// Copyright 2008 Google Inc. All Rights Reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "adler32memcpy.h"
// We are using (a modified form of) adler-32 checksum algorithm instead
// of CRC since adler-32 is faster than CRC.
// (Comparison: http://guru.multimedia.cx/crc32-vs-adler32/)
// This form of adler is bit modified, instead of treating the data in
// units of bytes, 32-bit data is taken as a unit and two 64-bit
// checksums are done (we could have one checksum but two checksums
// make the code run faster).
// Adler-32 implementation:
// Data is treated as 1-byte numbers and,
// there are two 16-bit numbers a and b
// Initialize a with 1 and b with 0.
// for each data unit 'd'
// a += d
// b += a
// checksum = a<<16 + b
// This sum should never overflow.
//
// Adler-64+64 implementation:
// (applied in this code)
// Data is treated as 32-bit numbers and whole data is separated into two
// streams, and hence the two checksums a1, a2, b1 and b2.
// Initialize a1 and a2 with 1, b1 and b2 with 0
// add first dataunit to a1
// add a1 to b1
// add second dataunit to a1
// add a1 to b1
// add third dataunit to a2
// add a2 to b2
// add fourth dataunit to a2
// add a2 to b2
// ...
// repeat the sequence back for next 4 dataunits
//
// variable A = XMM6 and variable B = XMM7.
// (a1 = lower 8 bytes of XMM6 and b1 = lower 8 bytes of XMM7)
// Assumptions
// 1. size_in_bytes is a multiple of 16.
// 2. srcmem and dstmem are 16 byte aligned.
// 3. size_in_bytes is less than 2^19 bytes.
// Assumption 3 ensures that there is no overflow when numbers are being
// added (we can remove this assumption by doing modulus with a prime
// number when it is just about to overflow but that would be a very costly
// exercise)
// Returns true if the checksums are equal.
bool AdlerChecksum::Equals(const AdlerChecksum &other) const {
return ( (a1_ == other.a1_) && (a2_ == other.a2_) &&
(b1_ == other.b1_) && (b2_ == other.b2_) );
}
// Returns string representation of the Adler checksum.
string AdlerChecksum::ToHexString() const {
char buffer[128];
snprintf(buffer, sizeof(buffer), "%llx%llx%llx%llx", a1_, a2_, b1_, b2_);
return string(buffer);
}
// Sets components of the Adler checksum.
void AdlerChecksum::Set(uint64 a1, uint64 a2, uint64 b1, uint64 b2) {
a1_ = a1;
a2_ = a2;
b1_ = b1;
b2_ = b2;
}
// Calculates Adler checksum for supplied data.
bool CalculateAdlerChecksum(uint64 *data64, unsigned int size_in_bytes,
AdlerChecksum *checksum) {
// Use this data wrapper to access memory with 64bit read/write.
datacast_t data;
unsigned int count = size_in_bytes / sizeof(data);
if (count > (1U) << 19) {
// Size is too large, must be strictly less than 512 KB.
return false;
}
uint64 a1 = 1;
uint64 a2 = 1;
uint64 b1 = 0;
uint64 b2 = 0;
unsigned int i = 0;
while (i < count) {
// Process 64 bits at a time.
data.l64 = data64[i];
a1 = a1 + data.l32.l;
b1 = b1 + a1;
a1 = a1 + data.l32.h;
b1 = b1 + a1;
i++;
data.l64 = data64[i];
a2 = a2 + data.l32.l;
b2 = b2 + a2;
a2 = a2 + data.l32.h;
b2 = b2 + a2;
i++;
}
checksum->Set(a1, a2, b1, b2);
return true;
}
// C implementation of Adler memory copy.
bool AdlerMemcpyC(uint64 *dstmem64, uint64 *srcmem64,
unsigned int size_in_bytes, AdlerChecksum *checksum) {
// Use this data wrapper to access memory with 64bit read/write.
datacast_t data;
unsigned int count = size_in_bytes / sizeof(data);
if (count > ((1U) << 19)) {
// Size is too large, must be strictly less than 512 KB.
return false;
}
uint64 a1 = 1;
uint64 a2 = 1;
uint64 b1 = 0;
uint64 b2 = 0;
unsigned int i = 0;
while (i < count) {
// Process 64 bits at a time.
data.l64 = srcmem64[i];
a1 = a1 + data.l32.l;
b1 = b1 + a1;
a1 = a1 + data.l32.h;
b1 = b1 + a1;
dstmem64[i] = data.l64;
i++;
data.l64 = srcmem64[i];
a2 = a2 + data.l32.l;
b2 = b2 + a2;
a2 = a2 + data.l32.h;
b2 = b2 + a2;
dstmem64[i] = data.l64;
i++;
}
checksum->Set(a1, a2, b1, b2);
return true;
}
// C implementation of Adler memory copy with some float point ops,
// attempting to warm up the CPU.
bool AdlerMemcpyWarmC(uint64 *dstmem64, uint64 *srcmem64,
unsigned int size_in_bytes, AdlerChecksum *checksum) {
// Use this data wrapper to access memory with 64bit read/write.
datacast_t data;
unsigned int count = size_in_bytes / sizeof(data);
if (count > ((1U) << 19)) {
// Size is too large, must be strictly less than 512 KB.
return false;
}
uint64 a1 = 1;
uint64 a2 = 1;
uint64 b1 = 0;
uint64 b2 = 0;
double a = 2.0 * static_cast<double>(srcmem64[0]);
double b = 5.0 * static_cast<double>(srcmem64[0]);
double c = 7.0 * static_cast<double>(srcmem64[0]);
double d = 9.0 * static_cast<double>(srcmem64[0]);
unsigned int i = 0;
while (i < count) {
// Process 64 bits at a time.
data.l64 = srcmem64[i];
a1 = a1 + data.l32.l;
b1 = b1 + a1;
a1 = a1 + data.l32.h;
b1 = b1 + a1;
dstmem64[i] = data.l64;
i++;
// Warm cpu up.
a = a * b;
b = b + c;
data.l64 = srcmem64[i];
a2 = a2 + data.l32.l;
b2 = b2 + a2;
a2 = a2 + data.l32.h;
b2 = b2 + a2;
dstmem64[i] = data.l64;
i++;
// Warm cpu up.
c = c * d;
d = d + d;
}
// Warm cpu up.
d = a + b + c + d;
if (d == 1.0) {
// Reference the result so that it can't be discarded by the compiler.
printf("Log: This will probably never happen.\n");
}
checksum->Set(a1, a2, b1, b2);
return true;
}
// x86_64 SSE2 assembly implementation of fast and stressful Adler memory copy.
bool AdlerMemcpyAsm(uint64 *dstmem64, uint64 *srcmem64,
unsigned int size_in_bytes, AdlerChecksum *checksum) {
// Use assembly implementation where supported.
#if defined(STRESSAPPTEST_CPU_X86_64) || defined(STRESSAPPTEST_CPU_I686)
// Pull a bit of tricky preprocessing to make the inline asm both
// 32 bit and 64 bit.
#ifdef STRESSAPPTEST_CPU_I686 // Instead of coding both, x86...
#define rAX "%%eax"
#define rCX "%%ecx"
#define rDX "%%edx"
#define rBX "%%ebx"
#define rSP "%%esp"
#define rBP "%%ebp"
#define rSI "%%esi"
#define rDI "%%edi"
#endif
#ifdef STRESSAPPTEST_CPU_X86_64 // ...and x64, we use rXX macros.
#define rAX "%%rax"
#define rCX "%%rcx"
#define rDX "%%rdx"
#define rBX "%%rbx"
#define rSP "%%rsp"
#define rBP "%%rbp"
#define rSI "%%rsi"
#define rDI "%%rdi"
#endif
// Elements 0 to 3 are used for holding checksum terms a1, a2,
// b1, b2 respectively. These elements are filled by asm code.
// Elements 4 and 5 are used by asm code to for ANDing MMX data and removing
// 2 words from each MMX register (A MMX reg has 4 words, by ANDing we are
// setting word index 0 and word index 2 to zero).
// Element 6 and 7 are used for setting a1 and a2 to 1.
volatile uint64 checksum_arr[] __attribute__ ((aligned(16))) =
{0, 0, 0, 0, 0x00000000ffffffffUL, 0x00000000ffffffffUL, 1, 1};
if ((size_in_bytes >> 19) > 0) {
// Size is too large. Must be less than 2^19 bytes = 512 KB.
return false;
}
// Number of 32-bit words which are not added to a1/a2 in the main loop.
uint32 remaining_words = (size_in_bytes % 48) / 4;
// Since we are moving 48 bytes at a time number of iterations = total size/48
// is value of counter.
uint32 num_of_48_byte_units = size_in_bytes / 48;
asm volatile (
// Source address is in ESI (extended source index)
// destination is in EDI (extended destination index)
// and counter is already in ECX (extended counter
// index).
"cmp $0, " rCX ";" // Compare counter to zero.
"jz END;"
// XMM6 is initialized with 1 and XMM7 with 0.
"prefetchnta 0(" rSI ");"
"prefetchnta 64(" rSI ");"
"movdqu 48(" rAX "), %%xmm6;"
"xorps %%xmm7, %%xmm7;"
// Start of the loop which copies 48 bytes from source to dst each time.
"TOP:\n"
// Make 6 moves each of 16 bytes from srcmem to XMM registers.
// We are using 2 words out of 4 words in each XMM register,
// word index 0 and word index 2
"movdqa 0(" rSI "), %%xmm0;"
"movdqu 4(" rSI "), %%xmm1;" // Be careful to use unaligned move here.
"movdqa 16(" rSI "), %%xmm2;"
"movdqu 20(" rSI "), %%xmm3;"
"movdqa 32(" rSI "), %%xmm4;"
"movdqu 36(" rSI "), %%xmm5;"
// Move 3 * 16 bytes from XMM registers to dstmem.
// Note: this copy must be performed before pinsrw instructions since
// they will modify the XMM registers.
"movntdq %%xmm0, 0(" rDI ");"
"movntdq %%xmm2, 16(" rDI ");"
"movntdq %%xmm4, 32(" rDI ");"
// Sets the word[1] and word[3] of XMM0 to XMM5 to zero.
"andps 32(" rAX "), %%xmm0;"
"andps 32(" rAX "), %%xmm1;"
"andps 32(" rAX "), %%xmm2;"
"andps 32(" rAX "), %%xmm3;"
"andps 32(" rAX "), %%xmm4;"
"andps 32(" rAX "), %%xmm5;"
// Add XMM0 to XMM6 and then add XMM6 to XMM7.
// Repeat this for XMM1, ..., XMM5.
// Overflow(for XMM7) can occur only if there are more
// than 2^16 additions => more than 2^17 words => more than 2^19 bytes so
// if size_in_bytes > 2^19 than overflow occurs.
"paddq %%xmm0, %%xmm6;"
"paddq %%xmm6, %%xmm7;"
"paddq %%xmm1, %%xmm6;"
"paddq %%xmm6, %%xmm7;"
"paddq %%xmm2, %%xmm6;"
"paddq %%xmm6, %%xmm7;"
"paddq %%xmm3, %%xmm6;"
"paddq %%xmm6, %%xmm7;"
"paddq %%xmm4, %%xmm6;"
"paddq %%xmm6, %%xmm7;"
"paddq %%xmm5, %%xmm6;"
"paddq %%xmm6, %%xmm7;"
// Increment ESI and EDI by 48 bytes and decrement counter by 1.
"add $48, " rSI ";"
"add $48, " rDI ";"
"prefetchnta 0(" rSI ");"
"prefetchnta 64(" rSI ");"
"dec " rCX ";"
"jnz TOP;"
// Now only remaining_words 32-bit words are left.
// make a loop, add first two words to a1 and next two to a2 (just like
// above loop, the only extra thing we are doing is rechecking
// rDX (=remaining_words) everytime we add a number to a1/a2.
"REM_IS_STILL_NOT_ZERO:\n"
// Unless remaining_words becomes less than 4 words(16 bytes)
// there is not much issue and remaining_words will always
// be a multiple of four by assumption.
"cmp $4, " rDX ";"
// In case for some weird reasons if remaining_words becomes
// less than 4 but not zero then also break the code and go off to END.
"jl END;"
// Otherwise just go on and copy data in chunks of 4-words at a time till
// whole data (<48 bytes) is copied.
"movdqa 0(" rSI "), %%xmm0;" // Copy next 4-words to XMM0 and to XMM1.
"movdqa 0(" rSI "), %%xmm5;" // Accomplish movdqu 4(%rSI) without
"pshufd $0x39, %%xmm5, %%xmm1;" // indexing off memory boundary.
"movntdq %%xmm0, 0(" rDI ");" // Copy 4-words to destination.
"andps 32(" rAX "), %%xmm0;"
"andps 32(" rAX "), %%xmm1;"
"paddq %%xmm0, %%xmm6;"
"paddq %%xmm6, %%xmm7;"
"paddq %%xmm1, %%xmm6;"
"paddq %%xmm6, %%xmm7;"
"add $16, " rSI ";"
"add $16, " rDI ";"
"sub $4, " rDX ";"
// Decrement %rDX by 4 since %rDX is number of 32-bit
// words left after considering all 48-byte units.
"jmp REM_IS_STILL_NOT_ZERO;"
"END:\n"
// Report checksum values A and B (both right now are two concatenated
// 64 bit numbers and have to be converted to 64 bit numbers)
// seems like Adler128 (since size of each part is 4 byte rather than
// 1 byte).
"movdqa %%xmm6, 0(" rAX ");"
"movdqa %%xmm7, 16(" rAX ");"
"sfence;"
// No output registers.
:
// Input registers.
: "S" (srcmem64), "D" (dstmem64), "a" (checksum_arr),
"c" (num_of_48_byte_units), "d" (remaining_words)
); // asm.
if (checksum != NULL) {
checksum->Set(checksum_arr[0], checksum_arr[1],
checksum_arr[2], checksum_arr[3]);
}
// Everything went fine, so return true (this does not mean
// that there is no problem with memory this just mean that data was copied
// from src to dst and checksum was calculated successfully).
return true;
#else
// Fall back to C implementation for anything else.
return AdlerMemcpyWarmC(dstmem64, srcmem64, size_in_bytes, checksum);
#endif
}