// power-weight.h
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: allauzen@google.com (Cyril Allauzen)
//
// \file
// Cartesian power weight semiring operation definitions.
#ifndef FST_LIB_POWER_WEIGHT_H__
#define FST_LIB_POWER_WEIGHT_H__
#include <fst/tuple-weight.h>
#include <fst/weight.h>
namespace fst {
// Cartesian power semiring: W ^ n
// Forms:
// - a left semimodule when W is a left semiring,
// - a right semimodule when W is a right semiring,
// - a bisemimodule when W is a semiring,
// the free semimodule of rank n over W
// The Times operation is overloaded to provide the
// left and right scalar products.
template <class W, unsigned int n>
class PowerWeight : public TupleWeight<W, n> {
public:
using TupleWeight<W, n>::Zero;
using TupleWeight<W, n>::One;
using TupleWeight<W, n>::NoWeight;
using TupleWeight<W, n>::Quantize;
using TupleWeight<W, n>::Reverse;
typedef PowerWeight<typename W::ReverseWeight, n> ReverseWeight;
PowerWeight() {}
PowerWeight(const TupleWeight<W, n> &w) : TupleWeight<W, n>(w) {}
template <class Iterator>
PowerWeight(Iterator begin, Iterator end) : TupleWeight<W, n>(begin, end) {}
static const PowerWeight<W, n> &Zero() {
static const PowerWeight<W, n> zero(TupleWeight<W, n>::Zero());
return zero;
}
static const PowerWeight<W, n> &One() {
static const PowerWeight<W, n> one(TupleWeight<W, n>::One());
return one;
}
static const PowerWeight<W, n> &NoWeight() {
static const PowerWeight<W, n> no_weight(TupleWeight<W, n>::NoWeight());
return no_weight;
}
static const string &Type() {
static string type;
if (type.empty()) {
string power;
Int64ToStr(n, &power);
type = W::Type() + "_^" + power;
}
return type;
}
static uint64 Properties() {
uint64 props = W::Properties();
return props & (kLeftSemiring | kRightSemiring |
kCommutative | kIdempotent);
}
PowerWeight<W, n> Quantize(float delta = kDelta) const {
return TupleWeight<W, n>::Quantize(delta);
}
ReverseWeight Reverse() const {
return TupleWeight<W, n>::Reverse();
}
};
// Semiring plus operation
template <class W, unsigned int n>
inline PowerWeight<W, n> Plus(const PowerWeight<W, n> &w1,
const PowerWeight<W, n> &w2) {
PowerWeight<W, n> w;
for (size_t i = 0; i < n; ++i)
w.SetValue(i, Plus(w1.Value(i), w2.Value(i)));
return w;
}
// Semiring times operation
template <class W, unsigned int n>
inline PowerWeight<W, n> Times(const PowerWeight<W, n> &w1,
const PowerWeight<W, n> &w2) {
PowerWeight<W, n> w;
for (size_t i = 0; i < n; ++i)
w.SetValue(i, Times(w1.Value(i), w2.Value(i)));
return w;
}
// Semiring divide operation
template <class W, unsigned int n>
inline PowerWeight<W, n> Divide(const PowerWeight<W, n> &w1,
const PowerWeight<W, n> &w2,
DivideType type = DIVIDE_ANY) {
PowerWeight<W, n> w;
for (size_t i = 0; i < n; ++i)
w.SetValue(i, Divide(w1.Value(i), w2.Value(i), type));
return w;
}
// Semimodule left scalar product
template <class W, unsigned int n>
inline PowerWeight<W, n> Times(const W &s, const PowerWeight<W, n> &w) {
PowerWeight<W, n> sw;
for (size_t i = 0; i < n; ++i)
sw.SetValue(i, Times(s, w.Value(i)));
return w;
}
// Semimodule right scalar product
template <class W, unsigned int n>
inline PowerWeight<W, n> Times(const PowerWeight<W, n> &w, const W &s) {
PowerWeight<W, n> ws;
for (size_t i = 0; i < n; ++i)
ws.SetValue(i, Times(w.Value(i), s));
return w;
}
// Semimodule dot product
template <class W, unsigned int n>
inline W DotProduct(const PowerWeight<W, n> &w1,
const PowerWeight<W, n> &w2) {
W w = W::Zero();
for (size_t i = 0; i < n; ++i)
w = Plus(w, Times(w1.Value(i), w2.Value(i)));
return w;
}
} // namespace fst
#endif // FST_LIB_POWER_WEIGHT_H__