/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
return "SPARC" SLJIT_CPUINFO;
}
/* Length of an instruction word
Both for sparc-32 and sparc-64 */
typedef sljit_ui sljit_ins;
static void sparc_cache_flush(sljit_ins *from, sljit_ins *to)
{
#if defined(__SUNPRO_C) && __SUNPRO_C < 0x590
__asm (
/* if (from == to) return */
"cmp %i0, %i1\n"
"be .leave\n"
"nop\n"
/* loop until from >= to */
".mainloop:\n"
"flush %i0\n"
"add %i0, 8, %i0\n"
"cmp %i0, %i1\n"
"bcs .mainloop\n"
"nop\n"
/* The comparison was done above. */
"bne .leave\n"
/* nop is not necessary here, since the
sub operation has no side effect. */
"sub %i0, 4, %i0\n"
"flush %i0\n"
".leave:"
);
#else
if (SLJIT_UNLIKELY(from == to))
return;
do {
__asm__ volatile (
"flush %0\n"
: : "r"(from)
);
/* Operates at least on doubleword. */
from += 2;
} while (from < to);
if (from == to) {
/* Flush the last word. */
from --;
__asm__ volatile (
"flush %0\n"
: : "r"(from)
);
}
#endif
}
/* TMP_REG2 is not used by getput_arg */
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_LINK (SLJIT_NUMBER_OF_REGISTERS + 5)
#define TMP_FREG1 (0)
#define TMP_FREG2 ((SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1) << 1)
static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
0, 8, 9, 10, 13, 29, 28, 27, 23, 22, 21, 20, 19, 18, 17, 16, 26, 25, 24, 14, 1, 11, 12, 15
};
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
#define D(d) (reg_map[d] << 25)
#define DA(d) ((d) << 25)
#define S1(s1) (reg_map[s1] << 14)
#define S2(s2) (reg_map[s2])
#define S1A(s1) ((s1) << 14)
#define S2A(s2) (s2)
#define IMM_ARG 0x2000
#define DOP(op) ((op) << 5)
#define IMM(imm) (((imm) & 0x1fff) | IMM_ARG)
#define DR(dr) (reg_map[dr])
#define OPC1(opcode) ((opcode) << 30)
#define OPC2(opcode) ((opcode) << 22)
#define OPC3(opcode) ((opcode) << 19)
#define SET_FLAGS OPC3(0x10)
#define ADD (OPC1(0x2) | OPC3(0x00))
#define ADDC (OPC1(0x2) | OPC3(0x08))
#define AND (OPC1(0x2) | OPC3(0x01))
#define ANDN (OPC1(0x2) | OPC3(0x05))
#define CALL (OPC1(0x1))
#define FABSS (OPC1(0x2) | OPC3(0x34) | DOP(0x09))
#define FADDD (OPC1(0x2) | OPC3(0x34) | DOP(0x42))
#define FADDS (OPC1(0x2) | OPC3(0x34) | DOP(0x41))
#define FCMPD (OPC1(0x2) | OPC3(0x35) | DOP(0x52))
#define FCMPS (OPC1(0x2) | OPC3(0x35) | DOP(0x51))
#define FDIVD (OPC1(0x2) | OPC3(0x34) | DOP(0x4e))
#define FDIVS (OPC1(0x2) | OPC3(0x34) | DOP(0x4d))
#define FDTOI (OPC1(0x2) | OPC3(0x34) | DOP(0xd2))
#define FDTOS (OPC1(0x2) | OPC3(0x34) | DOP(0xc6))
#define FITOD (OPC1(0x2) | OPC3(0x34) | DOP(0xc8))
#define FITOS (OPC1(0x2) | OPC3(0x34) | DOP(0xc4))
#define FMOVS (OPC1(0x2) | OPC3(0x34) | DOP(0x01))
#define FMULD (OPC1(0x2) | OPC3(0x34) | DOP(0x4a))
#define FMULS (OPC1(0x2) | OPC3(0x34) | DOP(0x49))
#define FNEGS (OPC1(0x2) | OPC3(0x34) | DOP(0x05))
#define FSTOD (OPC1(0x2) | OPC3(0x34) | DOP(0xc9))
#define FSTOI (OPC1(0x2) | OPC3(0x34) | DOP(0xd1))
#define FSUBD (OPC1(0x2) | OPC3(0x34) | DOP(0x46))
#define FSUBS (OPC1(0x2) | OPC3(0x34) | DOP(0x45))
#define JMPL (OPC1(0x2) | OPC3(0x38))
#define NOP (OPC1(0x0) | OPC2(0x04))
#define OR (OPC1(0x2) | OPC3(0x02))
#define ORN (OPC1(0x2) | OPC3(0x06))
#define RDY (OPC1(0x2) | OPC3(0x28) | S1A(0))
#define RESTORE (OPC1(0x2) | OPC3(0x3d))
#define SAVE (OPC1(0x2) | OPC3(0x3c))
#define SETHI (OPC1(0x0) | OPC2(0x04))
#define SLL (OPC1(0x2) | OPC3(0x25))
#define SLLX (OPC1(0x2) | OPC3(0x25) | (1 << 12))
#define SRA (OPC1(0x2) | OPC3(0x27))
#define SRAX (OPC1(0x2) | OPC3(0x27) | (1 << 12))
#define SRL (OPC1(0x2) | OPC3(0x26))
#define SRLX (OPC1(0x2) | OPC3(0x26) | (1 << 12))
#define SUB (OPC1(0x2) | OPC3(0x04))
#define SUBC (OPC1(0x2) | OPC3(0x0c))
#define TA (OPC1(0x2) | OPC3(0x3a) | (8 << 25))
#define WRY (OPC1(0x2) | OPC3(0x30) | DA(0))
#define XOR (OPC1(0x2) | OPC3(0x03))
#define XNOR (OPC1(0x2) | OPC3(0x07))
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
#define MAX_DISP (0x1fffff)
#define MIN_DISP (-0x200000)
#define DISP_MASK (0x3fffff)
#define BICC (OPC1(0x0) | OPC2(0x2))
#define FBFCC (OPC1(0x0) | OPC2(0x6))
#define SLL_W SLL
#define SDIV (OPC1(0x2) | OPC3(0x0f))
#define SMUL (OPC1(0x2) | OPC3(0x0b))
#define UDIV (OPC1(0x2) | OPC3(0x0e))
#define UMUL (OPC1(0x2) | OPC3(0x0a))
#else
#define SLL_W SLLX
#endif
#define SIMM_MAX (0x0fff)
#define SIMM_MIN (-0x1000)
/* dest_reg is the absolute name of the register
Useful for reordering instructions in the delay slot. */
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins, sljit_si delay_slot)
{
sljit_ins *ptr;
SLJIT_ASSERT((delay_slot & DST_INS_MASK) == UNMOVABLE_INS
|| (delay_slot & DST_INS_MASK) == MOVABLE_INS
|| (delay_slot & DST_INS_MASK) == ((ins >> 25) & 0x1f));
ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
compiler->delay_slot = delay_slot;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_ins* detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
sljit_sw diff;
sljit_uw target_addr;
sljit_ins *inst;
sljit_ins saved_inst;
if (jump->flags & SLJIT_REWRITABLE_JUMP)
return code_ptr;
if (jump->flags & JUMP_ADDR)
target_addr = jump->u.target;
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
target_addr = (sljit_uw)(code + jump->u.label->size);
}
inst = (sljit_ins*)jump->addr;
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
if (jump->flags & IS_CALL) {
/* Call is always patchable on sparc 32. */
jump->flags |= PATCH_CALL;
if (jump->flags & IS_MOVABLE) {
inst[0] = inst[-1];
inst[-1] = CALL;
jump->addr -= sizeof(sljit_ins);
return inst;
}
inst[0] = CALL;
inst[1] = NOP;
return inst + 1;
}
#else
/* Both calls and BPr instructions shall not pass this point. */
#error "Implementation required"
#endif
if (jump->flags & IS_COND)
inst--;
if (jump->flags & IS_MOVABLE) {
diff = ((sljit_sw)target_addr - (sljit_sw)(inst - 1)) >> 2;
if (diff <= MAX_DISP && diff >= MIN_DISP) {
jump->flags |= PATCH_B;
inst--;
if (jump->flags & IS_COND) {
saved_inst = inst[0];
inst[0] = inst[1] ^ (1 << 28);
inst[1] = saved_inst;
} else {
inst[1] = inst[0];
inst[0] = BICC | DA(0x8);
}
jump->addr = (sljit_uw)inst;
return inst + 1;
}
}
diff = ((sljit_sw)target_addr - (sljit_sw)(inst)) >> 2;
if (diff <= MAX_DISP && diff >= MIN_DISP) {
jump->flags |= PATCH_B;
if (jump->flags & IS_COND)
inst[0] ^= (1 << 28);
else
inst[0] = BICC | DA(0x8);
inst[1] = NOP;
jump->addr = (sljit_uw)inst;
return inst + 1;
}
return code_ptr;
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ins *code;
sljit_ins *code_ptr;
sljit_ins *buf_ptr;
sljit_ins *buf_end;
sljit_uw word_count;
sljit_uw addr;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
check_sljit_generate_code(compiler);
reverse_buf(compiler);
code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
word_count = 0;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = (sljit_ins*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
*code_ptr = *buf_ptr++;
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
/* These structures are ordered by their address. */
if (label && label->size == word_count) {
/* Just recording the address. */
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
jump->addr = (sljit_uw)(code_ptr - 3);
#else
jump->addr = (sljit_uw)(code_ptr - 6);
#endif
code_ptr = detect_jump_type(jump, code_ptr, code);
jump = jump->next;
}
if (const_ && const_->addr == word_count) {
/* Just recording the address. */
const_->addr = (sljit_uw)code_ptr;
const_ = const_->next;
}
code_ptr ++;
word_count ++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == word_count) {
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
SLJIT_ASSERT(code_ptr - code <= (sljit_si)compiler->size);
jump = compiler->jumps;
while (jump) {
do {
addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
buf_ptr = (sljit_ins*)jump->addr;
if (jump->flags & PATCH_CALL) {
addr = (sljit_sw)(addr - jump->addr) >> 2;
SLJIT_ASSERT((sljit_sw)addr <= 0x1fffffff && (sljit_sw)addr >= -0x20000000);
buf_ptr[0] = CALL | (addr & 0x3fffffff);
break;
}
if (jump->flags & PATCH_B) {
addr = (sljit_sw)(addr - jump->addr) >> 2;
SLJIT_ASSERT((sljit_sw)addr <= MAX_DISP && (sljit_sw)addr >= MIN_DISP);
buf_ptr[0] = (buf_ptr[0] & ~DISP_MASK) | (addr & DISP_MASK);
break;
}
/* Set the fields of immediate loads. */
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
buf_ptr[0] = (buf_ptr[0] & 0xffc00000) | ((addr >> 10) & 0x3fffff);
buf_ptr[1] = (buf_ptr[1] & 0xfffffc00) | (addr & 0x3ff);
#else
#error "Implementation required"
#endif
} while (0);
jump = jump->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
SLJIT_CACHE_FLUSH(code, code_ptr);
return code;
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
/* Creates an index in data_transfer_insts array. */
#define LOAD_DATA 0x01
#define WORD_DATA 0x00
#define BYTE_DATA 0x02
#define HALF_DATA 0x04
#define INT_DATA 0x06
#define SIGNED_DATA 0x08
/* Separates integer and floating point registers */
#define GPR_REG 0x0f
#define DOUBLE_DATA 0x10
#define SINGLE_DATA 0x12
#define MEM_MASK 0x1f
#define WRITE_BACK 0x00020
#define ARG_TEST 0x00040
#define ALT_KEEP_CACHE 0x00080
#define CUMULATIVE_OP 0x00100
#define IMM_OP 0x00200
#define SRC2_IMM 0x00400
#define REG_DEST 0x00800
#define REG2_SOURCE 0x01000
#define SLOW_SRC1 0x02000
#define SLOW_SRC2 0x04000
#define SLOW_DEST 0x08000
/* SET_FLAGS (0x10 << 19) also belong here! */
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
#include "sljitNativeSPARC_32.c"
#else
#include "sljitNativeSPARC_64.c"
#endif
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
CHECK_ERROR();
check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
compiler->options = options;
compiler->scratches = scratches;
compiler->saveds = saveds;
compiler->fscratches = fscratches;
compiler->fsaveds = fsaveds;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->logical_local_size = local_size;
#endif
local_size = (local_size + FIXED_LOCALS_OFFSET + 7) & ~0x7;
compiler->local_size = local_size;
if (local_size <= SIMM_MAX) {
FAIL_IF(push_inst(compiler, SAVE | D(SLJIT_SP) | S1(SLJIT_SP) | IMM(-local_size), UNMOVABLE_INS));
}
else {
FAIL_IF(load_immediate(compiler, TMP_REG1, -local_size));
FAIL_IF(push_inst(compiler, SAVE | D(SLJIT_SP) | S1(SLJIT_SP) | S2(TMP_REG1), UNMOVABLE_INS));
}
/* Arguments are in their appropriate registers. */
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
CHECK_ERROR_VOID();
check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
compiler->options = options;
compiler->scratches = scratches;
compiler->saveds = saveds;
compiler->fscratches = fscratches;
compiler->fsaveds = fsaveds;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->logical_local_size = local_size;
#endif
compiler->local_size = (local_size + FIXED_LOCALS_OFFSET + 7) & ~0x7;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
check_sljit_emit_return(compiler, op, src, srcw);
if (op != SLJIT_MOV || !FAST_IS_REG(src)) {
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
src = SLJIT_R0;
}
FAIL_IF(push_inst(compiler, JMPL | D(0) | S1A(31) | IMM(8), UNMOVABLE_INS));
return push_inst(compiler, RESTORE | D(SLJIT_R0) | S1(src) | S2(0), UNMOVABLE_INS);
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
#define ARCH_32_64(a, b) a
#else
#define ARCH_32_64(a, b) b
#endif
static SLJIT_CONST sljit_ins data_transfer_insts[16 + 4] = {
/* u w s */ ARCH_32_64(OPC1(3) | OPC3(0x04) /* stw */, OPC1(3) | OPC3(0x0e) /* stx */),
/* u w l */ ARCH_32_64(OPC1(3) | OPC3(0x00) /* lduw */, OPC1(3) | OPC3(0x0b) /* ldx */),
/* u b s */ OPC1(3) | OPC3(0x05) /* stb */,
/* u b l */ OPC1(3) | OPC3(0x01) /* ldub */,
/* u h s */ OPC1(3) | OPC3(0x06) /* sth */,
/* u h l */ OPC1(3) | OPC3(0x02) /* lduh */,
/* u i s */ OPC1(3) | OPC3(0x04) /* stw */,
/* u i l */ OPC1(3) | OPC3(0x00) /* lduw */,
/* s w s */ ARCH_32_64(OPC1(3) | OPC3(0x04) /* stw */, OPC1(3) | OPC3(0x0e) /* stx */),
/* s w l */ ARCH_32_64(OPC1(3) | OPC3(0x00) /* lduw */, OPC1(3) | OPC3(0x0b) /* ldx */),
/* s b s */ OPC1(3) | OPC3(0x05) /* stb */,
/* s b l */ OPC1(3) | OPC3(0x09) /* ldsb */,
/* s h s */ OPC1(3) | OPC3(0x06) /* sth */,
/* s h l */ OPC1(3) | OPC3(0x0a) /* ldsh */,
/* s i s */ OPC1(3) | OPC3(0x04) /* stw */,
/* s i l */ ARCH_32_64(OPC1(3) | OPC3(0x00) /* lduw */, OPC1(3) | OPC3(0x08) /* ldsw */),
/* d s */ OPC1(3) | OPC3(0x27),
/* d l */ OPC1(3) | OPC3(0x23),
/* s s */ OPC1(3) | OPC3(0x24),
/* s l */ OPC1(3) | OPC3(0x20),
};
#undef ARCH_32_64
/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(flags & WRITE_BACK) || !(arg & REG_MASK)) {
if ((!(arg & OFFS_REG_MASK) && argw <= SIMM_MAX && argw >= SIMM_MIN)
|| ((arg & OFFS_REG_MASK) && (argw & 0x3) == 0)) {
/* Works for both absoulte and relative addresses (immediate case). */
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK]
| ((flags & MEM_MASK) <= GPR_REG ? D(reg) : DA(reg))
| S1(arg & REG_MASK) | ((arg & OFFS_REG_MASK) ? S2(OFFS_REG(arg)) : IMM(argw)),
((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) ? DR(reg) : MOVABLE_INS));
return -1;
}
}
return 0;
}
/* See getput_arg below.
Note: can_cache is called only for binary operators. Those
operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
/* Simple operation except for updates. */
if (arg & OFFS_REG_MASK) {
argw &= 0x3;
SLJIT_ASSERT(argw);
next_argw &= 0x3;
if ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && argw == next_argw)
return 1;
return 0;
}
if (((next_argw - argw) <= SIMM_MAX && (next_argw - argw) >= SIMM_MIN))
return 1;
return 0;
}
/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_si base, arg2, delay_slot;
sljit_ins dest;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(next_arg & SLJIT_MEM)) {
next_arg = 0;
next_argw = 0;
}
base = arg & REG_MASK;
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
argw &= 0x3;
SLJIT_ASSERT(argw != 0);
/* Using the cache. */
if (((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) && (argw == compiler->cache_argw))
arg2 = TMP_REG3;
else {
if ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && argw == (next_argw & 0x3)) {
compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
compiler->cache_argw = argw;
arg2 = TMP_REG3;
}
else if ((flags & LOAD_DATA) && ((flags & MEM_MASK) <= GPR_REG) && reg != base && reg != OFFS_REG(arg))
arg2 = reg;
else /* It must be a mov operation, so tmp1 must be free to use. */
arg2 = TMP_REG1;
FAIL_IF(push_inst(compiler, SLL_W | D(arg2) | S1(OFFS_REG(arg)) | IMM_ARG | argw, DR(arg2)));
}
}
else {
/* Using the cache. */
if ((compiler->cache_arg == SLJIT_MEM) && (argw - compiler->cache_argw) <= SIMM_MAX && (argw - compiler->cache_argw) >= SIMM_MIN) {
if (argw != compiler->cache_argw) {
FAIL_IF(push_inst(compiler, ADD | D(TMP_REG3) | S1(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
compiler->cache_argw = argw;
}
arg2 = TMP_REG3;
} else {
if ((next_argw - argw) <= SIMM_MAX && (next_argw - argw) >= SIMM_MIN) {
compiler->cache_arg = SLJIT_MEM;
compiler->cache_argw = argw;
arg2 = TMP_REG3;
}
else if ((flags & LOAD_DATA) && ((flags & MEM_MASK) <= GPR_REG) && reg != base)
arg2 = reg;
else /* It must be a mov operation, so tmp1 must be free to use. */
arg2 = TMP_REG1;
FAIL_IF(load_immediate(compiler, arg2, argw));
}
}
dest = ((flags & MEM_MASK) <= GPR_REG ? D(reg) : DA(reg));
delay_slot = ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) ? DR(reg) : MOVABLE_INS;
if (!base)
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | dest | S1(arg2) | IMM(0), delay_slot);
if (!(flags & WRITE_BACK))
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | dest | S1(base) | S2(arg2), delay_slot);
FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | dest | S1(base) | S2(arg2), delay_slot));
return push_inst(compiler, ADD | D(base) | S1(base) | S2(arg2), DR(base));
}
static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
if (getput_arg_fast(compiler, flags, reg, arg, argw))
return compiler->error;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
return getput_arg(compiler, flags, reg, arg, argw, 0, 0);
}
static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
return compiler->error;
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}
static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
/* arg1 goes to TMP_REG1 or src reg
arg2 goes to TMP_REG2, imm or src reg
TMP_REG3 can be used for caching
result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
sljit_si dst_r = TMP_REG2;
sljit_si src1_r;
sljit_sw src2_r = 0;
sljit_si sugg_src2_r = TMP_REG2;
if (!(flags & ALT_KEEP_CACHE)) {
compiler->cache_arg = 0;
compiler->cache_argw = 0;
}
if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
return SLJIT_SUCCESS;
}
else if (FAST_IS_REG(dst)) {
dst_r = dst;
flags |= REG_DEST;
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
sugg_src2_r = dst_r;
}
else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1, dst, dstw))
flags |= SLOW_DEST;
if (flags & IMM_OP) {
if ((src2 & SLJIT_IMM) && src2w) {
if (src2w <= SIMM_MAX && src2w >= SIMM_MIN) {
flags |= SRC2_IMM;
src2_r = src2w;
}
}
if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
if (src1w <= SIMM_MAX && src1w >= SIMM_MIN) {
flags |= SRC2_IMM;
src2_r = src1w;
/* And swap arguments. */
src1 = src2;
src1w = src2w;
src2 = SLJIT_IMM;
/* src2w = src2_r unneeded. */
}
}
}
/* Source 1. */
if (FAST_IS_REG(src1))
src1_r = src1;
else if (src1 & SLJIT_IMM) {
if (src1w) {
FAIL_IF(load_immediate(compiler, TMP_REG1, src1w));
src1_r = TMP_REG1;
}
else
src1_r = 0;
}
else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC1;
src1_r = TMP_REG1;
}
/* Source 2. */
if (FAST_IS_REG(src2)) {
src2_r = src2;
flags |= REG2_SOURCE;
if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
dst_r = src2_r;
}
else if (src2 & SLJIT_IMM) {
if (!(flags & SRC2_IMM)) {
if (src2w) {
FAIL_IF(load_immediate(compiler, sugg_src2_r, src2w));
src2_r = sugg_src2_r;
}
else {
src2_r = 0;
if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
dst_r = 0;
}
}
}
else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, sugg_src2_r, src2, src2w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC2;
src2_r = sugg_src2_r;
}
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
SLJIT_ASSERT(src2_r == TMP_REG2);
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
if (dst & SLJIT_MEM) {
if (!(flags & SLOW_DEST)) {
getput_arg_fast(compiler, flags, dst_r, dst, dstw);
return compiler->error;
}
return getput_arg(compiler, flags, dst_r, dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
CHECK_ERROR();
check_sljit_emit_op0(compiler, op);
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
return push_inst(compiler, TA, UNMOVABLE_INS);
case SLJIT_NOP:
return push_inst(compiler, NOP, UNMOVABLE_INS);
case SLJIT_UMUL:
case SLJIT_SMUL:
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
FAIL_IF(push_inst(compiler, (op == SLJIT_UMUL ? UMUL : SMUL) | D(SLJIT_R0) | S1(SLJIT_R0) | S2(SLJIT_R1), DR(SLJIT_R0)));
return push_inst(compiler, RDY | D(SLJIT_R1), DR(SLJIT_R1));
#else
#error "Implementation required"
#endif
case SLJIT_UDIV:
case SLJIT_SDIV:
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
if (op == SLJIT_UDIV)
FAIL_IF(push_inst(compiler, WRY | S1(0), MOVABLE_INS));
else {
FAIL_IF(push_inst(compiler, SRA | D(TMP_REG1) | S1(SLJIT_R0) | IMM(31), DR(TMP_REG1)));
FAIL_IF(push_inst(compiler, WRY | S1(TMP_REG1), MOVABLE_INS));
}
FAIL_IF(push_inst(compiler, OR | D(TMP_REG2) | S1(0) | S2(SLJIT_R0), DR(TMP_REG2)));
FAIL_IF(push_inst(compiler, (op == SLJIT_UDIV ? UDIV : SDIV) | D(SLJIT_R0) | S1(SLJIT_R0) | S2(SLJIT_R1), DR(SLJIT_R0)));
FAIL_IF(push_inst(compiler, SMUL | D(SLJIT_R1) | S1(SLJIT_R0) | S2(SLJIT_R1), DR(SLJIT_R1)));
FAIL_IF(push_inst(compiler, SUB | D(SLJIT_R1) | S1(TMP_REG2) | S2(SLJIT_R1), DR(SLJIT_R1)));
return SLJIT_SUCCESS;
#else
#error "Implementation required"
#endif
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si flags = GET_FLAGS(op) ? SET_FLAGS : 0;
CHECK_ERROR();
check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
op = GET_OPCODE(op);
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_P:
return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_UI:
return emit_op(compiler, SLJIT_MOV_UI, flags | INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_SI:
return emit_op(compiler, SLJIT_MOV_SI, flags | INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_UB:
return emit_op(compiler, SLJIT_MOV_UB, flags | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);
case SLJIT_MOV_SB:
return emit_op(compiler, SLJIT_MOV_SB, flags | BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);
case SLJIT_MOV_UH:
return emit_op(compiler, SLJIT_MOV_UH, flags | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);
case SLJIT_MOV_SH:
return emit_op(compiler, SLJIT_MOV_SH, flags | HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);
case SLJIT_MOVU:
case SLJIT_MOVU_P:
return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_UI:
return emit_op(compiler, SLJIT_MOV_UI, flags | INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_SI:
return emit_op(compiler, SLJIT_MOV_SI, flags | INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_UB:
return emit_op(compiler, SLJIT_MOV_UB, flags | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);
case SLJIT_MOVU_SB:
return emit_op(compiler, SLJIT_MOV_SB, flags | BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);
case SLJIT_MOVU_UH:
return emit_op(compiler, SLJIT_MOV_UH, flags | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);
case SLJIT_MOVU_SH:
return emit_op(compiler, SLJIT_MOV_SH, flags | HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);
case SLJIT_NOT:
case SLJIT_CLZ:
return emit_op(compiler, op, flags, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_NEG:
return emit_op(compiler, SLJIT_SUB, flags | IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si flags = GET_FLAGS(op) ? SET_FLAGS : 0;
CHECK_ERROR();
check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
op = GET_OPCODE(op);
switch (op) {
case SLJIT_ADD:
case SLJIT_ADDC:
case SLJIT_MUL:
case SLJIT_AND:
case SLJIT_OR:
case SLJIT_XOR:
return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
case SLJIT_SUBC:
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
case SLJIT_LSHR:
case SLJIT_ASHR:
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
if (src2 & SLJIT_IMM)
src2w &= 0x1f;
#else
SLJIT_ASSERT_STOP();
#endif
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
check_sljit_get_register_index(reg);
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg)
{
check_sljit_get_float_register_index(reg);
return reg << 1;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_si size)
{
CHECK_ERROR();
check_sljit_emit_op_custom(compiler, instruction, size);
SLJIT_ASSERT(size == 4);
return push_inst(compiler, *(sljit_ins*)instruction, UNMOVABLE_INS);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
return SLJIT_IS_FPU_AVAILABLE;
#else
/* Available by default. */
return 1;
#endif
}
#define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_SINGLE_OP) >> 7))
#define SELECT_FOP(op, single, double) ((op & SLJIT_SINGLE_OP) ? single : double)
#define FLOAT_TMP_MEM_OFFSET (22 * sizeof(sljit_sw))
static SLJIT_INLINE sljit_si sljit_emit_fop1_convw_fromd(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
src = TMP_FREG1;
}
else
src <<= 1;
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FSTOI, FDTOI) | DA(TMP_FREG1) | S2A(src), MOVABLE_INS));
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (FAST_IS_REG(dst)) {
FAIL_IF(emit_op_mem2(compiler, SINGLE_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
return emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, dst, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET);
}
/* Store the integer value from a VFP register. */
return emit_op_mem2(compiler, SINGLE_DATA, TMP_FREG1, dst, dstw, 0, 0);
}
static SLJIT_INLINE sljit_si sljit_emit_fop1_convd_fromw(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_r = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG1;
if (src & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_CONVD_FROMI)
srcw = (sljit_si)srcw;
#endif
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
src = TMP_REG1;
srcw = 0;
}
if (FAST_IS_REG(src)) {
FAIL_IF(emit_op_mem2(compiler, WORD_DATA, src, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
src = SLJIT_MEM1(SLJIT_SP);
srcw = FLOAT_TMP_MEM_OFFSET;
}
FAIL_IF(emit_op_mem2(compiler, SINGLE_DATA | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FITOS, FITOD) | DA(dst_r) | S2A(TMP_FREG1), MOVABLE_INS));
if (dst & SLJIT_MEM)
return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_si op,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
src1 = TMP_FREG1;
}
else
src1 <<= 1;
if (src2 & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0));
src2 = TMP_FREG2;
}
else
src2 <<= 1;
return push_inst(compiler, SELECT_FOP(op, FCMPS, FCMPD) | S1A(src1) | S2A(src2), FCC_IS_SET | MOVABLE_INS);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_r;
CHECK_ERROR();
compiler->cache_arg = 0;
compiler->cache_argw = 0;
SLJIT_COMPILE_ASSERT((SLJIT_SINGLE_OP == 0x100) && !(DOUBLE_DATA & 0x2), float_transfer_bit_error);
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
if (GET_OPCODE(op) == SLJIT_CONVD_FROMS)
op ^= SLJIT_SINGLE_OP;
dst_r = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG1;
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, dst_r, src, srcw, dst, dstw));
src = dst_r;
}
else
src <<= 1;
switch (GET_OPCODE(op)) {
case SLJIT_MOVD:
if (src != dst_r) {
if (dst_r != TMP_FREG1) {
FAIL_IF(push_inst(compiler, FMOVS | DA(dst_r) | S2A(src), MOVABLE_INS));
if (!(op & SLJIT_SINGLE_OP))
FAIL_IF(push_inst(compiler, FMOVS | DA(dst_r | 1) | S2A(src | 1), MOVABLE_INS));
}
else
dst_r = src;
}
break;
case SLJIT_NEGD:
FAIL_IF(push_inst(compiler, FNEGS | DA(dst_r) | S2A(src), MOVABLE_INS));
if (dst_r != src && !(op & SLJIT_SINGLE_OP))
FAIL_IF(push_inst(compiler, FMOVS | DA(dst_r | 1) | S2A(src | 1), MOVABLE_INS));
break;
case SLJIT_ABSD:
FAIL_IF(push_inst(compiler, FABSS | DA(dst_r) | S2A(src), MOVABLE_INS));
if (dst_r != src && !(op & SLJIT_SINGLE_OP))
FAIL_IF(push_inst(compiler, FMOVS | DA(dst_r | 1) | S2A(src | 1), MOVABLE_INS));
break;
case SLJIT_CONVD_FROMS:
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FSTOD, FDTOS) | DA(dst_r) | S2A(src), MOVABLE_INS));
op ^= SLJIT_SINGLE_OP;
break;
}
if (dst & SLJIT_MEM)
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), dst_r, dst, dstw, 0, 0));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si dst_r, flags = 0;
CHECK_ERROR();
check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_r = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG2;
if (src1 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w)) {
FAIL_IF(compiler->error);
src1 = TMP_FREG1;
} else
flags |= SLOW_SRC1;
}
else
src1 <<= 1;
if (src2 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w)) {
FAIL_IF(compiler->error);
src2 = TMP_FREG2;
} else
flags |= SLOW_SRC2;
}
else
src2 <<= 1;
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
if (flags & SLOW_SRC1)
src1 = TMP_FREG1;
if (flags & SLOW_SRC2)
src2 = TMP_FREG2;
switch (GET_OPCODE(op)) {
case SLJIT_ADDD:
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FADDS, FADDD) | DA(dst_r) | S1A(src1) | S2A(src2), MOVABLE_INS));
break;
case SLJIT_SUBD:
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FSUBS, FSUBD) | DA(dst_r) | S1A(src1) | S2A(src2), MOVABLE_INS));
break;
case SLJIT_MULD:
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FMULS, FMULD) | DA(dst_r) | S1A(src1) | S2A(src2), MOVABLE_INS));
break;
case SLJIT_DIVD:
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FDIVS, FDIVD) | DA(dst_r) | S1A(src1) | S2A(src2), MOVABLE_INS));
break;
}
if (dst_r == TMP_FREG2)
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG2, dst, dstw, 0, 0));
return SLJIT_SUCCESS;
}
#undef FLOAT_DATA
#undef SELECT_FOP
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
CHECK_ERROR();
check_sljit_emit_fast_enter(compiler, dst, dstw);
ADJUST_LOCAL_OFFSET(dst, dstw);
/* For UNUSED dst. Uncommon, but possible. */
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (FAST_IS_REG(dst))
return push_inst(compiler, OR | D(dst) | S1(0) | S2(TMP_LINK), DR(dst));
/* Memory. */
return emit_op_mem(compiler, WORD_DATA, TMP_LINK, dst, dstw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
check_sljit_emit_fast_return(compiler, src, srcw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, OR | D(TMP_LINK) | S1(0) | S2(src), DR(TMP_LINK)));
else if (src & SLJIT_MEM)
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_LINK, src, srcw));
else if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, TMP_LINK, srcw));
FAIL_IF(push_inst(compiler, JMPL | D(0) | S1(TMP_LINK) | IMM(8), UNMOVABLE_INS));
return push_inst(compiler, NOP, UNMOVABLE_INS);
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
check_sljit_emit_label(compiler);
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
compiler->delay_slot = UNMOVABLE_INS;
return label;
}
static sljit_ins get_cc(sljit_si type)
{
switch (type) {
case SLJIT_C_EQUAL:
case SLJIT_C_MUL_NOT_OVERFLOW:
return DA(0x1);
case SLJIT_C_NOT_EQUAL:
case SLJIT_C_MUL_OVERFLOW:
return DA(0x9);
case SLJIT_C_LESS:
return DA(0x5);
case SLJIT_C_GREATER_EQUAL:
return DA(0xd);
case SLJIT_C_GREATER:
return DA(0xc);
case SLJIT_C_LESS_EQUAL:
return DA(0x4);
case SLJIT_C_SIG_LESS:
return DA(0x3);
case SLJIT_C_SIG_GREATER_EQUAL:
return DA(0xb);
case SLJIT_C_SIG_GREATER:
return DA(0xa);
case SLJIT_C_SIG_LESS_EQUAL:
return DA(0x2);
case SLJIT_C_OVERFLOW:
return DA(0x7);
case SLJIT_C_NOT_OVERFLOW:
return DA(0xf);
case SLJIT_C_FLOAT_EQUAL:
return DA(0x9);
case SLJIT_C_FLOAT_NOT_EQUAL: /* Unordered. */
return DA(0x1);
case SLJIT_C_FLOAT_LESS:
return DA(0x4);
case SLJIT_C_FLOAT_GREATER_EQUAL: /* Unordered. */
return DA(0xc);
case SLJIT_C_FLOAT_LESS_EQUAL:
return DA(0xd);
case SLJIT_C_FLOAT_GREATER: /* Unordered. */
return DA(0x5);
case SLJIT_C_FLOAT_UNORDERED:
return DA(0x7);
case SLJIT_C_FLOAT_ORDERED:
return DA(0xf);
default:
SLJIT_ASSERT_STOP();
return DA(0x8);
}
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
struct sljit_jump *jump;
CHECK_ERROR_PTR();
check_sljit_emit_jump(compiler, type);
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
if (type < SLJIT_C_FLOAT_EQUAL) {
jump->flags |= IS_COND;
if (((compiler->delay_slot & DST_INS_MASK) != UNMOVABLE_INS) && !(compiler->delay_slot & ICC_IS_SET))
jump->flags |= IS_MOVABLE;
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
PTR_FAIL_IF(push_inst(compiler, BICC | get_cc(type ^ 1) | 5, UNMOVABLE_INS));
#else
#error "Implementation required"
#endif
}
else if (type < SLJIT_JUMP) {
jump->flags |= IS_COND;
if (((compiler->delay_slot & DST_INS_MASK) != UNMOVABLE_INS) && !(compiler->delay_slot & FCC_IS_SET))
jump->flags |= IS_MOVABLE;
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
PTR_FAIL_IF(push_inst(compiler, FBFCC | get_cc(type ^ 1) | 5, UNMOVABLE_INS));
#else
#error "Implementation required"
#endif
} else {
if ((compiler->delay_slot & DST_INS_MASK) != UNMOVABLE_INS)
jump->flags |= IS_MOVABLE;
if (type >= SLJIT_FAST_CALL)
jump->flags |= IS_CALL;
}
PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
PTR_FAIL_IF(push_inst(compiler, JMPL | D(type >= SLJIT_FAST_CALL ? TMP_LINK : 0) | S1(TMP_REG2) | IMM(0), UNMOVABLE_INS));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
struct sljit_jump *jump = NULL;
sljit_si src_r;
CHECK_ERROR();
check_sljit_emit_ijump(compiler, type, src, srcw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src))
src_r = src;
else if (src & SLJIT_IMM) {
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR);
jump->u.target = srcw;
if ((compiler->delay_slot & DST_INS_MASK) != UNMOVABLE_INS)
jump->flags |= IS_MOVABLE;
if (type >= SLJIT_FAST_CALL)
jump->flags |= IS_CALL;
FAIL_IF(emit_const(compiler, TMP_REG2, 0));
src_r = TMP_REG2;
}
else {
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_REG2, src, srcw));
src_r = TMP_REG2;
}
FAIL_IF(push_inst(compiler, JMPL | D(type >= SLJIT_FAST_CALL ? TMP_LINK : 0) | S1(src_r) | IMM(0), UNMOVABLE_INS));
if (jump)
jump->addr = compiler->size;
return push_inst(compiler, NOP, UNMOVABLE_INS);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw,
sljit_si type)
{
sljit_si reg, flags = (GET_FLAGS(op) ? SET_FLAGS : 0);
CHECK_ERROR();
check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type);
ADJUST_LOCAL_OFFSET(dst, dstw);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
op = GET_OPCODE(op);
reg = (op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
ADJUST_LOCAL_OFFSET(src, srcw);
FAIL_IF(emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw));
src = TMP_REG1;
srcw = 0;
}
if (type < SLJIT_C_FLOAT_EQUAL)
FAIL_IF(push_inst(compiler, BICC | get_cc(type) | 3, UNMOVABLE_INS));
else
FAIL_IF(push_inst(compiler, FBFCC | get_cc(type) | 3, UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, OR | D(reg) | S1(0) | IMM(1), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, OR | D(reg) | S1(0) | IMM(0), UNMOVABLE_INS));
if (op >= SLJIT_ADD)
return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
return (reg == TMP_REG2) ? emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw) : SLJIT_SUCCESS;
#else
#error "Implementation required"
#endif
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
sljit_si reg;
struct sljit_const *const_;
CHECK_ERROR_PTR();
check_sljit_emit_const(compiler, dst, dstw, init_value);
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
reg = SLOW_IS_REG(dst) ? dst : TMP_REG2;
PTR_FAIL_IF(emit_const(compiler, reg, init_value));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw));
return const_;
}