsInDexCache) #define MIR_IGNORE_DIV_ZERO_CHECK (1 << kMirIgnoreDivZeroCheck) #define MIR_INLINED (1 << kMIRInlined) #define MIR_INLINED_PRED (1 << kMIRInlinedPred) #define MIR_CALLEE (1 << kMIRCallee) #define MIR_IGNORE_SUSPEND_CHECK (1 << kMIRIgnoreSuspendCheck) #define MIR_DUP (1 << kMIRDup) #define MIR_MARK (1 << kMIRMark) #define MIR_STORE_NON_TEMPORAL (1 << kMIRStoreNonTemporal) #define BLOCK_NAME_LEN 80 typedef uint16_t BasicBlockId; static const BasicBlockId NullBasicBlockId = 0; // Leaf optimization is basically the removal of suspend checks from leaf methods. // This is incompatible with SuspendCheckElimination (SCE) which eliminates suspend // checks from loops that call any non-intrinsic method, since a loop that calls // only a leaf method would end up without any suspend checks at all. So turning // this on automatically disables the SCE in MIRGraph::EliminateSuspendChecksGate(). // // Since the Optimizing compiler is actually applying the same optimization, Quick // must not run SCE anyway, so we enable this optimization as a way to disable SCE // while keeping a consistent behavior across the backends, b/22657404. static constexpr bool kLeafOptimization = true; /* * In general, vreg/sreg describe Dalvik registers that originated with dx. However, * it is useful to have compiler-generated temporary registers and have them treated * in the same manner as dx-generated virtual registers. This struct records the SSA * name of compiler-introduced temporaries. */ struct CompilerTemp { int32_t v_reg; // Virtual register number for temporary. int32_t s_reg_low; // SSA name for low Dalvik word. }; enum CompilerTempType { kCompilerTempVR, // A virtual register temporary. kCompilerTempSpecialMethodPtr, // Temporary that keeps track of current method pointer. kCompilerTempBackend, // Temporary that is used by backend. }; // When debug option enabled, records effectiveness of null and range check elimination. struct Checkstats { int32_t null_checks; int32_t null_checks_eliminated; int32_t range_checks; int32_t range_checks_eliminated; }; // Dataflow attributes of a basic block. struct BasicBlockDataFlow { ArenaBitVector* use_v; ArenaBitVector* def_v; ArenaBitVector* live_in_v; int32_t* vreg_to_ssa_map_exit; }; /* * Normalized use/def for a MIR operation using SSA names rather than vregs. Note that * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit * vregs. For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5). * Following SSA renaming, this is the primary struct used by code generators to locate * operand and result registers. This is a somewhat confusing and unhelpful convention that * we may want to revisit in the future. * * TODO: * 1. Add accessors for uses/defs and make data private * 2. Change fp_use/fp_def to a bit array (could help memory usage) * 3. Combine array storage into internal array and handled via accessors from 1. */ struct SSARepresentation { int32_t* uses; int32_t* defs; uint16_t num_uses_allocated; uint16_t num_defs_allocated; uint16_t num_uses; uint16_t num_defs; static uint32_t GetStartUseIndex(Instruction::Code opcode); }; /* * The Midlevel Intermediate Representation node, which may be largely considered a * wrapper around a Dalvik byte code. */ class MIR : public ArenaObject<kArenaAllocMIR> { public: /* * TODO: remove embedded DecodedInstruction to save space, keeping only opcode. Recover * additional fields on as-needed basis. Question: how to support MIR Pseudo-ops; probably * need to carry aux data pointer. */ struct DecodedInstruction { uint32_t vA; uint32_t vB; uint64_t vB_wide; /* for k51l */ uint32_t vC; uint32_t arg[5]; /* vC/D/E/F/G in invoke or filled-new-array */ Instruction::Code opcode; explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) { } /* * Given a decoded instruction representing a const bytecode, it updates * the out arguments with proper values as dictated by the constant bytecode. */ bool GetConstant(int64_t* ptr_value, bool* wide) const; static bool IsPseudoMirOp(Instruction::Code opcode) { return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst); } static bool IsPseudoMirOp(int opcode) { return opcode >= static_cast<int>(kMirOpFirst); } bool IsInvoke() const { return ((FlagsOf() & Instruction::kInvoke) == Instruction::kInvoke); } bool IsStore() const { return ((FlagsOf() & Instruction::kStore) == Instruction::kStore); } bool IsLoad() const { return ((FlagsOf() & Instruction::kLoad) == Instruction::kLoad); } bool IsConditionalBranch() const { return (FlagsOf() == (Instruction::kContinue | Instruction::kBranch)); } /** * @brief Is the register C component of the decoded instruction a constant? */ bool IsCFieldOrConstant() const { return ((FlagsOf() & Instruction::kRegCFieldOrConstant) == Instruction::kRegCFieldOrConstant); } /** * @brief Is the register C component of the decoded instruction a constant? */ bool IsBFieldOrConstant() const { return ((FlagsOf() & Instruction::kRegBFieldOrConstant) == Instruction::kRegBFieldOrConstant); } bool IsCast() const { return ((FlagsOf() & Instruction::kCast) == Instruction::kCast); } /** * @brief Does the instruction clobber memory? * @details Clobber means that the instruction changes the memory not in a punctual way. * Therefore any supposition on memory aliasing or memory contents should be disregarded * when crossing such an instruction. */ bool Clobbers() const { return ((FlagsOf() & Instruction::kClobber) == Instruction::kClobber); } bool IsLinear() const { return (FlagsOf() & (Instruction::kAdd | Instruction::kSubtract)) != 0; } int FlagsOf() const; } dalvikInsn; NarrowDexOffset offset; // Offset of the instruction in code units. uint16_t optimization_flags; int16_t m_unit_index; // From which method was this MIR included BasicBlockId bb; MIR* next; SSARepresentation* ssa_rep; union { // Incoming edges for phi node. BasicBlockId* phi_incoming; // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction. MIR* throw_insn; // Branch condition for fused cmp or select. ConditionCode ccode; // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K. uint32_t ifield_lowering_info; // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K. uint32_t sfield_lowering_info; // INVOKE data index, points to MIRGraph::method_lowering_infos_. Also used for inlined // CONST and MOVE insn (with MIR_CALLEE) to remember the invoke for type inference. uint32_t method_lowering_info; } meta; explicit MIR() : offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId), next(nullptr), ssa_rep(nullptr) { memset(&meta, 0, sizeof(meta)); } uint32_t GetStartUseIndex() const { return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode); } MIR* Copy(CompilationUnit *c_unit); MIR* Copy(MIRGraph* mir_Graph); }; struct SuccessorBlockInfo; class BasicBlock : public DeletableArenaObject<kArenaAllocBB> { public: BasicBlock(BasicBlockId block_id, BBType type, ArenaAllocator* allocator) : id(block_id), dfs_id(), start_offset(), fall_through(), taken(), i_dom(), nesting_depth(), block_type(type), successor_block_list_type(kNotUsed), visited(), hidden(), catch_entry(), explicit_throw(), conditional_branch(), terminated_by_return(), dominates_return(), use_lvn(), first_mir_insn(), last_mir_insn(), data_flow_info(), dominators(), i_dominated(), dom_frontier(), predecessors(allocator->Adapter(kArenaAllocBBPredecessors)), successor_blocks(allocator->Adapter(kArenaAllocSuccessor)) { } BasicBlockId id; BasicBlockId dfs_id; NarrowDexOffset start_offset; // Offset in code units. BasicBlockId fall_through; BasicBlockId taken; BasicBlockId i_dom; // Immediate dominator. uint16_t nesting_depth; BBType block_type:4; BlockListType successor_block_list_type:4; bool visited:1; bool hidden:1; bool catch_entry:1; bool explicit_throw:1; bool conditional_branch:1; bool terminated_by_return:1; // Block ends with a Dalvik return opcode. bool dominates_return:1; // Is a member of return extended basic block. bool use_lvn:1; // Run local value numbering on this block. MIR* first_mir_insn; MIR* last_mir_insn; BasicBlockDataFlow* data_flow_info; ArenaBitVector* dominators; ArenaBitVector* i_dominated; // Set nodes being immediately dominated. ArenaBitVector* dom_frontier; // Dominance frontier. ArenaVector<BasicBlockId> predecessors; ArenaVector<SuccessorBlockInfo*> successor_blocks; void AppendMIR(MIR* mir); void AppendMIRList(MIR* first_list_mir, MIR* last_list_mir); void AppendMIRList(const std::vector<MIR*>& insns); void PrependMIR(MIR* mir); void PrependMIRList(MIR* first_list_mir, MIR* last_list_mir); void PrependMIRList(const std::vector<MIR*>& to_add); void InsertMIRAfter(MIR* current_mir, MIR* new_mir); void InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir); MIR* FindPreviousMIR(MIR* mir); void InsertMIRBefore(MIR* insert_before, MIR* list); void InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir); bool RemoveMIR(MIR* mir); bool RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir); BasicBlock* Copy(CompilationUnit* c_unit); BasicBlock* Copy(MIRGraph* mir_graph); /** * @brief Reset the optimization_flags field of each MIR. */ void ResetOptimizationFlags(uint16_t reset_flags); /** * @brief Kill the BasicBlock. * @details Unlink predecessors and successors, remove all MIRs, set the block type to kDead * and set hidden to true. */ void Kill(MIRGraph* mir_graph); /** * @brief Is ssa_reg the last SSA definition of that VR in the block? */ bool IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg); /** * @brief Replace the edge going to old_bb to now go towards new_bb. */ bool ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb); /** * @brief Erase the predecessor old_pred. */ void ErasePredecessor(BasicBlockId old_pred); /** * @brief Update the predecessor array from old_pred to new_pred. */ void UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred); /** * @brief Return first non-Phi insn. */ MIR* GetFirstNonPhiInsn(); /** * @brief Checks whether the block ends with if-nez or if-eqz that branches to * the given successor only if the register in not zero. */ bool BranchesToSuccessorOnlyIfNotZero(BasicBlockId succ_id) const { if (last_mir_insn == nullptr) { return false; } Instruction::Code last_opcode = last_mir_insn->dalvikInsn.opcode; return ((last_opcode == Instruction::IF_EQZ && fall_through == succ_id) || (last_opcode == Instruction::IF_NEZ && taken == succ_id)) && // Make sure the other successor isn't the same (empty if), b/21614284. (fall_through != taken); } /** * @brief Used to obtain the next MIR that follows unconditionally. * @details The implementation does not guarantee that a MIR does not * follow even if this method returns nullptr. * @param mir_graph the MIRGraph. * @param current The MIR for which to find an unconditional follower. * @return Returns the following MIR if one can be found. */ MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current); bool IsExceptionBlock() const; private: DISALLOW_COPY_AND_ASSIGN(BasicBlock); }; /* * The "blocks" field in "successor_block_list" points to an array of elements with the type * "SuccessorBlockInfo". For catch blocks, key is type index for the exception. For switch * blocks, key is the case value. */ struct SuccessorBlockInfo { BasicBlockId block; int key; }; /** * @class ChildBlockIterator * @brief Enable an easy iteration of the children. */ class ChildBlockIterator { public: /** * @brief Constructs a child iterator. * @param bb The basic whose children we need to iterate through. * @param mir_graph The MIRGraph used to get the basic block during iteration. */ ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph); BasicBlock* Next(); private: BasicBlock* basic_block_; MIRGraph* mir_graph_; bool visited_fallthrough_; bool visited_taken_; bool have_successors_; ArenaVector<SuccessorBlockInfo*>::const_iterator successor_iter_; }; /* * Collection of information describing an invoke, and the destination of * the subsequent MOVE_RESULT (if applicable). Collected as a unit to enable * more efficient invoke code generation. */ struct CallInfo { size_t num_arg_words; // Note: word count, not arg count. RegLocation* args; // One for each word of arguments. RegLocation result; // Eventual target of MOVE_RESULT. int opt_flags; InvokeType type; uint32_t dex_idx; MethodReference method_ref; uint32_t index; // Method idx for invokes, type idx for FilledNewArray. uintptr_t direct_code; uintptr_t direct_method; RegLocation target; // Target of following move_result. bool skip_this; bool is_range; DexOffset offset; // Offset in code units. MIR* mir; int32_t string_init_offset; }; const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG, INVALID_SREG}; class MIRGraph { public: MIRGraph(CompilationUnit* cu, ArenaAllocator* arena); virtual ~MIRGraph(); /* * Examine the graph to determine whether it's worthwile to spend the time compiling * this method. */ bool SkipCompilation(std::string* skip_message); /* * Should we skip the compilation of this method based on its name? */ bool SkipCompilationByName(const std::string& methodname); /* * Parse dex method and add MIR at current insert point. Returns id (which is * actually the index of the method in the m_units_ array). */ void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, const DexFile& dex_file); /* Find existing block */ BasicBlock* FindBlock(DexOffset code_offset, ScopedArenaVector<uint16_t>* dex_pc_to_block_map) { return FindBlock(code_offset, false, nullptr, dex_pc_to_block_map); } const uint16_t* GetCurrentInsns() const { return current_code_item_->insns_; } /** * @brief Used to obtain the raw dex bytecode instruction pointer. * @param m_unit_index The method index in MIRGraph (caused by having multiple methods). * This is guaranteed to contain index 0 which is the base method being compiled. * @return Returns the raw instruction pointer. */ const uint16_t* GetInsns(int m_unit_index) const; /** * @brief Used to obtain the raw data table. * @param mir sparse switch, packed switch, of fill-array-data * @param table_offset The table offset from start of method. * @return Returns the raw table pointer. */ const uint16_t* GetTable(MIR* mir, uint32_t table_offset) const { return GetInsns(mir->m_unit_index) + mir->offset + static_cast<int32_t>(table_offset); } unsigned int GetNumBlocks() const { return block_list_.size(); } /** * @brief Provides the total size in code units of all instructions in MIRGraph. * @details Includes the sizes of all methods in compilation unit. * @return Returns the cumulative sum of all insn sizes (in code units). */ size_t GetNumDalvikInsns() const; ArenaBitVector* GetTryBlockAddr() const { return try_block_addr_; } BasicBlock* GetEntryBlock() const { return entry_block_; } BasicBlock* GetExitBlock() const { return exit_block_; } BasicBlock* GetBasicBlock(unsigned int block_id) const { DCHECK_LT(block_id, block_list_.size()); // NOTE: NullBasicBlockId is 0. return (block_id == NullBasicBlockId) ? nullptr : block_list_[block_id]; } size_t GetBasicBlockListCount() const { return block_list_.size(); } const ArenaVector<BasicBlock*>& GetBlockList() { return block_list_; } const ArenaVector<BasicBlockId>& GetDfsOrder() { return dfs_order_; } const ArenaVector<BasicBlockId>& GetDfsPostOrder() { return dfs_post_order_; } const ArenaVector<BasicBlockId>& GetDomPostOrder() { return dom_post_order_traversal_; } int GetDefCount() const { return def_count_; } ArenaAllocator* GetArena() const { return arena_; } void EnableOpcodeCounting() { opcode_count_ = arena_->AllocArray<int>(kNumPackedOpcodes, kArenaAllocMisc); } void ShowOpcodeStats(); DexCompilationUnit* GetCurrentDexCompilationUnit() const { return m_units_[current_method_]; } /** * @brief Dump a CFG into a dot file format. * @param dir_prefix the directory the file will be created in. * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks. * @param suffix does the filename require a suffix or not (default = nullptr). */ void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr); bool HasCheckCast() const { return (merged_df_flags_ & DF_CHK_CAST) != 0u; } bool HasFieldAccess() const { return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u; } bool HasStaticFieldAccess() const { return (merged_df_flags_ & DF_SFIELD) != 0u; } bool HasInvokes() const { // NOTE: These formats include the rare filled-new-array/range. return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u; } void DoCacheFieldLoweringInfo(); const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const { return GetIFieldLoweringInfo(mir->meta.ifield_lowering_info); } const MirIFieldLoweringInfo& GetIFieldLoweringInfo(uint32_t lowering_info) const { DCHECK_LT(lowering_info, ifield_lowering_infos_.size()); return ifield_lowering_infos_[lowering_info]; } size_t GetIFieldLoweringInfoCount() const { return ifield_lowering_infos_.size(); } const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const { return GetSFieldLoweringInfo(mir->meta.sfield_lowering_info); } const MirSFieldLoweringInfo& GetSFieldLoweringInfo(uint32_t lowering_info) const { DCHECK_LT(lowering_info, sfield_lowering_infos_.size()); return sfield_lowering_infos_[lowering_info]; } size_t GetSFieldLoweringInfoCount() const { return sfield_lowering_infos_.size(); } void DoCacheMethodLoweringInfo(); const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) const { return GetMethodLoweringInfo(mir->meta.method_lowering_info); } const MirMethodLoweringInfo& GetMethodLoweringInfo(uint32_t lowering_info) const { DCHECK_LT(lowering_info, method_lowering_infos_.size()); return method_lowering_infos_[lowering_info]; } size_t GetMethodLoweringInfoCount() const { return method_lowering_infos_.size(); } void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput); void InitRegLocations(); void RemapRegLocations(); void DumpRegLocTable(RegLocation* table, int count); void BasicBlockOptimizationStart(); void BasicBlockOptimization(); void BasicBlockOptimizationEnd(); void StringChange(); const ArenaVector<BasicBlockId>& GetTopologicalSortOrder() { DCHECK(!topological_order_.empty()); return topological_order_; } const ArenaVector<BasicBlockId>& GetTopologicalSortOrderLoopEnds() { DCHECK(!topological_order_loop_ends_.empty()); return topological_order_loop_ends_; } const ArenaVector<BasicBlockId>& GetTopologicalSortOrderIndexes() { DCHECK(!topological_order_indexes_.empty()); return topological_order_indexes_; } ArenaVector<std::pair<uint16_t, bool>>* GetTopologicalSortOrderLoopHeadStack() { DCHECK(!topological_order_.empty()); // Checking the main array, not the stack. return &topological_order_loop_head_stack_; } size_t GetMaxNestedLoops() const { return max_nested_loops_; } bool IsLoopHead(BasicBlockId bb_id) { return topological_order_loop_ends_[topological_order_indexes_[bb_id]] != 0u; } bool IsConst(int32_t s_reg) const { return is_constant_v_->IsBitSet(s_reg); } bool IsConst(RegLocation loc) const { return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg); } int32_t ConstantValue(RegLocation loc) const { DCHECK(IsConst(loc)); return constant_values_[loc.orig_sreg]; } int32_t ConstantValue(int32_t s_reg) const { DCHECK(IsConst(s_reg)); return constant_values_[s_reg]; } /** * @brief Used to obtain 64-bit value of a pair of ssa registers. * @param s_reg_low The ssa register representing the low bits. * @param s_reg_high The ssa register representing the high bits. * @return Retusn the 64-bit constant value. */ int64_t ConstantValueWide(int32_t s_reg_low, int32_t s_reg_high) const { DCHECK(IsConst(s_reg_low)); DCHECK(IsConst(s_reg_high)); return (static_cast<int64_t>(constant_values_[s_reg_high]) << 32) | Low32Bits(static_cast<int64_t>(constant_values_[s_reg_low])); } int64_t ConstantValueWide(RegLocation loc) const { DCHECK(IsConst(loc)); DCHECK(!loc.high_word); // Do not allow asking for the high partner. DCHECK_LT(loc.orig_sreg + 1, GetNumSSARegs()); return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) | Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg])); } /** * @brief Used to mark ssa register as being constant. * @param ssa_reg The ssa register. * @param value The constant value of ssa register. */ void SetConstant(int32_t ssa_reg, int32_t value); /** * @brief Used to mark ssa register and its wide counter-part as being constant. * @param ssa_reg The ssa register. * @param value The 64-bit constant value of ssa register and its pair. */ void SetConstantWide(int32_t ssa_reg, int64_t value); bool IsConstantNullRef(RegLocation loc) const { return loc.ref && loc.is_const && (ConstantValue(loc) == 0); } int GetNumSSARegs() const { return num_ssa_regs_; } void SetNumSSARegs(int new_num) { /* * TODO: It's theoretically possible to exceed 32767, though any cases which did * would be filtered out with current settings. When orig_sreg field is removed * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK(). */ CHECK_EQ(new_num, static_cast<int16_t>(new_num)); num_ssa_regs_ = new_num; } unsigned int GetNumReachableBlocks() const { return num_reachable_blocks_; } uint32_t GetUseCount(int sreg) const { DCHECK_LT(static_cast<size_t>(sreg), use_counts_.size()); return use_counts_[sreg]; } uint32_t GetRawUseCount(int sreg) const { DCHECK_LT(static_cast<size_t>(sreg), raw_use_counts_.size()); return raw_use_counts_[sreg]; } int GetSSASubscript(int ssa_reg) const { DCHECK_LT(static_cast<size_t>(ssa_reg), ssa_subscripts_.size()); return ssa_subscripts_[ssa_reg]; } RegLocation GetRawSrc(MIR* mir, int num) { DCHECK(num < mir->ssa_rep->num_uses); RegLocation res = reg_location_[mir->ssa_rep->uses[num]]; return res; } RegLocation GetRawDest(MIR* mir) { DCHECK_GT(mir->ssa_rep->num_defs, 0); RegLocation res = reg_location_[mir->ssa_rep->defs[0]]; return res; } RegLocation GetDest(MIR* mir) { RegLocation res = GetRawDest(mir); DCHECK(!res.wide); return res; } RegLocation GetSrc(MIR* mir, int num) { RegLocation res = GetRawSrc(mir, num); DCHECK(!res.wide); return res; } RegLocation GetDestWide(MIR* mir) { RegLocation res = GetRawDest(mir); DCHECK(res.wide); return res; } RegLocation GetSrcWide(MIR* mir, int low) { RegLocation res = GetRawSrc(mir, low); DCHECK(res.wide); return res; } RegLocation GetBadLoc() { return bad_loc; } int GetMethodSReg() const { return method_sreg_; } /** * @brief Used to obtain the number of compiler temporaries being used. * @return Returns the number of compiler temporaries. */ size_t GetNumUsedCompilerTemps() const { // Assume that the special temps will always be used. return GetNumNonSpecialCompilerTemps() + max_available_special_compiler_temps_; } /** * @brief Used to obtain number of bytes needed for special temps. * @details This space is always needed because temps have special location on stack. * @return Returns number of bytes for the special temps. */ size_t GetNumBytesForSpecialTemps() const; /** * @brief Used by backend as a hint for maximum number of bytes for non-special temps. * @details Returns 4 bytes for each temp because that is the maximum amount needed * for storing each temp. The BE could be smarter though and allocate a smaller * spill region. * @return Returns the maximum number of bytes needed for non-special temps. */ size_t GetMaximumBytesForNonSpecialTemps() const { return GetNumNonSpecialCompilerTemps() * sizeof(uint32_t); } /** * @brief Used to obtain the number of non-special compiler temporaries being used. * @return Returns the number of non-special compiler temporaries. */ size_t GetNumNonSpecialCompilerTemps() const { return num_non_special_compiler_temps_; } /** * @brief Used to set the total number of available non-special compiler temporaries. * @details Can fail setting the new max if there are more temps being used than the new_max. * @param new_max The new maximum number of non-special compiler temporaries. * @return Returns true if the max was set and false if failed to set. */ bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) { // Make sure that enough temps still exist for backend and also that the // new max can still keep around all of the already requested temps. if (new_max < (GetNumNonSpecialCompilerTemps() + reserved_temps_for_backend_)) { return false; } else { max_available_non_special_compiler_temps_ = new_max; return true; } } /** * @brief Provides the number of non-special compiler temps available for use by ME. * @details Even if this returns zero, special compiler temps are guaranteed to be available. * Additionally, this makes sure to not use any temps reserved for BE only. * @return Returns the number of available temps. */ size_t GetNumAvailableVRTemps(); /** * @brief Used to obtain the maximum number of compiler temporaries that can be requested. * @return Returns the maximum number of compiler temporaries, whether used or not. */ size_t GetMaxPossibleCompilerTemps() const { return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_; } /** * @brief Used to signal that the compiler temps have been committed. * @details This should be used once the number of temps can no longer change, * such as after frame size is committed and cannot be changed. */ void CommitCompilerTemps() { compiler_temps_committed_ = true; } /** * @brief Used to obtain a new unique compiler temporary. * @details Two things are done for convenience when allocating a new compiler * temporary. The ssa register is automatically requested and the information * about reg location is filled. This helps when the temp is requested post * ssa initialization, such as when temps are requested by the backend. * @warning If the temp requested will be used for ME and have multiple versions, * the sreg provided by the temp will be invalidated on next ssa recalculation. * @param ct_type Type of compiler temporary requested. * @param wide Whether we should allocate a wide temporary. * @return Returns the newly created compiler temporary. */ CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide); /** * @brief Used to remove last created compiler temporary when it's not needed. * @param temp the temporary to remove. */ void RemoveLastCompilerTemp(CompilerTempType ct_type, bool wide, CompilerTemp* temp); bool MethodIsLeaf() { return attributes_ & METHOD_IS_LEAF; } RegLocation GetRegLocation(int index) { DCHECK((index >= 0) && (index < num_ssa_regs_)); return reg_location_[index]; } RegLocation GetMethodLoc() { return reg_location_[method_sreg_]; } bool IsBackEdge(BasicBlock* branch_bb, BasicBlockId target_bb_id) { DCHECK_NE(target_bb_id, NullBasicBlockId); DCHECK_LT(target_bb_id, topological_order_indexes_.size()); DCHECK_LT(branch_bb->id, topological_order_indexes_.size()); return topological_order_indexes_[target_bb_id] <= topological_order_indexes_[branch_bb->id]; } bool IsSuspendCheckEdge(BasicBlock* branch_bb, BasicBlockId target_bb_id) { if (!IsBackEdge(branch_bb, target_bb_id)) { return false; } if (suspend_checks_in_loops_ == nullptr) { // We didn't run suspend check elimination. return true; } uint16_t target_depth = GetBasicBlock(target_bb_id)->nesting_depth; return (suspend_checks_in_loops_[branch_bb->id] & (1u << (target_depth - 1u))) == 0; } void CountBranch(DexOffset target_offset) { if (target_offset <= current_offset_) { backward_branches_++; } else { forward_branches_++; } } int GetBranchCount() { return backward_branches_ + forward_branches_; } // Is this vreg in the in set? bool IsInVReg(uint32_t vreg) { return (vreg >= GetFirstInVR()) && (vreg < GetFirstTempVR()); } uint32_t GetNumOfCodeVRs() const { return current_code_item_->registers_size_; } uint32_t GetNumOfCodeAndTempVRs() const { // Include all of the possible temps so that no structures overflow when initialized. return GetNumOfCodeVRs() + GetMaxPossibleCompilerTemps(); } uint32_t GetNumOfLocalCodeVRs() const { // This also refers to the first "in" VR. return GetNumOfCodeVRs() - current_code_item_->ins_size_; } uint32_t GetNumOfInVRs() const { return current_code_item_->ins_size_; } uint32_t GetNumOfOutVRs() const { return current_code_item_->outs_size_; } uint32_t GetFirstInVR() const { return GetNumOfLocalCodeVRs(); } uint32_t GetFirstTempVR() const { // Temp VRs immediately follow code VRs. return GetNumOfCodeVRs(); } uint32_t GetFirstSpecialTempVR() const { // Special temps appear first in the ordering before non special temps. return GetFirstTempVR(); } uint32_t GetFirstNonSpecialTempVR() const { // We always leave space for all the special temps before the non-special ones. return GetFirstSpecialTempVR() + max_available_special_compiler_temps_; } bool HasTryCatchBlocks() const { return current_code_item_->tries_size_ != 0; } void DumpCheckStats(); MIR* FindMoveResult(BasicBlock* bb, MIR* mir); /* Return the base virtual register for a SSA name */ int SRegToVReg(int ssa_reg) const { return ssa_base_vregs_[ssa_reg]; } void VerifyDataflow(); void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb); bool EliminateNullChecksGate(); bool EliminateNullChecks(BasicBlock* bb); void EliminateNullChecksEnd(); void InferTypesStart(); bool InferTypes(BasicBlock* bb); void InferTypesEnd(); bool EliminateClassInitChecksGate(); bool EliminateClassInitChecks(BasicBlock* bb); void EliminateClassInitChecksEnd(); bool ApplyGlobalValueNumberingGate(); bool ApplyGlobalValueNumbering(BasicBlock* bb); void ApplyGlobalValueNumberingEnd(); bool EliminateDeadCodeGate(); bool EliminateDeadCode(BasicBlock* bb); void EliminateDeadCodeEnd(); void GlobalValueNumberingCleanup(); bool EliminateSuspendChecksGate(); bool EliminateSuspendChecks(BasicBlock* bb); uint16_t GetGvnIFieldId(MIR* mir) const { DCHECK(IsInstructionIGetOrIPut(mir->dalvikInsn.opcode)); DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.size()); DCHECK(temp_.gvn.ifield_ids != nullptr); return temp_.gvn.ifield_ids[mir->meta.ifield_lowering_info]; } uint16_t GetGvnSFieldId(MIR* mir) const { DCHECK(IsInstructionSGetOrSPut(mir->dalvikInsn.opcode)); DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.size()); DCHECK(temp_.gvn.sfield_ids != nullptr); return temp_.gvn.sfield_ids[mir->meta.sfield_lowering_info]; } bool PuntToInterpreter() { return punt_to_interpreter_; } void SetPuntToInterpreter(bool val); void DisassembleExtendedInstr(const MIR* mir, std::string* decoded_mir); char* GetDalvikDisassembly(const MIR* mir); void ReplaceSpecialChars(std::string& str); std::string GetSSAName(int ssa_reg); std::string GetSSANameWithConst(int ssa_reg, bool singles_only); void GetBlockName(BasicBlock* bb, char* name); const char* GetShortyFromMethodReference(const MethodReference& target_method); void DumpMIRGraph(); CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range); BasicBlock* NewMemBB(BBType block_type, int block_id); MIR* NewMIR(); MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir); BasicBlock* NextDominatedBlock(BasicBlock* bb); bool LayoutBlocks(BasicBlock* bb); void ComputeTopologicalSortOrder(); BasicBlock* CreateNewBB(BBType block_type); bool InlineSpecialMethodsGate(); void InlineSpecialMethodsStart(); void InlineSpecialMethods(BasicBlock* bb); void InlineSpecialMethodsEnd(); /** * @brief Perform the initial preparation for the Method Uses. */ void InitializeMethodUses(); /** * @brief Perform the initial preparation for the Constant Propagation. */ void InitializeConstantPropagation(); /** * @brief Perform the initial preparation for the SSA Transformation. */ void SSATransformationStart(); /** * @brief Insert a the operands for the Phi nodes. * @param bb the considered BasicBlock. * @return true */ bool InsertPhiNodeOperands(BasicBlock* bb); /** * @brief Perform the cleanup after the SSA Transformation. */ void SSATransformationEnd(); /** * @brief Perform constant propagation on a BasicBlock. * @param bb the considered BasicBlock. */ void DoConstantPropagation(BasicBlock* bb); /** * @brief Get use count weight for a given block. * @param bb the BasicBlock. */ uint32_t GetUseCountWeight(BasicBlock* bb) const; /** * @brief Count the uses in the BasicBlock * @param bb the BasicBlock */ void CountUses(BasicBlock* bb); static uint64_t GetDataFlowAttributes(Instruction::Code opcode); static uint64_t GetDataFlowAttributes(MIR* mir); /** * @brief Combine BasicBlocks * @param the BasicBlock we are considering */ void CombineBlocks(BasicBlock* bb); void ClearAllVisitedFlags(); void AllocateSSAUseData(MIR *mir, int num_uses); void AllocateSSADefData(MIR *mir, int num_defs); void CalculateBasicBlockInformation(const PassManager* const post_opt); void ComputeDFSOrders(); void ComputeDefBlockMatrix(); void ComputeDominators(); void CompilerInitializeSSAConversion(); virtual void InitializeBasicBlockDataFlow(); void FindPhiNodeBlocks(); void DoDFSPreOrderSSARename(BasicBlock* block); bool DfsOrdersUpToDate() const { return dfs_orders_up_to_date_; } bool DominationUpToDate() const { return domination_up_to_date_; } bool MirSsaRepUpToDate() const { return mir_ssa_rep_up_to_date_; } bool TopologicalOrderUpToDate() const { return topological_order_up_to_date_; } /* * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on * we can verify that all catch entries have native PC entries. */ std::set<uint32_t> catches_; // TODO: make these private. RegLocation* reg_location_; // Map SSA names to location. ArenaSafeMap<unsigned int, unsigned int> block_id_map_; // Block collapse lookup cache. static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst]; void HandleSSADef(int* defs, int dalvik_reg, int reg_index); protected: int FindCommonParent(int block1, int block2); void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1, const ArenaBitVector* src2); void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v, ArenaBitVector* live_in_v, int dalvik_reg_id); void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id); void HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v, ArenaBitVector* live_in_v, const MIR::DecodedInstruction& d_insn); bool DoSSAConversion(BasicBlock* bb); int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction); bool ContentIsInsn(const uint16_t* code_ptr); BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block, BasicBlock** immed_pred_block_p); BasicBlock* FindBlock(DexOffset code_offset, bool create, BasicBlock** immed_pred_block_p, ScopedArenaVector<uint16_t>* dex_pc_to_block_map); void ProcessTryCatchBlocks(ScopedArenaVector<uint16_t>* dex_pc_to_block_map); bool IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset, NarrowDexOffset catch_offset); BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width, int flags, const uint16_t* code_ptr, const uint16_t* code_end, ScopedArenaVector<uint16_t>* dex_pc_to_block_map); BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width, int flags, ScopedArenaVector<uint16_t>* dex_pc_to_block_map); BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width, int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr, const uint16_t* code_end, ScopedArenaVector<uint16_t>* dex_pc_to_block_map); int AddNewSReg(int v_reg); void HandleSSAUse(int* uses, int dalvik_reg, int reg_index); void DataFlowSSAFormat35C(MIR* mir); void DataFlowSSAFormat3RC(MIR* mir); void DataFlowSSAFormatExtended(MIR* mir); bool FindLocalLiveIn(BasicBlock* bb); bool VerifyPredInfo(BasicBlock* bb); BasicBlock* NeedsVisit(BasicBlock* bb); BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb); void MarkPreOrder(BasicBlock* bb); void RecordDFSOrders(BasicBlock* bb); void ComputeDomPostOrderTraversal(BasicBlock* bb); int GetSSAUseCount(int s_reg); bool BasicBlockOpt(BasicBlock* bb); void MultiplyAddOpt(BasicBlock* bb); /** * @brief Check whether the given MIR is possible to throw an exception. * @param mir The mir to check. * @return Returns 'true' if the given MIR might throw an exception. */ bool CanThrow(MIR* mir) const; /** * @brief Combine multiply and add/sub MIRs into corresponding extended MAC MIR. * @param mul_mir The multiply MIR to be combined. * @param add_mir The add/sub MIR to be combined. * @param mul_is_first_addend 'true' if multiply product is the first addend of add operation. * @param is_wide 'true' if the operations are long type. * @param is_sub 'true' if it is a multiply-subtract operation. */ void CombineMultiplyAdd(MIR* mul_mir, MIR* add_mir, bool mul_is_first_addend, bool is_wide, bool is_sub); /* * @brief Check whether the first MIR anti-depends on the second MIR. * @details To check whether one of first MIR's uses of vregs is redefined by the second MIR, * i.e. there is a write-after-read dependency. * @param first The first MIR. * @param second The second MIR. * @param Returns true if there is a write-after-read dependency. */ bool HasAntiDependency(MIR* first, MIR* second); bool BuildExtendedBBList(class BasicBlock* bb); bool FillDefBlockMatrix(BasicBlock* bb); void InitializeDominationInfo(BasicBlock* bb); bool ComputeblockIDom(BasicBlock* bb); bool ComputeBlockDominators(BasicBlock* bb); bool SetDominators(BasicBlock* bb); bool ComputeBlockLiveIns(BasicBlock* bb); bool ComputeDominanceFrontier(BasicBlock* bb); void CountChecks(BasicBlock* bb); void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats); bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default, std::string* skip_message); CompilationUnit* const cu_; ArenaVector<int> ssa_base_vregs_; ArenaVector<int> ssa_subscripts_; // Map original Dalvik virtual reg i to the current SSA name. int32_t* vreg_to_ssa_map_; // length == method->registers_size int* ssa_last_defs_; // length == method->registers_size ArenaBitVector* is_constant_v_; // length == num_ssa_reg int* constant_values_; // length == num_ssa_reg // Use counts of ssa names. ArenaVector<uint32_t> use_counts_; // Weighted by nesting depth ArenaVector<uint32_t> raw_use_counts_; // Not weighted unsigned int num_reachable_blocks_; unsigned int max_num_reachable_blocks_; bool dfs_orders_up_to_date_; bool domination_up_to_date_; bool mir_ssa_rep_up_to_date_; bool topological_order_up_to_date_; ArenaVector<BasicBlockId> dfs_order_; ArenaVector<BasicBlockId> dfs_post_order_; ArenaVector<BasicBlockId> dom_post_order_traversal_; ArenaVector<BasicBlockId> topological_order_; // Indexes in topological_order_ need to be only as big as the BasicBlockId. static_assert(sizeof(BasicBlockId) == sizeof(uint16_t), "Assuming 16 bit BasicBlockId"); // For each loop head, remember the past-the-end index of the end of the loop. 0 if not loop head. ArenaVector<uint16_t> topological_order_loop_ends_; // Map BB ids to topological_order_ indexes. 0xffff if not included (hidden or null block). ArenaVector<uint16_t> topological_order_indexes_; // Stack of the loop head indexes and recalculation flags for RepeatingTopologicalSortIterator. ArenaVector<std::pair<uint16_t, bool>> topological_order_loop_head_stack_; size_t max_nested_loops_; int* i_dom_list_; std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_; // Union of temporaries used by different passes. union { // Class init check elimination. struct { size_t num_class_bits; // 2 bits per class: class initialized and class in dex cache. ArenaBitVector* work_classes_to_check; ArenaBitVector** ending_classes_to_check_matrix; // num_blocks_ x num_class_bits. uint16_t* indexes; } cice; // Null check elimination. struct { size_t num_vregs; ArenaBitVector* work_vregs_to_check; ArenaBitVector** ending_vregs_to_check_matrix; // num_blocks_ x num_vregs. } nce; // Special method inlining. struct { size_t num_indexes; ArenaBitVector* processed_indexes; uint16_t* lowering_infos; } smi; // SSA transformation. struct { size_t num_vregs; ArenaBitVector* work_live_vregs; ArenaBitVector** def_block_matrix; // num_vregs x num_blocks_. ArenaBitVector** phi_node_blocks; // num_vregs x num_blocks_. TypeInference* ti; } ssa; // Global value numbering. struct { GlobalValueNumbering* gvn; uint16_t* ifield_ids; // Part of GVN/LVN but cached here for LVN to avoid recalculation. uint16_t* sfield_ids; // Ditto. GvnDeadCodeElimination* dce; } gvn; } temp_; static const int kInvalidEntry = -1; ArenaVector<BasicBlock*> block_list_; ArenaBitVector* try_block_addr_; BasicBlock* entry_block_; BasicBlock* exit_block_; const DexFile::CodeItem* current_code_item_; ArenaVector<DexCompilationUnit*> m_units_; // List of methods included in this graph typedef std::pair<int, int> MIRLocation; // Insert point, (m_unit_ index, offset) ArenaVector<MIRLocation> method_stack_; // Include stack int current_method_; DexOffset current_offset_; // Offset in code units int def_count_; // Used to estimate size of ssa name storage. int* opcode_count_; // Dex opcode coverage stats. int num_ssa_regs_; // Number of names following SSA transformation. ArenaVector<BasicBlockId> extended_basic_blocks_; // Heads of block "traces". int method_sreg_; unsigned int attributes_; Checkstats* checkstats_; ArenaAllocator* const arena_; int backward_branches_; int forward_branches_; size_t num_non_special_compiler_temps_; // Keeps track of allocated non-special compiler temps. These are VRs that are in compiler temp region on stack. size_t max_available_non_special_compiler_temps_; // Keeps track of maximum available non-special temps. size_t max_available_special_compiler_temps_; // Keeps track of maximum available special temps. bool requested_backend_temp_; // Keeps track whether BE temps have been requested. size_t reserved_temps_for_backend_; // Keeps track of the remaining temps that are reserved for BE. bool compiler_temps_committed_; // Keeps track whether number of temps has been frozen (for example post frame size calculation). bool punt_to_interpreter_; // Difficult or not worthwhile - just interpret. uint64_t merged_df_flags_; ArenaVector<MirIFieldLoweringInfo> ifield_lowering_infos_; ArenaVector<MirSFieldLoweringInfo> sfield_lowering_infos_; ArenaVector<MirMethodLoweringInfo> method_lowering_infos_; // In the suspend check elimination pass we determine for each basic block and enclosing // loop whether there's guaranteed to be a suspend check on the path from the loop head // to this block. If so, we can eliminate the back-edge suspend check. // The bb->id is index into suspend_checks_in_loops_ and the loop head's depth is bit index // in a suspend_checks_in_loops_[bb->id]. uint32_t* suspend_checks_in_loops_; static const uint64_t oat_data_flow_attributes_[kMirOpLast]; friend class MirOptimizationTest; friend class ClassInitCheckEliminationTest; friend class SuspendCheckEliminationTest; friend class NullCheckEliminationTest; friend class GlobalValueNumberingTest; friend class GvnDeadCodeEliminationTest; friend class LocalValueNumberingTest; friend class TopologicalSortOrderTest; friend class TypeInferenceTest; friend class QuickCFITest; friend class QuickAssembleX86TestBase; }; } // namespace art #endif // ART_COMPILER_DEX_MIR_GRAPH_H_