// Copyright 2013, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
#define VIXL_A64_INSTRUCTIONS_A64_H_
#include "globals-vixl.h"
#include "utils-vixl.h"
#include "a64/constants-a64.h"
namespace vixl {
// ISA constants. --------------------------------------------------------------
typedef uint32_t Instr;
const unsigned kInstructionSize = 4;
const unsigned kInstructionSizeLog2 = 2;
const unsigned kLiteralEntrySize = 4;
const unsigned kLiteralEntrySizeLog2 = 2;
const unsigned kMaxLoadLiteralRange = 1 * MBytes;
const unsigned kWRegSize = 32;
const unsigned kWRegSizeLog2 = 5;
const unsigned kWRegSizeInBytes = kWRegSize / 8;
const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
const unsigned kXRegSize = 64;
const unsigned kXRegSizeLog2 = 6;
const unsigned kXRegSizeInBytes = kXRegSize / 8;
const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
const unsigned kSRegSize = 32;
const unsigned kSRegSizeLog2 = 5;
const unsigned kSRegSizeInBytes = kSRegSize / 8;
const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
const unsigned kDRegSize = 64;
const unsigned kDRegSizeLog2 = 6;
const unsigned kDRegSizeInBytes = kDRegSize / 8;
const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
const uint64_t kWRegMask = UINT64_C(0xffffffff);
const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSRegMask = UINT64_C(0xffffffff);
const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSSignMask = UINT64_C(0x80000000);
const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
const uint64_t kWSignMask = UINT64_C(0x80000000);
const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
const uint64_t kByteMask = UINT64_C(0xff);
const uint64_t kHalfWordMask = UINT64_C(0xffff);
const uint64_t kWordMask = UINT64_C(0xffffffff);
const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
const int64_t kXMinInt = INT64_C(0x8000000000000000);
const int32_t kWMaxInt = INT32_C(0x7fffffff);
const int32_t kWMinInt = INT32_C(0x80000000);
const unsigned kLinkRegCode = 30;
const unsigned kZeroRegCode = 31;
const unsigned kSPRegInternalCode = 63;
const unsigned kRegCodeMask = 0x1f;
// AArch64 floating-point specifics. These match IEEE-754.
const unsigned kDoubleMantissaBits = 52;
const unsigned kDoubleExponentBits = 11;
const unsigned kFloatMantissaBits = 23;
const unsigned kFloatExponentBits = 8;
const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
const double kFP64PositiveInfinity =
rawbits_to_double(UINT64_C(0x7ff0000000000000));
const double kFP64NegativeInfinity =
rawbits_to_double(UINT64_C(0xfff0000000000000));
// This value is a signalling NaN as both a double and as a float (taking the
// least-significant word).
static const double kFP64SignallingNaN =
rawbits_to_double(UINT64_C(0x7ff000007f800001));
static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
// A similar value, but as a quiet NaN.
static const double kFP64QuietNaN =
rawbits_to_double(UINT64_C(0x7ff800007fc00001));
static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
// The default NaN values (for FPCR.DN=1).
static const double kFP64DefaultNaN =
rawbits_to_double(UINT64_C(0x7ff8000000000000));
static const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
enum LSDataSize {
LSByte = 0,
LSHalfword = 1,
LSWord = 2,
LSDoubleWord = 3
};
LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
enum ImmBranchType {
UnknownBranchType = 0,
CondBranchType = 1,
UncondBranchType = 2,
CompareBranchType = 3,
TestBranchType = 4
};
enum AddrMode {
Offset,
PreIndex,
PostIndex
};
enum FPRounding {
// The first four values are encodable directly by FPCR<RMode>.
FPTieEven = 0x0,
FPPositiveInfinity = 0x1,
FPNegativeInfinity = 0x2,
FPZero = 0x3,
// The final rounding mode is only available when explicitly specified by the
// instruction (such as with fcvta). It cannot be set in FPCR.
FPTieAway
};
enum Reg31Mode {
Reg31IsStackPointer,
Reg31IsZeroRegister
};
// Instructions. ---------------------------------------------------------------
class Instruction {
public:
inline Instr InstructionBits() const {
return *(reinterpret_cast<const Instr*>(this));
}
inline void SetInstructionBits(Instr new_instr) {
*(reinterpret_cast<Instr*>(this)) = new_instr;
}
inline int Bit(int pos) const {
return (InstructionBits() >> pos) & 1;
}
inline uint32_t Bits(int msb, int lsb) const {
return unsigned_bitextract_32(msb, lsb, InstructionBits());
}
inline int32_t SignedBits(int msb, int lsb) const {
int32_t bits = *(reinterpret_cast<const int32_t*>(this));
return signed_bitextract_32(msb, lsb, bits);
}
inline Instr Mask(uint32_t mask) const {
return InstructionBits() & mask;
}
#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
inline int64_t Name() const { return Func(HighBit, LowBit); }
INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
#undef DEFINE_GETTER
// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
// formed from ImmPCRelLo and ImmPCRelHi.
int ImmPCRel() const {
int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
int const width = ImmPCRelLo_width + ImmPCRelHi_width;
return signed_bitextract_32(width-1, 0, offset);
}
uint64_t ImmLogical();
float ImmFP32();
double ImmFP64();
inline LSDataSize SizeLSPair() const {
return CalcLSPairDataSize(
static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
}
// Helpers.
inline bool IsCondBranchImm() const {
return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
}
inline bool IsUncondBranchImm() const {
return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
}
inline bool IsCompareBranch() const {
return Mask(CompareBranchFMask) == CompareBranchFixed;
}
inline bool IsTestBranch() const {
return Mask(TestBranchFMask) == TestBranchFixed;
}
inline bool IsPCRelAddressing() const {
return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
}
inline bool IsLogicalImmediate() const {
return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
}
inline bool IsAddSubImmediate() const {
return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
}
inline bool IsAddSubExtended() const {
return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
}
inline bool IsLoadOrStore() const {
return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
}
inline bool IsMovn() const {
return (Mask(MoveWideImmediateMask) == MOVN_x) ||
(Mask(MoveWideImmediateMask) == MOVN_w);
}
// Indicate whether Rd can be the stack pointer or the zero register. This
// does not check that the instruction actually has an Rd field.
inline Reg31Mode RdMode() const {
// The following instructions use sp or wsp as Rd:
// Add/sub (immediate) when not setting the flags.
// Add/sub (extended) when not setting the flags.
// Logical (immediate) when not setting the flags.
// Otherwise, r31 is the zero register.
if (IsAddSubImmediate() || IsAddSubExtended()) {
if (Mask(AddSubSetFlagsBit)) {
return Reg31IsZeroRegister;
} else {
return Reg31IsStackPointer;
}
}
if (IsLogicalImmediate()) {
// Of the logical (immediate) instructions, only ANDS (and its aliases)
// can set the flags. The others can all write into sp.
// Note that some logical operations are not available to
// immediate-operand instructions, so we have to combine two masks here.
if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
return Reg31IsZeroRegister;
} else {
return Reg31IsStackPointer;
}
}
return Reg31IsZeroRegister;
}
// Indicate whether Rn can be the stack pointer or the zero register. This
// does not check that the instruction actually has an Rn field.
inline Reg31Mode RnMode() const {
// The following instructions use sp or wsp as Rn:
// All loads and stores.
// Add/sub (immediate).
// Add/sub (extended).
// Otherwise, r31 is the zero register.
if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
return Reg31IsStackPointer;
}
return Reg31IsZeroRegister;
}
inline ImmBranchType BranchType() const {
if (IsCondBranchImm()) {
return CondBranchType;
} else if (IsUncondBranchImm()) {
return UncondBranchType;
} else if (IsCompareBranch()) {
return CompareBranchType;
} else if (IsTestBranch()) {
return TestBranchType;
} else {
return UnknownBranchType;
}
}
// Find the target of this instruction. 'this' may be a branch or a
// PC-relative addressing instruction.
Instruction* ImmPCOffsetTarget();
// Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
// a PC-relative addressing instruction.
void SetImmPCOffsetTarget(Instruction* target);
// Patch a literal load instruction to load from 'source'.
void SetImmLLiteral(Instruction* source);
inline uint8_t* LiteralAddress() {
int offset = ImmLLiteral() << kLiteralEntrySizeLog2;
return reinterpret_cast<uint8_t*>(this) + offset;
}
inline uint32_t Literal32() {
uint32_t literal;
memcpy(&literal, LiteralAddress(), sizeof(literal));
return literal;
}
inline uint64_t Literal64() {
uint64_t literal;
memcpy(&literal, LiteralAddress(), sizeof(literal));
return literal;
}
inline float LiteralFP32() {
return rawbits_to_float(Literal32());
}
inline double LiteralFP64() {
return rawbits_to_double(Literal64());
}
inline Instruction* NextInstruction() {
return this + kInstructionSize;
}
inline Instruction* InstructionAtOffset(int64_t offset) {
VIXL_ASSERT(IsWordAligned(this + offset));
return this + offset;
}
template<typename T> static inline Instruction* Cast(T src) {
return reinterpret_cast<Instruction*>(src);
}
private:
inline int ImmBranch() const;
void SetPCRelImmTarget(Instruction* target);
void SetBranchImmTarget(Instruction* target);
};
} // namespace vixl
#endif // VIXL_A64_INSTRUCTIONS_A64_H_