/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsCpuCore.h"
#include "rsCpuScript.h"
#include "rsCpuScriptGroup.h"
#include <malloc.h>
#include "rsContext.h"
#include <sys/types.h>
#include <sys/resource.h>
#include <sched.h>
#include <sys/syscall.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#if !defined(RS_SERVER) && !defined(RS_COMPATIBILITY_LIB)
#include <cutils/properties.h>
#include "utils/StopWatch.h"
#endif
#ifdef RS_SERVER
// Android exposes gettid(), standard Linux does not
static pid_t gettid() {
return syscall(SYS_gettid);
}
#endif
using namespace android;
using namespace android::renderscript;
typedef void (*outer_foreach_t)(
const android::renderscript::RsForEachStubParamStruct *,
uint32_t x1, uint32_t x2,
uint32_t instep, uint32_t outstep);
static pthread_key_t gThreadTLSKey = 0;
static uint32_t gThreadTLSKeyCount = 0;
static pthread_mutex_t gInitMutex = PTHREAD_MUTEX_INITIALIZER;
bool android::renderscript::gArchUseSIMD = false;
RsdCpuReference::~RsdCpuReference() {
}
RsdCpuReference * RsdCpuReference::create(Context *rsc, uint32_t version_major,
uint32_t version_minor, sym_lookup_t lfn, script_lookup_t slfn
#ifndef RS_COMPATIBILITY_LIB
, bcc::RSLinkRuntimeCallback pLinkRuntimeCallback,
RSSelectRTCallback pSelectRTCallback,
const char *pBccPluginName
#endif
) {
RsdCpuReferenceImpl *cpu = new RsdCpuReferenceImpl(rsc);
if (!cpu) {
return NULL;
}
if (!cpu->init(version_major, version_minor, lfn, slfn)) {
delete cpu;
return NULL;
}
#ifndef RS_COMPATIBILITY_LIB
cpu->setLinkRuntimeCallback(pLinkRuntimeCallback);
cpu->setSelectRTCallback(pSelectRTCallback);
if (pBccPluginName) {
cpu->setBccPluginName(pBccPluginName);
}
#endif
return cpu;
}
Context * RsdCpuReference::getTlsContext() {
ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
return tls->mContext;
}
const Script * RsdCpuReference::getTlsScript() {
ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
return tls->mScript;
}
pthread_key_t RsdCpuReference::getThreadTLSKey(){ return gThreadTLSKey; }
////////////////////////////////////////////////////////////
///
RsdCpuReferenceImpl::RsdCpuReferenceImpl(Context *rsc) {
mRSC = rsc;
version_major = 0;
version_minor = 0;
mInForEach = false;
memset(&mWorkers, 0, sizeof(mWorkers));
memset(&mTlsStruct, 0, sizeof(mTlsStruct));
mExit = false;
#ifndef RS_COMPATIBILITY_LIB
mLinkRuntimeCallback = NULL;
mSelectRTCallback = NULL;
mSetupCompilerCallback = NULL;
#endif
}
void * RsdCpuReferenceImpl::helperThreadProc(void *vrsc) {
RsdCpuReferenceImpl *dc = (RsdCpuReferenceImpl *)vrsc;
uint32_t idx = __sync_fetch_and_add(&dc->mWorkers.mLaunchCount, 1);
//ALOGV("RS helperThread starting %p idx=%i", dc, idx);
dc->mWorkers.mLaunchSignals[idx].init();
dc->mWorkers.mNativeThreadId[idx] = gettid();
memset(&dc->mTlsStruct, 0, sizeof(dc->mTlsStruct));
int status = pthread_setspecific(gThreadTLSKey, &dc->mTlsStruct);
if (status) {
ALOGE("pthread_setspecific %i", status);
}
#if 0
typedef struct {uint64_t bits[1024 / 64]; } cpu_set_t;
cpu_set_t cpuset;
memset(&cpuset, 0, sizeof(cpuset));
cpuset.bits[idx / 64] |= 1ULL << (idx % 64);
int ret = syscall(241, rsc->mWorkers.mNativeThreadId[idx],
sizeof(cpuset), &cpuset);
ALOGE("SETAFFINITY ret = %i %s", ret, EGLUtils::strerror(ret));
#endif
while (!dc->mExit) {
dc->mWorkers.mLaunchSignals[idx].wait();
if (dc->mWorkers.mLaunchCallback) {
// idx +1 is used because the calling thread is always worker 0.
dc->mWorkers.mLaunchCallback(dc->mWorkers.mLaunchData, idx+1);
}
__sync_fetch_and_sub(&dc->mWorkers.mRunningCount, 1);
dc->mWorkers.mCompleteSignal.set();
}
//ALOGV("RS helperThread exited %p idx=%i", dc, idx);
return NULL;
}
void RsdCpuReferenceImpl::launchThreads(WorkerCallback_t cbk, void *data) {
mWorkers.mLaunchData = data;
mWorkers.mLaunchCallback = cbk;
// fast path for very small launches
MTLaunchStruct *mtls = (MTLaunchStruct *)data;
if (mtls && mtls->fep.dimY <= 1 && mtls->xEnd <= mtls->xStart + mtls->mSliceSize) {
if (mWorkers.mLaunchCallback) {
mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0);
}
return;
}
mWorkers.mRunningCount = mWorkers.mCount;
__sync_synchronize();
for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
mWorkers.mLaunchSignals[ct].set();
}
// We use the calling thread as one of the workers so we can start without
// the delay of the thread wakeup.
if (mWorkers.mLaunchCallback) {
mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0);
}
while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) {
mWorkers.mCompleteSignal.wait();
}
}
void RsdCpuReferenceImpl::lockMutex() {
pthread_mutex_lock(&gInitMutex);
}
void RsdCpuReferenceImpl::unlockMutex() {
pthread_mutex_unlock(&gInitMutex);
}
static int
read_file(const char* pathname, char* buffer, size_t buffsize)
{
int fd, len;
fd = open(pathname, O_RDONLY);
if (fd < 0)
return -1;
do {
len = read(fd, buffer, buffsize);
} while (len < 0 && errno == EINTR);
close(fd);
return len;
}
static void GetCpuInfo() {
char cpuinfo[4096];
int cpuinfo_len;
cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, sizeof cpuinfo);
if (cpuinfo_len < 0) /* should not happen */ {
return;
}
#if defined(ARCH_ARM_HAVE_VFP) || defined(ARCH_ARM_USE_INTRINSICS)
gArchUseSIMD = (!!strstr(cpuinfo, " neon")) ||
(!!strstr(cpuinfo, " asimd"));
#elif defined(ARCH_X86_HAVE_SSSE3)
gArchUseSIMD = !!strstr(cpuinfo, " ssse3");
#endif
}
bool RsdCpuReferenceImpl::init(uint32_t version_major, uint32_t version_minor,
sym_lookup_t lfn, script_lookup_t slfn) {
mSymLookupFn = lfn;
mScriptLookupFn = slfn;
lockMutex();
if (!gThreadTLSKeyCount) {
int status = pthread_key_create(&gThreadTLSKey, NULL);
if (status) {
ALOGE("Failed to init thread tls key.");
unlockMutex();
return false;
}
}
gThreadTLSKeyCount++;
unlockMutex();
mTlsStruct.mContext = mRSC;
mTlsStruct.mScript = NULL;
int status = pthread_setspecific(gThreadTLSKey, &mTlsStruct);
if (status) {
ALOGE("pthread_setspecific %i", status);
}
GetCpuInfo();
int cpu = sysconf(_SC_NPROCESSORS_CONF);
if(mRSC->props.mDebugMaxThreads) {
cpu = mRSC->props.mDebugMaxThreads;
}
if (cpu < 2) {
mWorkers.mCount = 0;
return true;
}
// Subtract one from the cpu count because we also use the command thread as a worker.
mWorkers.mCount = (uint32_t)(cpu - 1);
ALOGV("%p Launching thread(s), CPUs %i", mRSC, mWorkers.mCount + 1);
mWorkers.mThreadId = (pthread_t *) calloc(mWorkers.mCount, sizeof(pthread_t));
mWorkers.mNativeThreadId = (pid_t *) calloc(mWorkers.mCount, sizeof(pid_t));
mWorkers.mLaunchSignals = new Signal[mWorkers.mCount];
mWorkers.mLaunchCallback = NULL;
mWorkers.mCompleteSignal.init();
mWorkers.mRunningCount = mWorkers.mCount;
mWorkers.mLaunchCount = 0;
__sync_synchronize();
pthread_attr_t threadAttr;
status = pthread_attr_init(&threadAttr);
if (status) {
ALOGE("Failed to init thread attribute.");
return false;
}
for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
status = pthread_create(&mWorkers.mThreadId[ct], &threadAttr, helperThreadProc, this);
if (status) {
mWorkers.mCount = ct;
ALOGE("Created fewer than expected number of RS threads.");
break;
}
}
while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) {
usleep(100);
}
pthread_attr_destroy(&threadAttr);
return true;
}
void RsdCpuReferenceImpl::setPriority(int32_t priority) {
for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
setpriority(PRIO_PROCESS, mWorkers.mNativeThreadId[ct], priority);
}
}
RsdCpuReferenceImpl::~RsdCpuReferenceImpl() {
mExit = true;
mWorkers.mLaunchData = NULL;
mWorkers.mLaunchCallback = NULL;
mWorkers.mRunningCount = mWorkers.mCount;
__sync_synchronize();
for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
mWorkers.mLaunchSignals[ct].set();
}
void *res;
for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
pthread_join(mWorkers.mThreadId[ct], &res);
}
rsAssert(__sync_fetch_and_or(&mWorkers.mRunningCount, 0) == 0);
free(mWorkers.mThreadId);
free(mWorkers.mNativeThreadId);
delete[] mWorkers.mLaunchSignals;
// Global structure cleanup.
lockMutex();
--gThreadTLSKeyCount;
if (!gThreadTLSKeyCount) {
pthread_key_delete(gThreadTLSKey);
}
unlockMutex();
}
typedef void (*rs_t)(const void *, void *, const void *, uint32_t, uint32_t, uint32_t, uint32_t);
static void wc_xy(void *usr, uint32_t idx) {
MTLaunchStruct *mtls = (MTLaunchStruct *)usr;
RsForEachStubParamStruct p;
memcpy(&p, &mtls->fep, sizeof(p));
p.lid = idx;
uint32_t sig = mtls->sig;
outer_foreach_t fn = (outer_foreach_t) mtls->kernel;
while (1) {
uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
uint32_t yStart = mtls->yStart + slice * mtls->mSliceSize;
uint32_t yEnd = yStart + mtls->mSliceSize;
yEnd = rsMin(yEnd, mtls->yEnd);
if (yEnd <= yStart) {
return;
}
//ALOGE("usr idx %i, x %i,%i y %i,%i", idx, mtls->xStart, mtls->xEnd, yStart, yEnd);
//ALOGE("usr ptr in %p, out %p", mtls->fep.ptrIn, mtls->fep.ptrOut);
for (p.y = yStart; p.y < yEnd; p.y++) {
p.out = mtls->fep.ptrOut + (mtls->fep.yStrideOut * p.y) +
(mtls->fep.eStrideOut * mtls->xStart);
p.in = mtls->fep.ptrIn + (mtls->fep.yStrideIn * p.y) +
(mtls->fep.eStrideIn * mtls->xStart);
fn(&p, mtls->xStart, mtls->xEnd, mtls->fep.eStrideIn, mtls->fep.eStrideOut);
}
}
}
static void wc_x(void *usr, uint32_t idx) {
MTLaunchStruct *mtls = (MTLaunchStruct *)usr;
RsForEachStubParamStruct p;
memcpy(&p, &mtls->fep, sizeof(p));
p.lid = idx;
uint32_t sig = mtls->sig;
outer_foreach_t fn = (outer_foreach_t) mtls->kernel;
while (1) {
uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
uint32_t xStart = mtls->xStart + slice * mtls->mSliceSize;
uint32_t xEnd = xStart + mtls->mSliceSize;
xEnd = rsMin(xEnd, mtls->xEnd);
if (xEnd <= xStart) {
return;
}
//ALOGE("usr slice %i idx %i, x %i,%i", slice, idx, xStart, xEnd);
//ALOGE("usr ptr in %p, out %p", mtls->fep.ptrIn, mtls->fep.ptrOut);
p.out = mtls->fep.ptrOut + (mtls->fep.eStrideOut * xStart);
p.in = mtls->fep.ptrIn + (mtls->fep.eStrideIn * xStart);
fn(&p, xStart, xEnd, mtls->fep.eStrideIn, mtls->fep.eStrideOut);
}
}
void RsdCpuReferenceImpl::launchThreads(const Allocation * ain, Allocation * aout,
const RsScriptCall *sc, MTLaunchStruct *mtls) {
//android::StopWatch kernel_time("kernel time");
if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInForEach) {
const size_t targetByteChunk = 16 * 1024;
mInForEach = true;
if (mtls->fep.dimY > 1) {
uint32_t s1 = mtls->fep.dimY / ((mWorkers.mCount + 1) * 4);
uint32_t s2 = 0;
// This chooses our slice size to rate limit atomic ops to
// one per 16k bytes of reads/writes.
if (mtls->fep.yStrideOut) {
s2 = targetByteChunk / mtls->fep.yStrideOut;
} else {
s2 = targetByteChunk / mtls->fep.yStrideIn;
}
mtls->mSliceSize = rsMin(s1, s2);
if(mtls->mSliceSize < 1) {
mtls->mSliceSize = 1;
}
// mtls->mSliceSize = 2;
launchThreads(wc_xy, mtls);
} else {
uint32_t s1 = mtls->fep.dimX / ((mWorkers.mCount + 1) * 4);
uint32_t s2 = 0;
// This chooses our slice size to rate limit atomic ops to
// one per 16k bytes of reads/writes.
if (mtls->fep.eStrideOut) {
s2 = targetByteChunk / mtls->fep.eStrideOut;
} else {
s2 = targetByteChunk / mtls->fep.eStrideIn;
}
mtls->mSliceSize = rsMin(s1, s2);
if(mtls->mSliceSize < 1) {
mtls->mSliceSize = 1;
}
launchThreads(wc_x, mtls);
}
mInForEach = false;
//ALOGE("launch 1");
} else {
RsForEachStubParamStruct p;
memcpy(&p, &mtls->fep, sizeof(p));
uint32_t sig = mtls->sig;
//ALOGE("launch 3");
outer_foreach_t fn = (outer_foreach_t) mtls->kernel;
for (p.ar[0] = mtls->arrayStart; p.ar[0] < mtls->arrayEnd; p.ar[0]++) {
for (p.z = mtls->zStart; p.z < mtls->zEnd; p.z++) {
for (p.y = mtls->yStart; p.y < mtls->yEnd; p.y++) {
uint32_t offset = mtls->fep.dimY * mtls->fep.dimZ * p.ar[0] +
mtls->fep.dimY * p.z + p.y;
p.out = mtls->fep.ptrOut + (mtls->fep.yStrideOut * offset) +
(mtls->fep.eStrideOut * mtls->xStart);
p.in = mtls->fep.ptrIn + (mtls->fep.yStrideIn * offset) +
(mtls->fep.eStrideIn * mtls->xStart);
fn(&p, mtls->xStart, mtls->xEnd, mtls->fep.eStrideIn, mtls->fep.eStrideOut);
}
}
}
}
}
void RsdCpuReferenceImpl::launchThreads(const Allocation** ains, uint32_t inLen, Allocation* aout,
const RsScriptCall* sc, MTLaunchStruct* mtls) {
//android::StopWatch kernel_time("kernel time");
if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInForEach) {
const size_t targetByteChunk = 16 * 1024;
mInForEach = true;
if (mtls->fep.dimY > 1) {
uint32_t s1 = mtls->fep.dimY / ((mWorkers.mCount + 1) * 4);
uint32_t s2 = 0;
// This chooses our slice size to rate limit atomic ops to
// one per 16k bytes of reads/writes.
if (mtls->fep.yStrideOut) {
s2 = targetByteChunk / mtls->fep.yStrideOut;
} else {
s2 = targetByteChunk / mtls->fep.yStrideIn;
}
mtls->mSliceSize = rsMin(s1, s2);
if(mtls->mSliceSize < 1) {
mtls->mSliceSize = 1;
}
// mtls->mSliceSize = 2;
launchThreads(wc_xy, mtls);
} else {
uint32_t s1 = mtls->fep.dimX / ((mWorkers.mCount + 1) * 4);
uint32_t s2 = 0;
// This chooses our slice size to rate limit atomic ops to
// one per 16k bytes of reads/writes.
if (mtls->fep.eStrideOut) {
s2 = targetByteChunk / mtls->fep.eStrideOut;
} else {
s2 = targetByteChunk / mtls->fep.eStrideIn;
}
mtls->mSliceSize = rsMin(s1, s2);
if (mtls->mSliceSize < 1) {
mtls->mSliceSize = 1;
}
launchThreads(wc_x, mtls);
}
mInForEach = false;
//ALOGE("launch 1");
} else {
RsForEachStubParamStruct p;
memcpy(&p, &mtls->fep, sizeof(p));
uint32_t sig = mtls->sig;
// Allocate space for our input base pointers.
p.ins = new const void*[inLen];
// Allocate space for our input stride information.
p.eStrideIns = new uint32_t[inLen];
// Fill our stride information.
for (int index = inLen; --index >= 0;) {
p.eStrideIns[index] = mtls->fep.inStrides[index].eStride;
}
//ALOGE("launch 3");
outer_foreach_t fn = (outer_foreach_t) mtls->kernel;
uint32_t offset_invariant = mtls->fep.dimY * mtls->fep.dimZ * p.ar[0];
for (p.ar[0] = mtls->arrayStart; p.ar[0] < mtls->arrayEnd; p.ar[0]++) {
uint32_t offset_part = offset_invariant * p.ar[0];
for (p.z = mtls->zStart; p.z < mtls->zEnd; p.z++) {
for (p.y = mtls->yStart; p.y < mtls->yEnd; p.y++) {
uint32_t offset = offset_part + mtls->fep.dimY * p.z + p.y;
p.out = mtls->fep.ptrOut + (mtls->fep.yStrideOut * offset) +
(mtls->fep.eStrideOut * mtls->xStart);
for (int index = inLen; --index >= 0;) {
StridePair &strides = mtls->fep.inStrides[index];
p.ins[index] = mtls->fep.ptrIns[index] +
(strides.yStride * offset) +
(strides.eStride * mtls->xStart);
}
/*
* The fourth argument is zero here because multi-input
* kernels get their stride information from a member of p
* that points to an array.
*/
fn(&p, mtls->xStart, mtls->xEnd, 0, mtls->fep.eStrideOut);
}
}
}
// Free our arrays.
delete[] p.ins;
delete[] p.eStrideIns;
}
}
RsdCpuScriptImpl * RsdCpuReferenceImpl::setTLS(RsdCpuScriptImpl *sc) {
//ALOGE("setTls %p", sc);
ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
rsAssert(tls);
RsdCpuScriptImpl *old = tls->mImpl;
tls->mImpl = sc;
tls->mContext = mRSC;
if (sc) {
tls->mScript = sc->getScript();
} else {
tls->mScript = NULL;
}
return old;
}
const RsdCpuReference::CpuSymbol * RsdCpuReferenceImpl::symLookup(const char *name) {
return mSymLookupFn(mRSC, name);
}
RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createScript(const ScriptC *s,
char const *resName, char const *cacheDir,
uint8_t const *bitcode, size_t bitcodeSize,
uint32_t flags) {
RsdCpuScriptImpl *i = new RsdCpuScriptImpl(this, s);
if (!i->init(resName, cacheDir, bitcode, bitcodeSize, flags
#ifndef RS_COMPATIBILITY_LIB
, getBccPluginName()
#endif
)) {
delete i;
return NULL;
}
return i;
}
extern RsdCpuScriptImpl * rsdIntrinsic_3DLUT(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Convolve3x3(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_ColorMatrix(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_LUT(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Convolve5x5(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Blur(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_YuvToRGB(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Blend(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Histogram(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Resize(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createIntrinsic(const Script *s,
RsScriptIntrinsicID iid, Element *e) {
RsdCpuScriptImpl *i = NULL;
switch (iid) {
case RS_SCRIPT_INTRINSIC_ID_3DLUT:
i = rsdIntrinsic_3DLUT(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_3x3:
i = rsdIntrinsic_Convolve3x3(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_COLOR_MATRIX:
i = rsdIntrinsic_ColorMatrix(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_LUT:
i = rsdIntrinsic_LUT(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_5x5:
i = rsdIntrinsic_Convolve5x5(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_BLUR:
i = rsdIntrinsic_Blur(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_YUV_TO_RGB:
i = rsdIntrinsic_YuvToRGB(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_BLEND:
i = rsdIntrinsic_Blend(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_HISTOGRAM:
i = rsdIntrinsic_Histogram(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_RESIZE:
i = rsdIntrinsic_Resize(this, s, e);
break;
default:
rsAssert(0);
}
return i;
}
RsdCpuReference::CpuScriptGroup * RsdCpuReferenceImpl::createScriptGroup(const ScriptGroup *sg) {
CpuScriptGroupImpl *sgi = new CpuScriptGroupImpl(this, sg);
if (!sgi->init()) {
delete sgi;
return NULL;
}
return sgi;
}