//===- ARMELFAttributeData.h ----------------------------------------------===//
//
// The MCLinker Project
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ARMELFAttributeData.h"
#include <mcld/LinkerConfig.h>
#include <mcld/MC/Input.h>
#include <mcld/Support/LEB128.h>
#include <mcld/Support/MsgHandling.h>
using namespace mcld;
const ELFAttributeValue *ARMELFAttributeData::getAttributeValue(TagType pTag) const
{
if (pTag <= Tag_Max) {
const ELFAttributeValue &attr_value = m_Attrs[pTag];
if (attr_value.isInitialized()) {
return &attr_value;
} else {
// Don't return uninitialized attribute value.
return NULL;
}
} else {
UnknownAttrsMap::const_iterator attr_it = m_UnknownAttrs.find(pTag);
if (attr_it == m_UnknownAttrs.end()) {
return NULL;
} else {
return &attr_it->second;
}
}
}
std::pair<ELFAttributeValue*, bool>
ARMELFAttributeData::getOrCreateAttributeValue(TagType pTag)
{
ELFAttributeValue *attr_value = NULL;
if (pTag <= Tag_Max) {
attr_value = &m_Attrs[pTag];
} else {
// An unknown tag encounterred.
attr_value = &m_UnknownAttrs[pTag];
}
assert(attr_value != NULL);
// Setup the value type.
if (!attr_value->isUninitialized()) {
return std::make_pair(attr_value, false);
} else {
attr_value->setType(GetAttributeValueType(pTag));
return std::make_pair(attr_value, true);
}
}
unsigned int ARMELFAttributeData::GetAttributeValueType(TagType pTag)
{
// See ARM [ABI-addenda], 2.2.6.
switch (pTag) {
case Tag_compatibility: {
return (ELFAttributeValue::Int | ELFAttributeValue::String);
}
case Tag_nodefaults: {
return (ELFAttributeValue::Int | ELFAttributeValue::NoDefault);
}
case Tag_CPU_raw_name:
case Tag_CPU_name: {
return ELFAttributeValue::String;
}
default: {
if (pTag < 32)
return ELFAttributeValue::Int;
else
return ((pTag & 1) ? ELFAttributeValue::String :
ELFAttributeValue::Int);
}
}
// unreachable
}
//===--------------------------------------------------------------------===//
// Helper Functions for merge()
//===--------------------------------------------------------------------===//
namespace {
/*
* Helper function to decode value in Tag_also_compatible_with.
*
* @ref ARM [ABI-addenda], 2.3.7.3
*/
static int
decode_secondary_compatibility_attribute(const ELFAttributeValue &pValue)
{
// The encoding of Tag_also_compatible_with is:
//
// Tag_also_compatible_with (=65), NTSB: data
//
// The data can be either an ULEB128-encoded number followed by a NULL byte or
// a NULL-terminated string. Currently, only the following byte sequence in
// data are currently defined:
//
// Tag_CPU_arch (=6) [The arch] 0
assert((pValue.type() == ELFAttributeValue::String) &&
"Value of Tag_also_compatible_with must be a string!");
const std::string &data = pValue.getStringValue();
// Though the integer is in LEB128 format, but they occupy only 1 byte in
// currently defined value.
if (data.length() < 2)
// Must have a byte for Tag_CPU_arch (=6)
// a byte for specifying the CPU architecture (CPU_Arch_ARM_*)
//
// Currently, the 2nd byte can only be v4T (=2) or v6-M (=11).
return -1;
if ((static_cast<uint8_t>(data[0]) == ARMELFAttributeData::Tag_CPU_arch) &&
((data[1] == ARMELFAttributeData::CPU_Arch_ARM_V4T) ||
(data[1] == ARMELFAttributeData::CPU_Arch_ARM_V6_M)))
return static_cast<uint32_t>(data[1]);
// Tag_also_compatible_with can be safely ignored.
return -1;
}
/*
* This helper array keeps the ordering of the values in attributes such as
* Tag_ABI_align_needed which are sored as 1 > 2 > 0.
*/
static const int value_ordering_120[] = { 0, 2, 1 };
} // anonymous namespace
//===--------------------------------------------------------------------===//
// End Helper Functions for merge()
//===--------------------------------------------------------------------===//
bool ARMELFAttributeData::merge(const LinkerConfig& pConfig,
const Input &pInput, TagType pTag,
const ELFAttributeValue& pInAttr)
{
// Pre-condition
// 1. The out_attr must be initailized and has value of the same type as
// pInAttr.
// 2. The value helf by out_attr and pInAttr must be different.
ELFAttributeValue &out_attr = m_Attrs[pTag];
// Attribute in the output must have value assigned.
assert(out_attr.isInitialized() && "No output attribute to be merged!");
switch (pTag) {
case Tag_CPU_arch: {
// Need value of Tag_also_compatible_with in the input for merge.
if (pInAttr.getIntValue() <= CPU_Arch_Max) {
m_CPUArch = pInAttr.getIntValue();
} else {
error(diag::error_unknown_cpu_arch) << pInput.name();
return false;
}
break;
}
case Tag_CPU_name: {
// need value of Tag_CPU_arch in the input for merge
m_CPUName = pInAttr.getStringValue();
break;
}
case Tag_CPU_raw_name: {
// need value of Tag_CPU_arch in the input for merge
m_CPURawName = pInAttr.getStringValue();
break;
}
case Tag_FP_arch: {
// need value of Tag_HardFP_use in the input for merge
m_FPArch = pInAttr.getIntValue();
break;
}
case Tag_ABI_HardFP_use: {
// need value of Tag_FP_arch in the input for merge
m_HardFPUse = pInAttr.getIntValue();
break;
}
case Tag_also_compatible_with: {
// need value of Tag_CPU_arch in the input for merge
m_SecondaryCPUArch = decode_secondary_compatibility_attribute(pInAttr);
break;
}
case Tag_ABI_VFP_args: {
// need value of Tag_ABI_FP_number_model in the input for merge
m_VFPArgs = pInAttr.getIntValue();
break;
}
// The value of these tags are integers and after merge, only the greatest
// value held by pInAttr and out_attr goes into output.
case Tag_ARM_ISA_use:
case Tag_THUMB_ISA_use:
case Tag_WMMX_arch:
case Tag_Advanced_SIMD_arch:
case Tag_ABI_FP_rounding:
case Tag_ABI_FP_exceptions:
case Tag_ABI_FP_user_exceptions:
case Tag_ABI_FP_number_model:
case Tag_FP_HP_extension:
case Tag_CPU_unaligned_access:
case Tag_T2EE_use: {
assert((out_attr.type() == ELFAttributeValue::Int) &&
(pInAttr.type() == ELFAttributeValue::Int) &&
"should have integer parameeter!");
if (pInAttr.getIntValue() > out_attr.getIntValue())
out_attr.setIntValue(pInAttr.getIntValue());
break;
}
// The value of these tags are integers and after merge, only the smallest
// value held by pInAttr and out_attr goes into output.
case Tag_ABI_align_preserved:
case Tag_ABI_PCS_RO_data: {
assert((out_attr.type() == ELFAttributeValue::Int) &&
(pInAttr.type() == ELFAttributeValue::Int) &&
"should have integer parameeter!");
if (pInAttr.getIntValue() < out_attr.getIntValue())
out_attr.setIntValue(pInAttr.getIntValue());
break;
}
// The values of these attributes are sorted as 1 > 2 > 0. And the greater
// value becomes output.
case Tag_ABI_align_needed:
case Tag_ABI_FP_denormal:
case Tag_ABI_PCS_GOT_use: {
const int in_val = pInAttr.getIntValue();
const int out_val = out_attr.getIntValue();
if (in_val <= 2) {
if (out_val <= 2) {
// Use value_ordering_120 to determine the ordering.
if (value_ordering_120[in_val] > value_ordering_120[out_val]) {
out_attr.setIntValue(in_val);
}
}
} else {
// input value > 2, for future-proofing
if (in_val > out_val) {
out_attr.setIntValue(in_val);
}
}
break;
}
// These tags use the first value ever seen.
case Tag_ABI_optimization_goals:
case Tag_ABI_FP_optimization_goals: {
break;
}
// Tag_CPU_arch_profile
case Tag_CPU_arch_profile: {
if (pInAttr.getIntValue() == Arch_Profile_None)
return true;
switch (out_attr.getIntValue()) {
case Arch_Profile_None: {
out_attr.setIntValue(pInAttr.getIntValue());
break;
}
case Arch_Profile_RealOrApp: {
if (pInAttr.getIntValue() != Arch_Profile_Microcontroller)
out_attr.setIntValue(pInAttr.getIntValue());
else
warning(diag::warn_mismatch_cpu_arch_profile)
<< pInAttr.getIntValue() << pInput.name();
break;
}
default: {
// out_attr is Arch_Profile_Application or Arch_Profile_Realtime or
// Arch_Profile_Microcontroller.
if ((pInAttr.getIntValue() == Arch_Profile_RealOrApp) &&
(out_attr.getIntValue() != Arch_Profile_Microcontroller)) {
// do nothing
} else {
if (pConfig.options().warnMismatch())
warning(diag::warn_mismatch_cpu_arch_profile)
<< pInAttr.getIntValue() << pInput.name();
}
break;
}
}
break;
}
// Tag_MPextension_use and Tag_MPextension_use_legacy
case Tag_MPextension_use:
case Tag_MPextension_use_legacy: {
if (m_MPextensionUse < 0) {
m_MPextensionUse = pInAttr.getIntValue();
} else {
if (static_cast<unsigned>(m_MPextensionUse) != pInAttr.getIntValue()) {
warning(diag::error_mismatch_mpextension_use) << pInput.name();
}
}
break;
}
// Tag_DIV_use
case Tag_DIV_use: {
if (pInAttr.getIntValue() == 2) {
// 2 means the code was permitted to use SDIV/UDIV in anyway.
out_attr.setIntValue(2);
} else {
// Merge until settling down Tag_CPU_arch.
m_DIVUse = pInAttr.getIntValue();
}
break;
}
// Tag_ABI_enum_size
case Tag_ABI_enum_size: {
if ((out_attr.getIntValue() == Enum_Unused) ||
(out_attr.getIntValue() == Enum_Containerized_As_Possible))
out_attr.setIntValue(pInAttr.getIntValue());
else if (pInAttr.getIntValue() != Enum_Containerized_As_Possible &&
pConfig.options().warnMismatch())
warning(diag::warn_mismatch_enum_size)
<< pInput.name() << pInAttr.getIntValue()
<< out_attr.getIntValue();
break;
}
// Tag_ABI_FP_16bit_format
case Tag_ABI_FP_16bit_format: {
// 0: doesn't use any 16-bit FP number
// 1: use IEEE 754 format 16-bit FP number
// 2: use VFPv3/Advanced SIMD "alternative format" 16-bit FP number
if (pInAttr.getIntValue() != 0) {
if (out_attr.getIntValue() == 0) {
out_attr.setIntValue(pInAttr.getIntValue());
} else {
if (pConfig.options().warnMismatch())
warning(diag::warn_mismatch_fp16_format) << pInput.name();
}
}
break;
}
// Tag_nodefaults
case Tag_nodefaults: {
// There's nothing to do for this tag. It doesn't have an actual value.
break;
}
// Tag_conformance
case Tag_conformance: {
// Throw away the value if the attribute value doesn't match.
if (out_attr.getStringValue() != pInAttr.getStringValue())
out_attr.setStringValue("");
break;
}
// Tag_Virtualization_use
case Tag_Virtualization_use: {
// 0: No use of any virtualization extension
// 1: TrustZone
// 2: Virtualization extension such as HVC and ERET
// 3: TrustZone and virtualization extension are permitted
if (pInAttr.getIntValue() != 0) {
if (out_attr.getIntValue() == 0) {
out_attr.setIntValue(pInAttr.getIntValue());
} else {
if ((out_attr.getIntValue() <= 3) && (pInAttr.getIntValue() <= 3)) {
// Promote to 3
out_attr.setIntValue(3);
} else {
warning(diag::warn_unrecognized_virtualization_use)
<< pInput.name() << pInAttr.getIntValue();
}
}
}
break;
}
// Tag_ABI_WMMX_args
case Tag_ABI_WMMX_args: {
// There's no way to merge this value (i.e., objects contain different
// value in this tag are definitely incompatible.)
if (pConfig.options().warnMismatch())
warning(diag::warn_mismatch_abi_wmmx_args) << pInput.name();
break;
}
// Tag_PCS_config
case Tag_PCS_config: {
// 0 means no standard configuration used or no information recorded.
if (pInAttr.getIntValue() != 0) {
if (out_attr.getIntValue() == 0)
out_attr.setIntValue(pInAttr.getIntValue());
else {
// Different values in these attribute are conflict
if (pConfig.options().warnMismatch())
warning(diag::warn_mismatch_pcs_config) << pInput.name();
}
}
break;
}
// Tag_ABI_PCS_R9_use
case Tag_ABI_PCS_R9_use: {
if (pInAttr.getIntValue() != R9_Unused) {
if (out_attr.getIntValue() == R9_Unused)
out_attr.setIntValue(pInAttr.getIntValue());
else {
if (pConfig.options().warnMismatch())
warning(diag::warn_mismatch_r9_use) << pInput.name();
}
}
break;
}
// Tag_ABI_PCS_RW_data
case Tag_ABI_PCS_RW_data: {
if (pInAttr.getIntValue() == RW_data_SB_Relative) {
// Require using R9 as SB (global Static Base register).
if ((out_attr.getIntValue() != R9_Unused) &&
(out_attr.getIntValue() != R9_SB) &&
pConfig.options().warnMismatch())
warning(diag::warn_mismatch_r9_use) << pInput.name();
}
// Choose the smaller value
if (pInAttr.getIntValue() < out_attr.getIntValue())
out_attr.setIntValue(pInAttr.getIntValue());
break;
}
// Tag_ABI_PCS_wchar_t
case Tag_ABI_PCS_wchar_t: {
// 0: no use of wchar_t
// 2: sizeof(wchar_t) = 2
// 4: sizeof(wchar_t) = 4
if (pInAttr.getIntValue() != 0) {
if (out_attr.getIntValue() == 0)
out_attr.setIntValue(pInAttr.getIntValue());
else {
if (pConfig.options().warnMismatch())
warning(diag::warn_mismatch_wchar_size)
<< pInput.name() << pInAttr.getIntValue()
<< out_attr.getIntValue();
}
}
break;
}
default: {
// Handle unknown attributes:
//
// Since we don't know how to merge the value of unknown attribute, we
// have to ignore it. There're two rules related to the processing (See
// ARM [ABI-addenda] 2.2.6, Coding extensibility and compatibility.):
//
// 1. For tag N where N >= 128, tag N has the same properties as
// tag N % 128.
// 2. Tag 64-127 can be safely ignored.
// 3. Tag 0-63 must be comprehended, therefore we cannot ignore.
if (pConfig.options().warnMismatch()) {
if ((pTag & 127) < 64) {
warning(diag::warn_unknown_mandatory_attribute) << pTag
<< pInput.name();
} else {
warning(diag::warn_unknown_attribute) << pTag << pInput.name();
}
}
break;
}
}
return true;
}
//===--------------------------------------------------------------------===//
// Helper Functions for postMerge()
//===--------------------------------------------------------------------===//
namespace {
/*
* Helper function to encode value in Tag_also_compatible_with.
*
* @ref ARM [ABI-addenda], 2.3.7.3
*/
static void
encode_secondary_compatibility_attribute(ELFAttributeValue &pValue, int pArch)
{
if ((pArch < 0) || (pArch > ARMELFAttributeData::CPU_Arch_Max)) {
pValue.setStringValue("");
} else {
char new_value[] = {
ARMELFAttributeData::Tag_CPU_arch,
static_cast<char>(pArch),
0
};
pValue.setStringValue(std::string(new_value, sizeof(new_value)));
}
return;
}
/*
* Combine the main and secondary CPU arch value
*/
static int
calculate_cpu_arch(int cpu_arch, int secondary_arch)
{
// short-circuit
if ((secondary_arch < 0) ||
((cpu_arch + secondary_arch) != (ARMELFAttributeData::CPU_Arch_ARM_V4T +
ARMELFAttributeData::CPU_Arch_ARM_V6_M)))
return cpu_arch;
if ((cpu_arch == ARMELFAttributeData::CPU_Arch_ARM_V4T) &&
(secondary_arch == ARMELFAttributeData::CPU_Arch_ARM_V6_M))
return ARMELFAttributeData::CPU_Arch_ARM_V4T_Plus_V6_M;
else if ((cpu_arch == ARMELFAttributeData::CPU_Arch_ARM_V6_M) &&
(secondary_arch == ARMELFAttributeData::CPU_Arch_ARM_V4T))
return ARMELFAttributeData::CPU_Arch_ARM_V4T_Plus_V6_M;
else
return cpu_arch;
}
/*
* Given a CPU arch X and a CPU arch Y in which Y is newer than X, the value in
* cpu_compatibility_table[X][Y] is the CPU arch required to run ISA both from X
* and Y. 0 in the table means unreachable and -1 means conflict architecture
* profile.
*/
#define CPU(C) ARMELFAttributeData::CPU_Arch_ARM_ ## C
static const int cpu_compatibility_table[][CPU(V4T_Plus_V6_M) + 1] =
{
/* old\new ARM v6T2 ARM v6K ARM v7 ARM v6-M ARM v6S-M ARM v7E-M ARMv8, ARM v4t + v6-M */
/* Pre v4 */ { CPU(V6T2), CPU(V6K), CPU(V7), -1, -1, -1, -1, -1 },
/* ARM v4 */ { CPU(V6T2), CPU(V6K), CPU(V7), -1, -1, -1, -1, -1 },
/* ARM v4T */ { CPU(V6T2), CPU(V6K), CPU(V7), CPU(V6K), CPU(V6K), CPU(V7E_M), CPU(V8), CPU(V4T) },
/* ARM v5T */ { CPU(V6T2), CPU(V6K), CPU(V7), CPU(V6K), CPU(V6K), CPU(V7E_M), CPU(V8), CPU(V5T) },
/* ARM v5TE */ { CPU(V6T2), CPU(V6K), CPU(V7), CPU(V6K), CPU(V6K), CPU(V7E_M), CPU(V8), CPU(V5TE) },
/* ARM v5TEJ */ { CPU(V6T2), CPU(V6K), CPU(V7), CPU(V6K), CPU(V6K), CPU(V7E_M), CPU(V8), CPU(V5TEJ) },
/* ARM v6 */ { CPU(V6T2), CPU(V6K), CPU(V7), CPU(V6K), CPU(V6K), CPU(V7E_M), CPU(V8), CPU(V6) },
/* ARM v6KZ */ { CPU(V7), CPU(V6KZ), CPU(V7), CPU(V6KZ), CPU(V6KZ), CPU(V7E_M), CPU(V8), CPU(V6KZ) },
/* ARM v6T2 */ { CPU(V6T2), CPU(V7), CPU(V7), CPU(V7), CPU(V7), CPU(V7E_M), CPU(V8), CPU(V6T2) },
/* ARM v6K */ { 0, CPU(V6K), CPU(V7), CPU(V6K), CPU(V6K), CPU(V7E_M), CPU(V8), CPU(V6K) },
/* ARM v7 */ { 0, 0, CPU(V7), CPU(V7), CPU(V7), CPU(V7E_M), CPU(V8), CPU(V7) },
/* ARM v6-M */ { 0, 0, 0, CPU(V6_M), CPU(V6S_M), CPU(V7E_M), CPU(V8), CPU(V6_M) },
/* ARM v6S-M */ { 0, 0, 0, 0, CPU(V6S_M), CPU(V7E_M), CPU(V8), CPU(V6S_M) },
/* ARM v7E-M */ { 0, 0, 0, 0, 0, CPU(V7E_M), CPU(V8), CPU(V7E_M) },
/* ARM v8 */ { 0, 0, 0, 0, 0, 0, CPU(V8), CPU(V8) },
/* v4T + v6-M */ { 0, 0, 0, 0, 0, 0, 0, CPU(V4T_Plus_V6_M) }
};
/*
* Helper function to determine the merge of two different CPU arch.
*/
static int merge_cpu_arch(int out_cpu_arch, int in_cpu_arch)
{
if (out_cpu_arch > CPU(V4T_Plus_V6_M))
return in_cpu_arch;
int new_cpu_arch, old_cpu_arch;
if (out_cpu_arch > in_cpu_arch) {
new_cpu_arch = out_cpu_arch;
old_cpu_arch = in_cpu_arch;
} else {
new_cpu_arch = in_cpu_arch;
old_cpu_arch = out_cpu_arch;
}
// No need to check the compatibility since the CPU architectures before
// V6KZ add features monotonically.
if (new_cpu_arch <= CPU(V6KZ))
return new_cpu_arch;
return cpu_compatibility_table[old_cpu_arch][new_cpu_arch - CPU(V6T2)];
}
#undef CPU
/*
* Generic CPU name is used when Tag_CPU_name is unable to guess during the
* merge of Tag_CPU_arch.
*/
static const char* generic_cpu_name_table[] = {
/* Pre v4 */"Pre v4",
/* Pre v4 */"ARM v4",
/* ARM v4T */"ARM v4T",
/* ARM v5T */"ARM v5T",
/* ARM v5TE */"ARM v5TE",
/* ARM v5TEJ */"ARM v5TEJ",
/* ARM v6 */"ARM v6",
/* ARM v6KZ */"ARM v6KZ",
/* ARM v6T2 */"ARM v6T2",
/* ARM v6K */"ARM v6K",
/* ARM v7 */"ARM v7",
/* ARM v6-M */"ARM v6-M",
/* ARM v6S-M */"ARM v6S-M",
/* ARM v7E-M */"ARM v7E-M",
/* ARM v8 */"ARM v8",
};
static const char* get_generic_cpu_name(int cpu_arch) {
assert(static_cast<size_t>(cpu_arch) <
(sizeof(generic_cpu_name_table) / sizeof(generic_cpu_name_table[0])));
return generic_cpu_name_table[cpu_arch];
}
/*
* Helper functions & data used in the merge of two different FP arch.
*/
static const struct fp_config_data {
int version;
int regs;
} fp_configs[] = {
{ 0, 0 },
{ 1, 16 },
{ 2, 16 },
{ 3, 32 },
{ 3, 16 },
{ 4, 32 },
{ 4, 16 },
{ 8, 32 },
{ 8, 16 },
};
static const size_t num_fp_configs =
sizeof(fp_configs) / sizeof(fp_config_data);
// Given h(x, y) = (x * (y >> 4) + (y >> 5))
//
// fp_config_hash_table[ h(0, 0) = 0 ] = 0
// fp_config_hash_table[ h(1, 16) = 1 ] = 1
// fp_config_hash_table[ h(2, 16) = 2 ] = 2
// fp_config_hash_table[ h(3, 32) = 7 ] = 3
// fp_config_hash_table[ h(3, 16) = 3 ] = 4
// fp_config_hash_table[ h(4, 32) = 9 ] = 5
// fp_config_hash_table[ h(4, 16) = 4 ] = 6
// fp_config_hash_table[ h(8, 32) = 17 ] = 7
// fp_config_hash_table[ h(8, 16) = 8 ] = 8
//
// h(0, 0) = 0
static const uint8_t fp_config_hash_table[] =
{
#define UND static_cast<uint8_t>(-1)
/* 0 */0,
/* 1 */1,
/* 2 */2,
/* 3 */4,
/* 4 */6,
/* 5 */UND,
/* 6 */UND,
/* 7 */3,
/* 8 */8,
/* 9 */5,
/* 10 */UND,
/* 11 */UND,
/* 12 */UND,
/* 13 */UND,
/* 14 */UND,
/* 15 */UND,
/* 16 */UND,
/* 17 */7,
#undef UND
};
static const size_t num_hash_table_entries =
sizeof(fp_config_hash_table) / sizeof(fp_config_hash_table[0]);
static int calculate_fp_config_hash(const struct fp_config_data &pConfig)
{
int x = pConfig.version;
int y = pConfig.regs;
return (x * (y >> 4) + (y >> 5));
}
static int get_fp_arch_of_config(const struct fp_config_data &pConfig)
{
int hash = calculate_fp_config_hash(pConfig);
assert(static_cast<size_t>(hash) < num_hash_table_entries);
return fp_config_hash_table[hash];
}
static bool is_allowed_use_of_div(int cpu_arch, int cpu_arch_profile,
int div_use) {
// 0: The code was permitted to use SDIV and UDIV in the Thumb ISA on v7-R or
// v7-M.
// 1: The code was not permitted to use SDIV and UDIV.
// 2: The code was explicitly permitted to use SDIV and UDIV.
switch (div_use) {
case 0: {
if ((cpu_arch == ARMELFAttributeData::CPU_Arch_ARM_V7) &&
((cpu_arch_profile == 'R') || (cpu_arch_profile == 'M'))) {
return true;
} else {
return (cpu_arch >= ARMELFAttributeData::CPU_Arch_ARM_V7E_M);
}
}
case 1: {
return false;
}
case 2:
// For future proofing
default: {
return true;
}
}
}
} // anonymous namespace
//===--------------------------------------------------------------------===//
// End Helper Functions for postMerge()
//===--------------------------------------------------------------------===//
bool ARMELFAttributeData::postMerge(const LinkerConfig& pConfig,
const Input &pInput)
{
// Process Tag_CPU_arch, Tag_CPU_name, Tag_CPU_raw_name, and
// Tag_also_compatible_with.
ELFAttributeValue &out_cpu_arch_attr = m_Attrs[Tag_CPU_arch];
ELFAttributeValue &out_secondary_compatibility_attr =
m_Attrs[Tag_also_compatible_with];
if ((m_CurrentCPUArch < 0) && out_cpu_arch_attr.isInitialized()) {
// Current input initializes the value of Tag_CPU_arch. Validate it.
int out_cpu_arch = out_cpu_arch_attr.getIntValue();
if (out_cpu_arch > CPU_Arch_Max) {
error(diag::error_unknown_cpu_arch) << pInput.name();
return false;
}
// Initialize m_CurrentCPUArch.
int out_secondary_arch = -1;
if (out_secondary_compatibility_attr.isInitialized())
out_secondary_arch = decode_secondary_compatibility_attribute(
out_secondary_compatibility_attr);
m_CurrentCPUArch = calculate_cpu_arch(out_cpu_arch, out_secondary_arch);
}
if (m_CPUArch >= 0) {
assert(out_cpu_arch_attr.isInitialized() && "CPU arch has never set!");
assert(m_CurrentCPUArch >= 0);
int in_cpu_arch = calculate_cpu_arch(m_CPUArch, m_SecondaryCPUArch);
int result_cpu_arch = merge_cpu_arch(m_CurrentCPUArch, in_cpu_arch);
if (result_cpu_arch < 0) {
warning(diag::warn_mismatch_cpu_arch_profile)
<< in_cpu_arch << pInput.name();
} else {
if (result_cpu_arch != m_CurrentCPUArch) {
// Value of Tag_CPU_arch are going to changea.
m_CurrentCPUArch = result_cpu_arch;
// Write the result value to the output.
if (result_cpu_arch == CPU_Arch_ARM_V4T_Plus_V6_M) {
out_cpu_arch_attr.setIntValue(CPU_Arch_ARM_V4T);
encode_secondary_compatibility_attribute(
out_secondary_compatibility_attr, CPU_Arch_ARM_V6_M);
} else {
out_cpu_arch_attr.setIntValue(result_cpu_arch);
encode_secondary_compatibility_attribute(
out_secondary_compatibility_attr, -1);
}
ELFAttributeValue &out_cpu_name = m_Attrs[Tag_CPU_name];
ELFAttributeValue &out_cpu_raw_name = m_Attrs[Tag_CPU_raw_name];
if (m_CurrentCPUArch != in_cpu_arch) {
// Unable to guess the Tag_CPU_name. Use the generic name.
if (out_cpu_name.isInitialized()) {
out_cpu_name.setStringValue(get_generic_cpu_name(m_CurrentCPUArch));
}
// Tag_CPU_raw_name becomes unknown. Set to default value to disable
// it.
out_cpu_raw_name.setStringValue("");
} else {
// Use the value of Tag_CPU_name and Tag_CPU_raw_name from the input.
if (!m_CPUName.empty()) {
ELFAttributeValue &out_cpu_name = m_Attrs[Tag_CPU_name];
assert(out_cpu_name.isInitialized() && "CPU name has never set!");
out_cpu_name.setStringValue(m_CPUName);
}
if (!m_CPURawName.empty()) {
ELFAttributeValue &out_cpu_raw_name = m_Attrs[Tag_CPU_raw_name];
assert(out_cpu_raw_name.isInitialized() &&
"CPU raw name has never set!");
out_cpu_raw_name.setStringValue(m_CPURawName);
}
}
}
}
} // (m_CPUArch >= 0)
// Process Tag_ABI_VFP_args.
if (m_VFPArgs >= 0) {
ELFAttributeValue &out_attr = m_Attrs[Tag_ABI_VFP_args];
ELFAttributeValue &out_float_number_model_attr =
m_Attrs[Tag_ABI_FP_number_model];
assert(out_attr.isInitialized() && "VFP args has never set!");
// If the output is not permitted to use floating number, this attribute
// is ignored (migrate the value from input directly.)
if (out_float_number_model_attr.isUninitialized() ||
(out_float_number_model_attr.getIntValue() == 0)) {
// Inherit requirement from input.
out_attr.setIntValue(m_VFPArgs);
} else {
if (pConfig.options().warnMismatch())
warning(diag::warn_mismatch_vfp_args) << pInput.name();
}
}
// Process Tag_FP_arch.
ELFAttributeValue &out_fp_arch_attr = m_Attrs[Tag_FP_arch];
if (m_FPArch >= 0) {
assert(out_fp_arch_attr.isInitialized() && "FP arch has never set!");
// Tag_FP_arch
// 0: instructions requiring FP hardware are not permitted
// 1: VFP1
// 2: VFP2
// 3: VFP3 D32
// 4: VFP3 D16
// 5: VFP4 D32
// 6: VFP4 D16
// 7: ARM v8-A D32
// 8: ARM v8-A D16
if (out_fp_arch_attr.getIntValue() == 0) {
// Output has no constraints on FP hardware. Copy the requirement from
// input.
out_fp_arch_attr.setIntValue(m_FPArch);
} else if (m_FPArch == 0) {
// Input has no constraints on FP hardware. Do nothing.
} else {
// If here, both output and input contain non-zero value of Tag_FP_arch.
// Version greater than num_fp_configs is not defined. Choose the greater
// one for future-proofing.
if (static_cast<unsigned>(m_FPArch) > num_fp_configs) {
if (static_cast<unsigned>(m_FPArch) > out_fp_arch_attr.getIntValue()) {
out_fp_arch_attr.setIntValue(m_FPArch);
}
} else {
if (out_fp_arch_attr.getIntValue() < num_fp_configs) {
const struct fp_config_data &input_fp_config = fp_configs[ m_FPArch ];
const struct fp_config_data &output_fp_config =
fp_configs[ out_fp_arch_attr.getIntValue() ];
const struct fp_config_data result_fp_config = {
/*version*/((output_fp_config.version > input_fp_config.version) ?
output_fp_config.version : input_fp_config.version),
/* regs */((output_fp_config.regs > input_fp_config.regs) ?
output_fp_config.regs : input_fp_config.regs),
};
// Find the attribute value corresponding the result_fp_config
out_fp_arch_attr.setIntValue(get_fp_arch_of_config(result_fp_config));
}
}
}
} // (m_FPArch >= 0)
// Process Tag_ABI_HardFP_use.
ELFAttributeValue &out_hardfp_use_attr = m_Attrs[Tag_ABI_HardFP_use];
if (!m_HardFPUseInitialized && out_hardfp_use_attr.isInitialized()) {
m_HardFPUse = out_hardfp_use_attr.getIntValue();
m_HardFPUseInitialized = true;
}
if (m_HardFPUse >= 0) {
// Tag_ABI_HardFP_use depends on the meaning of Tag_FP_arch when it's 0.
assert(out_hardfp_use_attr.isInitialized() && "HardFP use has never set!");
if (out_fp_arch_attr.isUninitialized() ||
(out_fp_arch_attr.getIntValue() == 0)) {
// Has no constraints on FP hardware.
out_hardfp_use_attr.setIntValue(m_HardFPUse);
} else {
// Both output and input contain non-zero value of Tag_FP_arch and we have
// different Tag_ABI_HaedFP_Use settings other than 0.
if ((out_fp_arch_attr.getIntValue() > 0) && (m_HardFPUse > 0))
// Promote to 3 (The user permitted this entity to use both SP and DP
// VFP instruction.)
out_hardfp_use_attr.setIntValue(3);
}
}
// Move the value of Tag_MPextension_use_legacy to Tag_MPextension_use.
ELFAttributeValue &out_mpextension_use_legacy =
m_Attrs[Tag_MPextension_use_legacy];
ELFAttributeValue &out_mpextension_use = m_Attrs[Tag_MPextension_use];
// If Tag_MPextension_use_legacy has value, it must be introduced by current
// input since it is reset every time after the merge completed.
if (out_mpextension_use_legacy.isInitialized()) {
if (out_mpextension_use.isInitialized()) {
if (m_MPextensionUse < 0) {
// The value of Tag_MPextension_use is introduced by the current input.
// Check whether it is consistent with the one set in legacy.
m_MPextensionUse = out_mpextension_use.getIntValue();
} else {
// Current input introduces value of Tag_MPextension_use in
// m_MPextensionUse.
}
// Check the consistency between m_MPextensionUse and the value of
// Tag_MPextension_use_legacy.
if (static_cast<unsigned>(m_MPextensionUse) !=
out_mpextension_use_legacy.getIntValue()) {
error(diag::error_mismatch_mpextension_use) << pInput.name();
return false;
}
} else {
if (m_MPextensionUse < 0) {
// Tag_MPextension_use is not set. Initialize it and move the value.
out_mpextension_use.setType(ELFAttributeValue::Int);
out_mpextension_use.setIntValue(out_mpextension_use.getIntValue());
} else {
// Unreachable case since the value to unitialized attribute is directly
// assigned in ELFAttribute::Subsection::merge().
assert(false && "Tag_MPextension_use is uninitialized but have value?");
}
}
// Reset the attribute to uninitialized so it won't be included in the
// output.
out_mpextension_use_legacy.setType(ELFAttributeValue::Uninitialized);
}
// Process Tag_MPextension_use.
if (m_MPextensionUse > 0) {
assert(out_mpextension_use.isInitialized());
if (static_cast<unsigned>(m_MPextensionUse) >
out_mpextension_use.getIntValue()) {
out_mpextension_use.setIntValue(m_MPextensionUse);
}
}
// Process Tag_DIV_use.
ELFAttributeValue &out_div_use_attr = m_Attrs[Tag_DIV_use];
if (!m_DIVUseInitialized && out_div_use_attr.isInitialized()) {
// Perform the merge by reverting value of Tag_DIV_use and setup m_DIVUse.
m_DIVUse = out_div_use_attr.getIntValue();
out_div_use_attr.setIntValue(0);
m_DIVUseInitialized = true;
}
if (m_DIVUse >= 0) {
assert(out_div_use_attr.isInitialized());
const ELFAttributeValue &out_cpu_arch_profile_attr =
m_Attrs[Tag_CPU_arch_profile];
int out_cpu_arch_profile = Arch_Profile_None;
if (out_cpu_arch_profile_attr.isInitialized()) {
out_cpu_arch_profile = out_cpu_arch_profile_attr.getIntValue();
}
if (m_DIVUse == 1) {
// Input (=1) was not permitted to use SDIV and UDIV. See whether current
// output was explicitly permitted the use.
if (!is_allowed_use_of_div(m_CurrentCPUArch, out_cpu_arch_profile,
out_div_use_attr.getIntValue())) {
out_div_use_attr.setIntValue(1);
}
} else {
if (out_div_use_attr.getIntValue() != 1) {
// Output does not explicitly forbid the use of SDIV/UDIV. See whether
// the input attribute can allow it under current CPU architecture
// profile.
if (is_allowed_use_of_div(m_CurrentCPUArch, out_cpu_arch_profile,
m_DIVUse)) {
out_div_use_attr.setIntValue(m_DIVUse);
}
}
}
}
return true;
}
size_t ARMELFAttributeData::sizeOutput() const {
size_t result = 0;
// Size contributed by known attributes
for (unsigned i = 0; i <= Tag_Max; ++i) {
TagType tag = static_cast<TagType>(i);
const ELFAttributeValue &value = m_Attrs[tag];
if (value.shouldEmit()) {
result += leb128::size(static_cast<uint32_t>(tag));
result += value.getSize();
}
}
// Size contributed by unknown attributes
for (UnknownAttrsMap::const_iterator unknown_attr_it = m_UnknownAttrs.begin(),
unknown_attr_end = m_UnknownAttrs.end();
unknown_attr_it != unknown_attr_end; ++unknown_attr_it) {
TagType tag = unknown_attr_it->first;
const ELFAttributeValue &value = unknown_attr_it->second;
if (value.shouldEmit()) {
result += leb128::size(static_cast<uint32_t>(tag));
result += value.getSize();
}
}
return result;
}
size_t ARMELFAttributeData::emit(char *pBuf) const {
char *buffer = pBuf;
// Tag_conformance "should be emitted first in a file-scope sub-subsection of
// the first public subsection of the attribute section."
//
// See ARM [ABI-addenda], 2.3.7.4 Conformance tag
const ELFAttributeValue &attr_conformance = m_Attrs[Tag_conformance];
if (attr_conformance.shouldEmit()) {
if (!ELFAttributeData::WriteAttribute(Tag_conformance, attr_conformance,
buffer)) {
return 0;
}
}
// Tag_nodefaults "should be emitted before any other tag in an attribute
// subsection other that the conformance tag"
//
// See ARM [ABI-addenda], 2.3.7.5 No defaults tag
const ELFAttributeValue &attr_nodefaults = m_Attrs[Tag_nodefaults];
if (attr_nodefaults.shouldEmit()) {
if (!ELFAttributeData::WriteAttribute(Tag_nodefaults, attr_nodefaults,
buffer)) {
return 0;
}
}
// Tag_conformance (=67)
// Tag_nodefaults (=64)
for (unsigned i = 0; i < Tag_nodefaults; ++i) {
TagType tag = static_cast<TagType>(i);
const ELFAttributeValue &value = m_Attrs[tag];
if (value.shouldEmit() &&
!ELFAttributeData::WriteAttribute(tag, value, buffer)) {
return 0;
}
}
for (unsigned i = (Tag_nodefaults + 1); i <= Tag_Max; ++i) {
TagType tag = static_cast<TagType>(i);
const ELFAttributeValue &value = m_Attrs[tag];
if (value.shouldEmit() && (i != Tag_conformance) &&
!ELFAttributeData::WriteAttribute(tag, value, buffer)) {
return 0;
}
}
for (UnknownAttrsMap::const_iterator unknown_attr_it = m_UnknownAttrs.begin(),
unknown_attr_end = m_UnknownAttrs.end();
unknown_attr_it != unknown_attr_end; ++unknown_attr_it) {
TagType tag = unknown_attr_it->first;
const ELFAttributeValue &value = unknown_attr_it->second;
if (value.shouldEmit() &&
!ELFAttributeData::WriteAttribute(tag, value, buffer)) {
return 0;
}
}
return (buffer - pBuf);
}
bool ARMELFAttributeData::usingThumb() const
{
int arch = m_Attrs[Tag_CPU_arch].getIntValue();
if ((arch == CPU_Arch_ARM_V6_M) || (arch == CPU_Arch_ARM_V6S_M))
return true;
if ((arch != CPU_Arch_ARM_V7) && (arch != CPU_Arch_ARM_V7E_M))
return false;
arch = m_Attrs[Tag_CPU_arch_profile].getIntValue();
return arch == Arch_Profile_Microcontroller;
}
bool ARMELFAttributeData::usingThumb2() const
{
int arch = m_Attrs[Tag_CPU_arch].getIntValue();
return (arch == CPU_Arch_ARM_V6T2) || (arch == CPU_Arch_ARM_V7);
}