/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/convert.h"
#include "libyuv/basic_types.h"
#include "libyuv/cpu_id.h"
#include "libyuv/format_conversion.h"
#ifdef HAVE_JPEG
#include "libyuv/mjpeg_decoder.h"
#endif
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#include "libyuv/video_common.h"
#include "libyuv/row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// Copy I420 with optional flipping
LIBYUV_API
int I420Copy(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
int halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if (dst_y) {
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
}
CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight);
CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight);
return 0;
}
// Move to row_win etc.
#if !defined(YUV_DISABLE_ASM) && defined(_M_IX86)
#define HAS_HALFROW_SSE2
__declspec(naked) __declspec(align(16))
static void HalfRow_SSE2(const uint8* src_uv, int src_uv_stride,
uint8* dst_uv, int pix) {
__asm {
push edi
mov eax, [esp + 4 + 4] // src_uv
mov edx, [esp + 4 + 8] // src_uv_stride
mov edi, [esp + 4 + 12] // dst_v
mov ecx, [esp + 4 + 16] // pix
sub edi, eax
align 16
convertloop:
movdqa xmm0, [eax]
pavgb xmm0, [eax + edx]
sub ecx, 16
movdqa [eax + edi], xmm0
lea eax, [eax + 16]
jg convertloop
pop edi
ret
}
}
#elif !defined(YUV_DISABLE_ASM) && (defined(__x86_64__) || defined(__i386__))
#define HAS_HALFROW_SSE2
static void HalfRow_SSE2(const uint8* src_uv, int src_uv_stride,
uint8* dst_uv, int pix) {
asm volatile (
"sub %0,%1 \n"
".p2align 4 \n"
"1: \n"
"movdqa (%0),%%xmm0 \n"
"pavgb (%0,%3),%%xmm0 \n"
"sub $0x10,%2 \n"
"movdqa %%xmm0,(%0,%1) \n"
"lea 0x10(%0),%0 \n"
"jg 1b \n"
: "+r"(src_uv), // %0
"+r"(dst_uv), // %1
"+r"(pix) // %2
: "r"(static_cast<intptr_t>(src_uv_stride)) // %3
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0"
#endif
);
}
#endif
static void HalfRow_C(const uint8* src_uv, int src_uv_stride,
uint8* dst_uv, int pix) {
for (int x = 0; x < pix; ++x) {
dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1;
}
}
LIBYUV_API
int I422ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
int halfwidth = (width + 1) >> 1;
void (*HalfRow)(const uint8* src_uv, int src_uv_stride,
uint8* dst_uv, int pix) = HalfRow_C;
#if defined(HAS_HALFROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(halfwidth, 16) &&
IS_ALIGNED(src_u, 16) && IS_ALIGNED(src_stride_u, 16) &&
IS_ALIGNED(src_v, 16) && IS_ALIGNED(src_stride_v, 16) &&
IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) &&
IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) {
HalfRow = HalfRow_SSE2;
}
#endif
// Copy Y plane
if (dst_y) {
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
}
// SubSample U plane.
int y;
for (y = 0; y < height - 1; y += 2) {
HalfRow(src_u, src_stride_u, dst_u, halfwidth);
src_u += src_stride_u * 2;
dst_u += dst_stride_u;
}
if (height & 1) {
HalfRow(src_u, 0, dst_u, halfwidth);
}
// SubSample V plane.
for (y = 0; y < height - 1; y += 2) {
HalfRow(src_v, src_stride_v, dst_v, halfwidth);
src_v += src_stride_v * 2;
dst_v += dst_stride_v;
}
if (height & 1) {
HalfRow(src_v, 0, dst_v, halfwidth);
}
return 0;
}
// Blends 32x2 pixels to 16x1
// source in scale.cc
#if !defined(YUV_DISABLE_ASM) && (defined(__ARM_NEON__) || defined(LIBYUV_NEON))
#define HAS_SCALEROWDOWN2_NEON
void ScaleRowDown2Int_NEON(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst, int dst_width);
#elif !defined(YUV_DISABLE_ASM) && \
(defined(_M_IX86) || defined(__x86_64__) || defined(__i386__))
void ScaleRowDown2Int_SSE2(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width);
#endif
void ScaleRowDown2Int_C(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width);
LIBYUV_API
int I444ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
int halfwidth = (width + 1) >> 1;
void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width) = ScaleRowDown2Int_C;
#if defined(HAS_SCALEROWDOWN2_NEON)
if (TestCpuFlag(kCpuHasNEON) &&
IS_ALIGNED(halfwidth, 16)) {
ScaleRowDown2 = ScaleRowDown2Int_NEON;
}
#elif defined(HAS_SCALEROWDOWN2_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(halfwidth, 16) &&
IS_ALIGNED(src_u, 16) && IS_ALIGNED(src_stride_u, 16) &&
IS_ALIGNED(src_v, 16) && IS_ALIGNED(src_stride_v, 16) &&
IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) &&
IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) {
ScaleRowDown2 = ScaleRowDown2Int_SSE2;
}
#endif
// Copy Y plane
if (dst_y) {
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
}
// SubSample U plane.
int y;
for (y = 0; y < height - 1; y += 2) {
ScaleRowDown2(src_u, src_stride_u, dst_u, halfwidth);
src_u += src_stride_u * 2;
dst_u += dst_stride_u;
}
if (height & 1) {
ScaleRowDown2(src_u, 0, dst_u, halfwidth);
}
// SubSample V plane.
for (y = 0; y < height - 1; y += 2) {
ScaleRowDown2(src_v, src_stride_v, dst_v, halfwidth);
src_v += src_stride_v * 2;
dst_v += dst_stride_v;
}
if (height & 1) {
ScaleRowDown2(src_v, 0, dst_v, halfwidth);
}
return 0;
}
// use Bilinear for upsampling chroma
void ScalePlaneBilinear(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr);
// 411 chroma is 1/4 width, 1x height
// 420 chroma is 1/2 width, 1/2 height
LIBYUV_API
int I411ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_u = dst_u + (height - 1) * dst_stride_u;
dst_v = dst_v + (height - 1) * dst_stride_v;
dst_stride_y = -dst_stride_y;
dst_stride_u = -dst_stride_u;
dst_stride_v = -dst_stride_v;
}
// Copy Y plane
if (dst_y) {
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
int quarterwidth = (width + 3) >> 2;
// Resample U plane.
ScalePlaneBilinear(quarterwidth, height, // from 1/4 width, 1x height
halfwidth, halfheight, // to 1/2 width, 1/2 height
src_stride_u,
dst_stride_u,
src_u, dst_u);
// Resample V plane.
ScalePlaneBilinear(quarterwidth, height, // from 1/4 width, 1x height
halfwidth, halfheight, // to 1/2 width, 1/2 height
src_stride_v,
dst_stride_v,
src_v, dst_v);
return 0;
}
// I400 is greyscale typically used in MJPG
LIBYUV_API
int I400ToI420(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
SetPlane(dst_u, dst_stride_u, halfwidth, halfheight, 128);
SetPlane(dst_v, dst_stride_v, halfwidth, halfheight, 128);
return 0;
}
static void CopyPlane2(const uint8* src, int src_stride_0, int src_stride_1,
uint8* dst, int dst_stride_frame,
int width, int height) {
void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C;
#if defined(HAS_COPYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 64)) {
CopyRow = CopyRow_NEON;
}
#elif defined(HAS_COPYROW_X86)
if (IS_ALIGNED(width, 4)) {
CopyRow = CopyRow_X86;
#if defined(HAS_COPYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 32) && IS_ALIGNED(src, 16) &&
IS_ALIGNED(src_stride_0, 16) && IS_ALIGNED(src_stride_1, 16) &&
IS_ALIGNED(dst, 16) && IS_ALIGNED(dst_stride_frame, 16)) {
CopyRow = CopyRow_SSE2;
}
#endif
}
#endif
// Copy plane
for (int y = 0; y < height - 1; y += 2) {
CopyRow(src, dst, width);
CopyRow(src + src_stride_0, dst + dst_stride_frame, width);
src += src_stride_0 + src_stride_1;
dst += dst_stride_frame * 2;
}
if (height & 1) {
CopyRow(src, dst, width);
}
}
// Support converting from FOURCC_M420
// Useful for bandwidth constrained transports like USB 1.0 and 2.0 and for
// easy conversion to I420.
// M420 format description:
// M420 is row biplanar 420: 2 rows of Y and 1 row of UV.
// Chroma is half width / half height. (420)
// src_stride_m420 is row planar. Normally this will be the width in pixels.
// The UV plane is half width, but 2 values, so src_stride_m420 applies to
// this as well as the two Y planes.
static int X420ToI420(const uint8* src_y,
int src_stride_y0, int src_stride_y1,
const uint8* src_uv, int src_stride_uv,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_uv ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
int halfheight = (height + 1) >> 1;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_u = dst_u + (halfheight - 1) * dst_stride_u;
dst_v = dst_v + (halfheight - 1) * dst_stride_v;
dst_stride_y = -dst_stride_y;
dst_stride_u = -dst_stride_u;
dst_stride_v = -dst_stride_v;
}
int halfwidth = (width + 1) >> 1;
void (*SplitUV)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix) =
SplitUV_C;
#if defined(HAS_SPLITUV_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(halfwidth, 16)) {
SplitUV = SplitUV_NEON;
}
#elif defined(HAS_SPLITUV_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(halfwidth, 16) &&
IS_ALIGNED(src_uv, 16) && IS_ALIGNED(src_stride_uv, 16) &&
IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) &&
IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) {
SplitUV = SplitUV_SSE2;
}
#endif
if (dst_y) {
CopyPlane2(src_y, src_stride_y0, src_stride_y1, dst_y, dst_stride_y,
width, height);
}
int halfheight = (height + 1) >> 1;
for (int y = 0; y < halfheight; ++y) {
// Copy a row of UV.
SplitUV(src_uv, dst_u, dst_v, halfwidth);
dst_u += dst_stride_u;
dst_v += dst_stride_v;
src_uv += src_stride_uv;
}
return 0;
}
// Convert NV12 to I420.
LIBYUV_API
int NV12ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
return X420ToI420(src_y, src_stride_y, src_stride_y,
src_uv, src_stride_uv,
dst_y, dst_stride_y,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
width, height);
}
// Convert M420 to I420.
LIBYUV_API
int M420ToI420(const uint8* src_m420, int src_stride_m420,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
return X420ToI420(src_m420, src_stride_m420, src_stride_m420 * 2,
src_m420 + src_stride_m420 * 2, src_stride_m420 * 3,
dst_y, dst_stride_y,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
width, height);
}
// Convert Q420 to I420.
// Format is rows of YY/YUYV
LIBYUV_API
int Q420ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_yuy2 ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
int halfheight = (height + 1) >> 1;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_u = dst_u + (halfheight - 1) * dst_stride_u;
dst_v = dst_v + (halfheight - 1) * dst_stride_v;
dst_stride_y = -dst_stride_y;
dst_stride_u = -dst_stride_u;
dst_stride_v = -dst_stride_v;
}
// CopyRow for rows of just Y in Q420 copied to Y plane of I420.
void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C;
#if defined(HAS_COPYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 64)) {
CopyRow = CopyRow_NEON;
}
#endif
#if defined(HAS_COPYROW_X86)
if (IS_ALIGNED(width, 4)) {
CopyRow = CopyRow_X86;
}
#endif
#if defined(HAS_COPYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
CopyRow = CopyRow_SSE2;
}
#endif
void (*YUY2ToUV422Row)(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v,
int pix) = YUY2ToUV422Row_C;
void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int pix) =
YUY2ToYRow_C;
#if defined(HAS_YUY2TOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
if (width > 16) {
YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2;
YUY2ToYRow = YUY2ToYRow_Any_SSE2;
}
if (IS_ALIGNED(width, 16)) {
YUY2ToUV422Row = YUY2ToUV422Row_Unaligned_SSE2;
YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2;
if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) {
YUY2ToUV422Row = YUY2ToUV422Row_SSE2;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
YUY2ToYRow = YUY2ToYRow_SSE2;
}
}
}
}
#elif defined(HAS_YUY2TOYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
if (width > 8) {
YUY2ToYRow = YUY2ToYRow_Any_NEON;
if (width > 16) {
YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON;
}
}
if (IS_ALIGNED(width, 16)) {
YUY2ToYRow = YUY2ToYRow_NEON;
YUY2ToUV422Row = YUY2ToUV422Row_NEON;
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
CopyRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width);
YUY2ToYRow(src_yuy2, dst_y, width);
src_yuy2 += src_stride_yuy2;
dst_y += dst_stride_y;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
CopyRow(src_y, dst_y, width);
YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width);
}
return 0;
}
// Test if over reading on source is safe.
// TODO(fbarchard): Find more efficient solution to safely do odd sizes.
// Macros to control read policy, from slowest to fastest:
// READSAFE_NEVER - disables read ahead on systems with strict memory reads
// READSAFE_ODDHEIGHT - last row of odd height done with C.
// This policy assumes that the caller handles the last row of an odd height
// image using C.
// READSAFE_PAGE - enable read ahead within same page.
// A page is 4096 bytes. When reading ahead, if the last pixel is near the
// end the page, and a read spans the page into the next page, a memory
// exception can occur if that page has not been allocated, or is a guard
// page. This setting ensures the overread is within the same page.
// READSAFE_ALWAYS - enables read ahead on systems without memory exceptions
// or where buffers are padded by 64 bytes.
#if defined(HAS_RGB24TOARGBROW_SSSE3) || \
defined(HAS_RGB24TOARGBROW_SSSE3) || \
defined(HAS_RAWTOARGBROW_SSSE3) || \
defined(HAS_RGB565TOARGBROW_SSE2) || \
defined(HAS_ARGB1555TOARGBROW_SSE2) || \
defined(HAS_ARGB4444TOARGBROW_SSE2)
#define READSAFE_ODDHEIGHT
static bool TestReadSafe(const uint8* src_yuy2, int src_stride_yuy2,
int width, int height, int bpp, int overread) {
if (width > kMaxStride) {
return false;
}
#if defined(READSAFE_ALWAYS)
return true;
#elif defined(READSAFE_NEVER)
return false;
#elif defined(READSAFE_ODDHEIGHT)
if (!(width & 15) ||
(src_stride_yuy2 >= 0 && (height & 1) && width * bpp >= overread)) {
return true;
}
return false;
#elif defined(READSAFE_PAGE)
if (src_stride_yuy2 >= 0) {
src_yuy2 += (height - 1) * src_stride_yuy2;
}
uintptr_t last_adr = (uintptr_t)(src_yuy2) + width * bpp - 1;
uintptr_t last_read_adr = last_adr + overread - 1;
if (((last_adr ^ last_read_adr) & ~4095) == 0) {
return true;
}
return false;
#endif
}
#endif
// Convert YUY2 to I420.
LIBYUV_API
int YUY2ToI420(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
src_stride_yuy2 = -src_stride_yuy2;
}
void (*YUY2ToUVRow)(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_u, uint8* dst_v, int pix);
void (*YUY2ToYRow)(const uint8* src_yuy2,
uint8* dst_y, int pix);
YUY2ToYRow = YUY2ToYRow_C;
YUY2ToUVRow = YUY2ToUVRow_C;
#if defined(HAS_YUY2TOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
if (width > 16) {
YUY2ToUVRow = YUY2ToUVRow_Any_SSE2;
YUY2ToYRow = YUY2ToYRow_Any_SSE2;
}
if (IS_ALIGNED(width, 16)) {
YUY2ToUVRow = YUY2ToUVRow_Unaligned_SSE2;
YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2;
if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) {
YUY2ToUVRow = YUY2ToUVRow_SSE2;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
YUY2ToYRow = YUY2ToYRow_SSE2;
}
}
}
}
#elif defined(HAS_YUY2TOYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
if (width > 8) {
YUY2ToYRow = YUY2ToYRow_Any_NEON;
if (width > 16) {
YUY2ToUVRow = YUY2ToUVRow_Any_NEON;
}
}
if (IS_ALIGNED(width, 16)) {
YUY2ToYRow = YUY2ToYRow_NEON;
YUY2ToUVRow = YUY2ToUVRow_NEON;
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
YUY2ToUVRow(src_yuy2, src_stride_yuy2, dst_u, dst_v, width);
YUY2ToYRow(src_yuy2, dst_y, width);
YUY2ToYRow(src_yuy2 + src_stride_yuy2, dst_y + dst_stride_y, width);
src_yuy2 += src_stride_yuy2 * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
YUY2ToUVRow(src_yuy2, 0, dst_u, dst_v, width);
YUY2ToYRow(src_yuy2, dst_y, width);
}
return 0;
}
// Convert UYVY to I420.
LIBYUV_API
int UYVYToI420(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
src_stride_uyvy = -src_stride_uyvy;
}
void (*UYVYToUVRow)(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_u, uint8* dst_v, int pix);
void (*UYVYToYRow)(const uint8* src_uyvy,
uint8* dst_y, int pix);
UYVYToYRow = UYVYToYRow_C;
UYVYToUVRow = UYVYToUVRow_C;
#if defined(HAS_UYVYTOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
if (width > 16) {
UYVYToUVRow = UYVYToUVRow_Any_SSE2;
UYVYToYRow = UYVYToYRow_Any_SSE2;
}
if (IS_ALIGNED(width, 16)) {
UYVYToUVRow = UYVYToUVRow_Unaligned_SSE2;
UYVYToYRow = UYVYToYRow_Unaligned_SSE2;
if (IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16)) {
UYVYToUVRow = UYVYToUVRow_SSE2;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
UYVYToYRow = UYVYToYRow_SSE2;
}
}
}
}
#elif defined(HAS_UYVYTOYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
if (width > 8) {
UYVYToYRow = UYVYToYRow_Any_NEON;
if (width > 16) {
UYVYToUVRow = UYVYToUVRow_Any_NEON;
}
}
if (IS_ALIGNED(width, 16)) {
UYVYToYRow = UYVYToYRow_NEON;
UYVYToUVRow = UYVYToUVRow_NEON;
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
UYVYToUVRow(src_uyvy, src_stride_uyvy, dst_u, dst_v, width);
UYVYToYRow(src_uyvy, dst_y, width);
UYVYToYRow(src_uyvy + src_stride_uyvy, dst_y + dst_stride_y, width);
src_uyvy += src_stride_uyvy * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
UYVYToUVRow(src_uyvy, 0, dst_u, dst_v, width);
UYVYToYRow(src_uyvy, dst_y, width);
}
return 0;
}
// Visual C x86 or GCC little endian.
#if defined(__x86_64__) || defined(_M_X64) || \
defined(__i386__) || defined(_M_IX86) || \
defined(__arm__) || defined(_M_ARM) || \
(defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#define LIBYUV_LITTLE_ENDIAN
#endif
#ifdef LIBYUV_LITTLE_ENDIAN
#define READWORD(p) (*reinterpret_cast<const uint32*>(p))
#else
static inline uint32 READWORD(const uint8* p) {
return static_cast<uint32>(p[0]) |
(static_cast<uint32>(p[1]) << 8) |
(static_cast<uint32>(p[2]) << 16) |
(static_cast<uint32>(p[3]) << 24);
}
#endif
// Must be multiple of 6 pixels. Will over convert to handle remainder.
// https://developer.apple.com/quicktime/icefloe/dispatch019.html#v210
static void V210ToUYVYRow_C(const uint8* src_v210, uint8* dst_uyvy, int width) {
for (int x = 0; x < width; x += 6) {
uint32 w = READWORD(src_v210 + 0);
dst_uyvy[0] = (w >> 2) & 0xff;
dst_uyvy[1] = (w >> 12) & 0xff;
dst_uyvy[2] = (w >> 22) & 0xff;
w = READWORD(src_v210 + 4);
dst_uyvy[3] = (w >> 2) & 0xff;
dst_uyvy[4] = (w >> 12) & 0xff;
dst_uyvy[5] = (w >> 22) & 0xff;
w = READWORD(src_v210 + 8);
dst_uyvy[6] = (w >> 2) & 0xff;
dst_uyvy[7] = (w >> 12) & 0xff;
dst_uyvy[8] = (w >> 22) & 0xff;
w = READWORD(src_v210 + 12);
dst_uyvy[9] = (w >> 2) & 0xff;
dst_uyvy[10] = (w >> 12) & 0xff;
dst_uyvy[11] = (w >> 22) & 0xff;
src_v210 += 16;
dst_uyvy += 12;
}
}
// Convert V210 to I420.
// V210 is 10 bit version of UYVY. 16 bytes to store 6 pixels.
// With is multiple of 48.
LIBYUV_API
int V210ToI420(const uint8* src_v210, int src_stride_v210,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (width * 2 * 2 > kMaxStride) { // 2 rows of UYVY are required.
return -1;
} else if (!src_v210 || !dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_v210 = src_v210 + (height - 1) * src_stride_v210;
src_stride_v210 = -src_stride_v210;
}
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
void (*V210ToUYVYRow)(const uint8* src_v210, uint8* dst_uyvy, int pix);
V210ToUYVYRow = V210ToUYVYRow_C;
void (*UYVYToUVRow)(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_u, uint8* dst_v, int pix);
void (*UYVYToYRow)(const uint8* src_uyvy,
uint8* dst_y, int pix);
UYVYToYRow = UYVYToYRow_C;
UYVYToUVRow = UYVYToUVRow_C;
#if defined(HAS_UYVYTOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16)) {
UYVYToUVRow = UYVYToUVRow_SSE2;
UYVYToYRow = UYVYToYRow_Unaligned_SSE2;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
UYVYToYRow = UYVYToYRow_SSE2;
}
}
#elif defined(HAS_UYVYTOYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
if (width > 8) {
UYVYToYRow = UYVYToYRow_Any_NEON;
if (width > 16) {
UYVYToUVRow = UYVYToUVRow_Any_NEON;
}
}
if (IS_ALIGNED(width, 16)) {
UYVYToYRow = UYVYToYRow_NEON;
UYVYToUVRow = UYVYToUVRow_NEON;
}
}
#endif
#if defined(HAS_UYVYTOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
if (width > 16) {
UYVYToUVRow = UYVYToUVRow_Any_SSE2;
UYVYToYRow = UYVYToYRow_Any_SSE2;
}
if (IS_ALIGNED(width, 16)) {
UYVYToYRow = UYVYToYRow_Unaligned_SSE2;
UYVYToUVRow = UYVYToUVRow_SSE2;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
UYVYToYRow = UYVYToYRow_SSE2;
}
}
}
#elif defined(HAS_UYVYTOYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
if (width > 8) {
UYVYToYRow = UYVYToYRow_Any_NEON;
if (width > 16) {
UYVYToUVRow = UYVYToUVRow_Any_NEON;
}
}
if (IS_ALIGNED(width, 16)) {
UYVYToYRow = UYVYToYRow_NEON;
UYVYToUVRow = UYVYToUVRow_NEON;
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
V210ToUYVYRow(src_v210, row, width);
V210ToUYVYRow(src_v210 + src_stride_v210, row + kMaxStride, width);
UYVYToUVRow(row, kMaxStride, dst_u, dst_v, width);
UYVYToYRow(row, dst_y, width);
UYVYToYRow(row + kMaxStride, dst_y + dst_stride_y, width);
src_v210 += src_stride_v210 * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
V210ToUYVYRow(src_v210, row, width);
UYVYToUVRow(row, 0, dst_u, dst_v, width);
UYVYToYRow(row, dst_y, width);
}
return 0;
}
LIBYUV_API
int ARGBToI420(const uint8* src_argb, int src_stride_argb,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_argb ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
ARGBToYRow = ARGBToYRow_C;
ARGBToUVRow = ARGBToUVRow_C;
#if defined(HAS_ARGBTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (width > 16) {
ARGBToUVRow = ARGBToUVRow_Any_SSSE3;
ARGBToYRow = ARGBToYRow_Any_SSSE3;
}
if (IS_ALIGNED(width, 16)) {
ARGBToUVRow = ARGBToUVRow_Unaligned_SSSE3;
ARGBToYRow = ARGBToYRow_Unaligned_SSSE3;
if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
ARGBToUVRow = ARGBToUVRow_SSSE3;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ARGBToYRow_SSSE3;
}
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
ARGBToUVRow(src_argb, src_stride_argb, dst_u, dst_v, width);
ARGBToYRow(src_argb, dst_y, width);
ARGBToYRow(src_argb + src_stride_argb, dst_y + dst_stride_y, width);
src_argb += src_stride_argb * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
ARGBToUVRow(src_argb, 0, dst_u, dst_v, width);
ARGBToYRow(src_argb, dst_y, width);
}
return 0;
}
LIBYUV_API
int BGRAToI420(const uint8* src_bgra, int src_stride_bgra,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_bgra ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_bgra = src_bgra + (height - 1) * src_stride_bgra;
src_stride_bgra = -src_stride_bgra;
}
void (*BGRAToYRow)(const uint8* src_bgra, uint8* dst_y, int pix);
void (*BGRAToUVRow)(const uint8* src_bgra0, int src_stride_bgra,
uint8* dst_u, uint8* dst_v, int width);
BGRAToYRow = BGRAToYRow_C;
BGRAToUVRow = BGRAToUVRow_C;
#if defined(HAS_BGRATOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (width > 16) {
BGRAToUVRow = BGRAToUVRow_Any_SSSE3;
BGRAToYRow = BGRAToYRow_Any_SSSE3;
}
if (IS_ALIGNED(width, 16)) {
BGRAToUVRow = BGRAToUVRow_Unaligned_SSSE3;
BGRAToYRow = BGRAToYRow_Unaligned_SSSE3;
if (IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16)) {
BGRAToUVRow = BGRAToUVRow_SSSE3;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
BGRAToYRow = BGRAToYRow_SSSE3;
}
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
BGRAToUVRow(src_bgra, src_stride_bgra, dst_u, dst_v, width);
BGRAToYRow(src_bgra, dst_y, width);
BGRAToYRow(src_bgra + src_stride_bgra, dst_y + dst_stride_y, width);
src_bgra += src_stride_bgra * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
BGRAToUVRow(src_bgra, 0, dst_u, dst_v, width);
BGRAToYRow(src_bgra, dst_y, width);
}
return 0;
}
LIBYUV_API
int ABGRToI420(const uint8* src_abgr, int src_stride_abgr,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_abgr ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_abgr = src_abgr + (height - 1) * src_stride_abgr;
src_stride_abgr = -src_stride_abgr;
}
void (*ABGRToYRow)(const uint8* src_abgr, uint8* dst_y, int pix);
void (*ABGRToUVRow)(const uint8* src_abgr0, int src_stride_abgr,
uint8* dst_u, uint8* dst_v, int width);
ABGRToYRow = ABGRToYRow_C;
ABGRToUVRow = ABGRToUVRow_C;
#if defined(HAS_ABGRTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (width > 16) {
ABGRToUVRow = ABGRToUVRow_Any_SSSE3;
ABGRToYRow = ABGRToYRow_Any_SSSE3;
}
if (IS_ALIGNED(width, 16)) {
ABGRToUVRow = ABGRToUVRow_Unaligned_SSSE3;
ABGRToYRow = ABGRToYRow_Unaligned_SSSE3;
if (IS_ALIGNED(src_abgr, 16) && IS_ALIGNED(src_stride_abgr, 16)) {
ABGRToUVRow = ABGRToUVRow_SSSE3;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ABGRToYRow = ABGRToYRow_SSSE3;
}
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
ABGRToUVRow(src_abgr, src_stride_abgr, dst_u, dst_v, width);
ABGRToYRow(src_abgr, dst_y, width);
ABGRToYRow(src_abgr + src_stride_abgr, dst_y + dst_stride_y, width);
src_abgr += src_stride_abgr * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
ABGRToUVRow(src_abgr, 0, dst_u, dst_v, width);
ABGRToYRow(src_abgr, dst_y, width);
}
return 0;
}
LIBYUV_API
int RGBAToI420(const uint8* src_rgba, int src_stride_rgba,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_rgba ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_rgba = src_rgba + (height - 1) * src_stride_rgba;
src_stride_rgba = -src_stride_rgba;
}
void (*RGBAToYRow)(const uint8* src_rgba, uint8* dst_y, int pix);
void (*RGBAToUVRow)(const uint8* src_rgba0, int src_stride_rgba,
uint8* dst_u, uint8* dst_v, int width);
RGBAToYRow = RGBAToYRow_C;
RGBAToUVRow = RGBAToUVRow_C;
#if defined(HAS_RGBATOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (width > 16) {
RGBAToUVRow = RGBAToUVRow_Any_SSSE3;
RGBAToYRow = RGBAToYRow_Any_SSSE3;
}
if (IS_ALIGNED(width, 16)) {
RGBAToUVRow = RGBAToUVRow_Unaligned_SSSE3;
RGBAToYRow = RGBAToYRow_Unaligned_SSSE3;
if (IS_ALIGNED(src_rgba, 16) && IS_ALIGNED(src_stride_rgba, 16)) {
RGBAToUVRow = RGBAToUVRow_SSSE3;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
RGBAToYRow = RGBAToYRow_SSSE3;
}
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
RGBAToUVRow(src_rgba, src_stride_rgba, dst_u, dst_v, width);
RGBAToYRow(src_rgba, dst_y, width);
RGBAToYRow(src_rgba + src_stride_rgba, dst_y + dst_stride_y, width);
src_rgba += src_stride_rgba * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
RGBAToUVRow(src_rgba, 0, dst_u, dst_v, width);
RGBAToYRow(src_rgba, dst_y, width);
}
return 0;
}
LIBYUV_API
int RGB24ToI420(const uint8* src_rgb24, int src_stride_rgb24,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (width * 4 > kMaxStride) { // Row buffer is required.
return -1;
} else if (!src_rgb24 ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24;
src_stride_rgb24 = -src_stride_rgb24;
}
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
void (*RGB24ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix);
RGB24ToARGBRow = RGB24ToARGBRow_C;
#if defined(HAS_RGB24TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
TestReadSafe(src_rgb24, src_stride_rgb24, width, height, 3, 48)) {
RGB24ToARGBRow = RGB24ToARGBRow_SSSE3;
}
#endif
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
ARGBToYRow = ARGBToYRow_C;
ARGBToUVRow = ARGBToUVRow_C;
#if defined(HAS_ARGBTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (width > 16) {
ARGBToUVRow = ARGBToUVRow_Any_SSSE3;
}
ARGBToYRow = ARGBToYRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
ARGBToUVRow = ARGBToUVRow_SSSE3;
ARGBToYRow = ARGBToYRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ARGBToYRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
RGB24ToARGBRow(src_rgb24, row, width);
RGB24ToARGBRow(src_rgb24 + src_stride_rgb24, row + kMaxStride, width);
ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width);
src_rgb24 += src_stride_rgb24 * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
RGB24ToARGBRow_C(src_rgb24, row, width);
ARGBToUVRow(row, 0, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
}
return 0;
}
LIBYUV_API
int RAWToI420(const uint8* src_raw, int src_stride_raw,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (width * 4 > kMaxStride) { // Row buffer is required.
return -1;
} else if (!src_raw ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_raw = src_raw + (height - 1) * src_stride_raw;
src_stride_raw = -src_stride_raw;
}
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
void (*RAWToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix);
RAWToARGBRow = RAWToARGBRow_C;
#if defined(HAS_RAWTOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
TestReadSafe(src_raw, src_stride_raw, width, height, 3, 48)) {
RAWToARGBRow = RAWToARGBRow_SSSE3;
}
#endif
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
ARGBToYRow = ARGBToYRow_C;
ARGBToUVRow = ARGBToUVRow_C;
#if defined(HAS_ARGBTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (width > 16) {
ARGBToUVRow = ARGBToUVRow_Any_SSSE3;
}
ARGBToYRow = ARGBToYRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
ARGBToUVRow = ARGBToUVRow_SSSE3;
ARGBToYRow = ARGBToYRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ARGBToYRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
RAWToARGBRow(src_raw, row, width);
RAWToARGBRow(src_raw + src_stride_raw, row + kMaxStride, width);
ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width);
src_raw += src_stride_raw * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
RAWToARGBRow_C(src_raw, row, width);
ARGBToUVRow(row, 0, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
}
return 0;
}
LIBYUV_API
int RGB565ToI420(const uint8* src_rgb565, int src_stride_rgb565,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (width * 4 > kMaxStride) { // Row buffer is required.
return -1;
} else if (!src_rgb565 ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_rgb565 = src_rgb565 + (height - 1) * src_stride_rgb565;
src_stride_rgb565 = -src_stride_rgb565;
}
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
void (*RGB565ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix);
RGB565ToARGBRow = RGB565ToARGBRow_C;
#if defined(HAS_RGB565TOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
TestReadSafe(src_rgb565, src_stride_rgb565, width, height, 2, 16)) {
RGB565ToARGBRow = RGB565ToARGBRow_SSE2;
}
#endif
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
ARGBToYRow = ARGBToYRow_C;
ARGBToUVRow = ARGBToUVRow_C;
#if defined(HAS_ARGBTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (width > 16) {
ARGBToUVRow = ARGBToUVRow_Any_SSSE3;
}
ARGBToYRow = ARGBToYRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
ARGBToUVRow = ARGBToUVRow_SSSE3;
ARGBToYRow = ARGBToYRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ARGBToYRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
RGB565ToARGBRow(src_rgb565, row, width);
RGB565ToARGBRow(src_rgb565 + src_stride_rgb565, row + kMaxStride, width);
ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width);
src_rgb565 += src_stride_rgb565 * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
RGB565ToARGBRow_C(src_rgb565, row, width);
ARGBToUVRow(row, 0, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
}
return 0;
}
LIBYUV_API
int ARGB1555ToI420(const uint8* src_argb1555, int src_stride_argb1555,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (width * 4 > kMaxStride) { // Row buffer is required.
return -1;
} else if (!src_argb1555 ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb1555 = src_argb1555 + (height - 1) * src_stride_argb1555;
src_stride_argb1555 = -src_stride_argb1555;
}
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
void (*ARGB1555ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix);
ARGB1555ToARGBRow = ARGB1555ToARGBRow_C;
#if defined(HAS_ARGB1555TOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
TestReadSafe(src_argb1555, src_stride_argb1555, width, height, 2, 16)) {
ARGB1555ToARGBRow = ARGB1555ToARGBRow_SSE2;
}
#endif
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
ARGBToYRow = ARGBToYRow_C;
ARGBToUVRow = ARGBToUVRow_C;
#if defined(HAS_ARGBTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (width > 16) {
ARGBToUVRow = ARGBToUVRow_Any_SSSE3;
}
ARGBToYRow = ARGBToYRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
ARGBToUVRow = ARGBToUVRow_SSSE3;
ARGBToYRow = ARGBToYRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ARGBToYRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
ARGB1555ToARGBRow(src_argb1555, row, width);
ARGB1555ToARGBRow(src_argb1555 + src_stride_argb1555,
row + kMaxStride, width);
ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width);
src_argb1555 += src_stride_argb1555 * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
ARGB1555ToARGBRow_C(src_argb1555, row, width);
ARGBToUVRow(row, 0, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
}
return 0;
}
LIBYUV_API
int ARGB4444ToI420(const uint8* src_argb4444, int src_stride_argb4444,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (width * 4 > kMaxStride) { // Row buffer is required.
return -1;
} else if (!src_argb4444 ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb4444 = src_argb4444 + (height - 1) * src_stride_argb4444;
src_stride_argb4444 = -src_stride_argb4444;
}
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
void (*ARGB4444ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix);
ARGB4444ToARGBRow = ARGB4444ToARGBRow_C;
#if defined(HAS_ARGB4444TOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
TestReadSafe(src_argb4444, src_stride_argb4444, width, height, 2, 16)) {
ARGB4444ToARGBRow = ARGB4444ToARGBRow_SSE2;
}
#endif
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
ARGBToYRow = ARGBToYRow_C;
ARGBToUVRow = ARGBToUVRow_C;
#if defined(HAS_ARGBTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (width > 16) {
ARGBToUVRow = ARGBToUVRow_Any_SSSE3;
}
ARGBToYRow = ARGBToYRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
ARGBToUVRow = ARGBToUVRow_SSSE3;
ARGBToYRow = ARGBToYRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ARGBToYRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
ARGB4444ToARGBRow(src_argb4444, row, width);
ARGB4444ToARGBRow(src_argb4444 + src_stride_argb4444,
row + kMaxStride, width);
ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width);
src_argb4444 += src_stride_argb4444 * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
ARGB4444ToARGBRow_C(src_argb4444, row, width);
ARGBToUVRow(row, 0, dst_u, dst_v, width);
ARGBToYRow(row, dst_y, width);
}
return 0;
}
#ifdef HAVE_JPEG
struct I420Buffers {
uint8* y;
int y_stride;
uint8* u;
int u_stride;
uint8* v;
int v_stride;
int w;
int h;
};
static void JpegCopyI420(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
I420Buffers* dest = static_cast<I420Buffers*>(opaque);
I420Copy(data[0], strides[0],
data[1], strides[1],
data[2], strides[2],
dest->y, dest->y_stride,
dest->u, dest->u_stride,
dest->v, dest->v_stride,
dest->w, rows);
dest->y += rows * dest->y_stride;
dest->u += ((rows + 1) >> 1) * dest->u_stride;
dest->v += ((rows + 1) >> 1) * dest->v_stride;
dest->h -= rows;
}
static void JpegI422ToI420(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
I420Buffers* dest = static_cast<I420Buffers*>(opaque);
I422ToI420(data[0], strides[0],
data[1], strides[1],
data[2], strides[2],
dest->y, dest->y_stride,
dest->u, dest->u_stride,
dest->v, dest->v_stride,
dest->w, rows);
dest->y += rows * dest->y_stride;
dest->u += ((rows + 1) >> 1) * dest->u_stride;
dest->v += ((rows + 1) >> 1) * dest->v_stride;
dest->h -= rows;
}
static void JpegI444ToI420(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
I420Buffers* dest = static_cast<I420Buffers*>(opaque);
I444ToI420(data[0], strides[0],
data[1], strides[1],
data[2], strides[2],
dest->y, dest->y_stride,
dest->u, dest->u_stride,
dest->v, dest->v_stride,
dest->w, rows);
dest->y += rows * dest->y_stride;
dest->u += ((rows + 1) >> 1) * dest->u_stride;
dest->v += ((rows + 1) >> 1) * dest->v_stride;
dest->h -= rows;
}
static void JpegI411ToI420(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
I420Buffers* dest = static_cast<I420Buffers*>(opaque);
I411ToI420(data[0], strides[0],
data[1], strides[1],
data[2], strides[2],
dest->y, dest->y_stride,
dest->u, dest->u_stride,
dest->v, dest->v_stride,
dest->w, rows);
dest->y += rows * dest->y_stride;
dest->u += ((rows + 1) >> 1) * dest->u_stride;
dest->v += ((rows + 1) >> 1) * dest->v_stride;
dest->h -= rows;
}
static void JpegI400ToI420(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
I420Buffers* dest = static_cast<I420Buffers*>(opaque);
I400ToI420(data[0], strides[0],
dest->y, dest->y_stride,
dest->u, dest->u_stride,
dest->v, dest->v_stride,
dest->w, rows);
dest->y += rows * dest->y_stride;
dest->u += ((rows + 1) >> 1) * dest->u_stride;
dest->v += ((rows + 1) >> 1) * dest->v_stride;
dest->h -= rows;
}
// MJPG (Motion JPeg) to I420
// TODO(fbarchard): review w and h requirement. dw and dh may be enough.
LIBYUV_API
int MJPGToI420(const uint8* sample,
size_t sample_size,
uint8* y, int y_stride,
uint8* u, int u_stride,
uint8* v, int v_stride,
int w, int h,
int dw, int dh) {
if (sample_size == kUnknownDataSize) {
// ERROR: MJPEG frame size unknown
return -1;
}
// TODO(fbarchard): Port to C
MJpegDecoder mjpeg_decoder;
bool ret = mjpeg_decoder.LoadFrame(sample, sample_size);
if (ret && (mjpeg_decoder.GetWidth() != w ||
mjpeg_decoder.GetHeight() != h)) {
// ERROR: MJPEG frame has unexpected dimensions
mjpeg_decoder.UnloadFrame();
return 1; // runtime failure
}
if (ret) {
I420Buffers bufs = { y, y_stride, u, u_stride, v, v_stride, dw, dh };
// YUV420
if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceYCbCr &&
mjpeg_decoder.GetNumComponents() == 3 &&
mjpeg_decoder.GetVertSampFactor(0) == 2 &&
mjpeg_decoder.GetHorizSampFactor(0) == 2 &&
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegCopyI420, &bufs, dw, dh);
// YUV422
} else if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceYCbCr &&
mjpeg_decoder.GetNumComponents() == 3 &&
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
mjpeg_decoder.GetHorizSampFactor(0) == 2 &&
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegI422ToI420, &bufs, dw, dh);
// YUV444
} else if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceYCbCr &&
mjpeg_decoder.GetNumComponents() == 3 &&
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
mjpeg_decoder.GetHorizSampFactor(0) == 1 &&
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegI444ToI420, &bufs, dw, dh);
// YUV411
} else if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceYCbCr &&
mjpeg_decoder.GetNumComponents() == 3 &&
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
mjpeg_decoder.GetHorizSampFactor(0) == 4 &&
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegI411ToI420, &bufs, dw, dh);
// YUV400
} else if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceGrayscale &&
mjpeg_decoder.GetNumComponents() == 1 &&
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
mjpeg_decoder.GetHorizSampFactor(0) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegI400ToI420, &bufs, dw, dh);
} else {
// TODO(fbarchard): Implement conversion for any other colorspace/sample
// factors that occur in practice. 411 is supported by libjpeg
// ERROR: Unable to convert MJPEG frame because format is not supported
mjpeg_decoder.UnloadFrame();
return 1;
}
}
return 0;
}
#endif
// Convert camera sample to I420 with cropping, rotation and vertical flip.
// src_width is used for source stride computation
// src_height is used to compute location of planes, and indicate inversion
// sample_size is measured in bytes and is the size of the frame.
// With MJPEG it is the compressed size of the frame.
LIBYUV_API
int ConvertToI420(const uint8* sample,
#ifdef HAVE_JPEG
size_t sample_size,
#else
size_t /* sample_size */,
#endif
uint8* y, int y_stride,
uint8* u, int u_stride,
uint8* v, int v_stride,
int crop_x, int crop_y,
int src_width, int src_height,
int dst_width, int dst_height,
RotationMode rotation,
uint32 format) {
if (!y || !u || !v || !sample ||
src_width <= 0 || dst_width <= 0 ||
src_height == 0 || dst_height == 0) {
return -1;
}
int aligned_src_width = (src_width + 1) & ~1;
const uint8* src;
const uint8* src_uv;
int abs_src_height = (src_height < 0) ? -src_height : src_height;
int inv_dst_height = (dst_height < 0) ? -dst_height : dst_height;
if (src_height < 0) {
inv_dst_height = -inv_dst_height;
}
int r = 0;
// One pass rotation is available for some formats. For the rest, convert
// to I420 (with optional vertical flipping) into a temporary I420 buffer,
// and then rotate the I420 to the final destination buffer.
// For in-place conversion, if destination y is same as source sample,
// also enable temporary buffer.
bool need_buf = (rotation && format != FOURCC_I420 &&
format != FOURCC_NV12 && format != FOURCC_NV21 &&
format != FOURCC_YU12 && format != FOURCC_YV12) || y == sample;
uint8* tmp_y = y;
uint8* tmp_u = u;
uint8* tmp_v = v;
int tmp_y_stride = y_stride;
int tmp_u_stride = u_stride;
int tmp_v_stride = v_stride;
uint8* buf = NULL;
int abs_dst_height = (dst_height < 0) ? -dst_height : dst_height;
if (need_buf) {
int y_size = dst_width * abs_dst_height;
int uv_size = ((dst_width + 1) / 2) * ((abs_dst_height + 1) / 2);
buf = new uint8[y_size + uv_size * 2];
if (!buf) {
return 1; // Out of memory runtime error.
}
y = buf;
u = y + y_size;
v = u + uv_size;
y_stride = dst_width;
u_stride = v_stride = ((dst_width + 1) / 2);
}
switch (format) {
// Single plane formats
case FOURCC_YUY2:
src = sample + (aligned_src_width * crop_y + crop_x) * 2;
r = YUY2ToI420(src, aligned_src_width * 2,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_UYVY:
src = sample + (aligned_src_width * crop_y + crop_x) * 2;
r = UYVYToI420(src, aligned_src_width * 2,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_V210:
// stride is multiple of 48 pixels (128 bytes).
// pixels come in groups of 6 = 16 bytes
src = sample + (aligned_src_width + 47) / 48 * 128 * crop_y +
crop_x / 6 * 16;
r = V210ToI420(src, (aligned_src_width + 47) / 48 * 128,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_24BG:
src = sample + (src_width * crop_y + crop_x) * 3;
r = RGB24ToI420(src, src_width * 3,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RAW:
src = sample + (src_width * crop_y + crop_x) * 3;
r = RAWToI420(src, src_width * 3,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_ARGB:
src = sample + (src_width * crop_y + crop_x) * 4;
r = ARGBToI420(src, src_width * 4,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_BGRA:
src = sample + (src_width * crop_y + crop_x) * 4;
r = BGRAToI420(src, src_width * 4,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_ABGR:
src = sample + (src_width * crop_y + crop_x) * 4;
r = ABGRToI420(src, src_width * 4,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RGBA:
src = sample + (src_width * crop_y + crop_x) * 4;
r = RGBAToI420(src, src_width * 4,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RGBP:
src = sample + (src_width * crop_y + crop_x) * 2;
r = RGB565ToI420(src, src_width * 2,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RGBO:
src = sample + (src_width * crop_y + crop_x) * 2;
r = ARGB1555ToI420(src, src_width * 2,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_R444:
src = sample + (src_width * crop_y + crop_x) * 2;
r = ARGB4444ToI420(src, src_width * 2,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
// TODO(fbarchard): Support cropping Bayer by odd numbers
// by adjusting fourcc.
case FOURCC_BGGR:
src = sample + (src_width * crop_y + crop_x);
r = BayerBGGRToI420(src, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_GBRG:
src = sample + (src_width * crop_y + crop_x);
r = BayerGBRGToI420(src, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_GRBG:
src = sample + (src_width * crop_y + crop_x);
r = BayerGRBGToI420(src, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RGGB:
src = sample + (src_width * crop_y + crop_x);
r = BayerRGGBToI420(src, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_I400:
src = sample + src_width * crop_y + crop_x;
r = I400ToI420(src, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
// Biplanar formats
case FOURCC_NV12:
src = sample + (src_width * crop_y + crop_x);
src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x;
r = NV12ToI420Rotate(src, src_width,
src_uv, aligned_src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height, rotation);
break;
case FOURCC_NV21:
src = sample + (src_width * crop_y + crop_x);
src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x;
// Call NV12 but with u and v parameters swapped.
r = NV12ToI420Rotate(src, src_width,
src_uv, aligned_src_width,
y, y_stride,
v, v_stride,
u, u_stride,
dst_width, inv_dst_height, rotation);
break;
case FOURCC_M420:
src = sample + (src_width * crop_y) * 12 / 8 + crop_x;
r = M420ToI420(src, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_Q420:
src = sample + (src_width + aligned_src_width * 2) * crop_y + crop_x;
src_uv = sample + (src_width + aligned_src_width * 2) * crop_y +
src_width + crop_x * 2;
r = Q420ToI420(src, src_width * 3,
src_uv, src_width * 3,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
// Triplanar formats
case FOURCC_I420:
case FOURCC_YU12:
case FOURCC_YV12: {
const uint8* src_y = sample + (src_width * crop_y + crop_x);
const uint8* src_u;
const uint8* src_v;
int halfwidth = (src_width + 1) / 2;
int halfheight = (abs_src_height + 1) / 2;
if (format == FOURCC_YV12) {
src_v = sample + src_width * abs_src_height +
(halfwidth * crop_y + crop_x) / 2;
src_u = sample + src_width * abs_src_height +
halfwidth * (halfheight + crop_y / 2) + crop_x / 2;
} else {
src_u = sample + src_width * abs_src_height +
(halfwidth * crop_y + crop_x) / 2;
src_v = sample + src_width * abs_src_height +
halfwidth * (halfheight + crop_y / 2) + crop_x / 2;
}
r = I420Rotate(src_y, src_width,
src_u, halfwidth,
src_v, halfwidth,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height, rotation);
break;
}
case FOURCC_I422:
case FOURCC_YV16: {
const uint8* src_y = sample + src_width * crop_y + crop_x;
const uint8* src_u;
const uint8* src_v;
int halfwidth = (src_width + 1) / 2;
if (format == FOURCC_YV16) {
src_v = sample + src_width * abs_src_height +
halfwidth * crop_y + crop_x / 2;
src_u = sample + src_width * abs_src_height +
halfwidth * (abs_src_height + crop_y) + crop_x / 2;
} else {
src_u = sample + src_width * abs_src_height +
halfwidth * crop_y + crop_x / 2;
src_v = sample + src_width * abs_src_height +
halfwidth * (abs_src_height + crop_y) + crop_x / 2;
}
r = I422ToI420(src_y, src_width,
src_u, halfwidth,
src_v, halfwidth,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
}
case FOURCC_I444:
case FOURCC_YV24: {
const uint8* src_y = sample + src_width * crop_y + crop_x;
const uint8* src_u;
const uint8* src_v;
if (format == FOURCC_YV24) {
src_v = sample + src_width * (abs_src_height + crop_y) + crop_x;
src_u = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x;
} else {
src_u = sample + src_width * (abs_src_height + crop_y) + crop_x;
src_v = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x;
}
r = I444ToI420(src_y, src_width,
src_u, src_width,
src_v, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
}
case FOURCC_I411: {
int quarterwidth = (src_width + 3) / 4;
const uint8* src_y = sample + src_width * crop_y + crop_x;
const uint8* src_u = sample + src_width * abs_src_height +
quarterwidth * crop_y + crop_x / 4;
const uint8* src_v = sample + src_width * abs_src_height +
quarterwidth * (abs_src_height + crop_y) + crop_x / 4;
r = I411ToI420(src_y, src_width,
src_u, quarterwidth,
src_v, quarterwidth,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
}
#ifdef HAVE_JPEG
case FOURCC_MJPG:
r = MJPGToI420(sample, sample_size,
y, y_stride,
u, u_stride,
v, v_stride,
src_width, abs_src_height, dst_width, inv_dst_height);
break;
#endif
default:
r = -1; // unknown fourcc - return failure code.
}
if (need_buf) {
if (!r) {
r = I420Rotate(y, y_stride,
u, u_stride,
v, v_stride,
tmp_y, tmp_y_stride,
tmp_u, tmp_u_stride,
tmp_v, tmp_v_stride,
dst_width, abs_dst_height, rotation);
}
delete buf;
}
return r;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif