//===------- SemaTemplateVariadic.cpp - C++ Variadic Templates ------------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements semantic analysis for C++0x variadic templates.
//===----------------------------------------------------------------------===/
#include "clang/Sema/Sema.h"
#include "TypeLocBuilder.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
using namespace clang;
//----------------------------------------------------------------------------
// Visitor that collects unexpanded parameter packs
//----------------------------------------------------------------------------
namespace {
/// \brief A class that collects unexpanded parameter packs.
class CollectUnexpandedParameterPacksVisitor :
public RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
{
typedef RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
inherited;
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded;
bool InLambda;
public:
explicit CollectUnexpandedParameterPacksVisitor(
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded)
: Unexpanded(Unexpanded), InLambda(false) { }
bool shouldWalkTypesOfTypeLocs() const { return false; }
//------------------------------------------------------------------------
// Recording occurrences of (unexpanded) parameter packs.
//------------------------------------------------------------------------
/// \brief Record occurrences of template type parameter packs.
bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
if (TL.getTypePtr()->isParameterPack())
Unexpanded.push_back(std::make_pair(TL.getTypePtr(), TL.getNameLoc()));
return true;
}
/// \brief Record occurrences of template type parameter packs
/// when we don't have proper source-location information for
/// them.
///
/// Ideally, this routine would never be used.
bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
if (T->isParameterPack())
Unexpanded.push_back(std::make_pair(T, SourceLocation()));
return true;
}
/// \brief Record occurrences of function and non-type template
/// parameter packs in an expression.
bool VisitDeclRefExpr(DeclRefExpr *E) {
if (E->getDecl()->isParameterPack())
Unexpanded.push_back(std::make_pair(E->getDecl(), E->getLocation()));
return true;
}
/// \brief Record occurrences of template template parameter packs.
bool TraverseTemplateName(TemplateName Template) {
if (TemplateTemplateParmDecl *TTP
= dyn_cast_or_null<TemplateTemplateParmDecl>(
Template.getAsTemplateDecl()))
if (TTP->isParameterPack())
Unexpanded.push_back(std::make_pair(TTP, SourceLocation()));
return inherited::TraverseTemplateName(Template);
}
/// \brief Suppress traversal into Objective-C container literal
/// elements that are pack expansions.
bool TraverseObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
if (!E->containsUnexpandedParameterPack())
return true;
for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
ObjCDictionaryElement Element = E->getKeyValueElement(I);
if (Element.isPackExpansion())
continue;
TraverseStmt(Element.Key);
TraverseStmt(Element.Value);
}
return true;
}
//------------------------------------------------------------------------
// Pruning the search for unexpanded parameter packs.
//------------------------------------------------------------------------
/// \brief Suppress traversal into statements and expressions that
/// do not contain unexpanded parameter packs.
bool TraverseStmt(Stmt *S) {
Expr *E = dyn_cast_or_null<Expr>(S);
if ((E && E->containsUnexpandedParameterPack()) || InLambda)
return inherited::TraverseStmt(S);
return true;
}
/// \brief Suppress traversal into types that do not contain
/// unexpanded parameter packs.
bool TraverseType(QualType T) {
if ((!T.isNull() && T->containsUnexpandedParameterPack()) || InLambda)
return inherited::TraverseType(T);
return true;
}
/// \brief Suppress traversel into types with location information
/// that do not contain unexpanded parameter packs.
bool TraverseTypeLoc(TypeLoc TL) {
if ((!TL.getType().isNull() &&
TL.getType()->containsUnexpandedParameterPack()) ||
InLambda)
return inherited::TraverseTypeLoc(TL);
return true;
}
/// \brief Suppress traversal of non-parameter declarations, since
/// they cannot contain unexpanded parameter packs.
bool TraverseDecl(Decl *D) {
if ((D && isa<ParmVarDecl>(D)) || InLambda)
return inherited::TraverseDecl(D);
return true;
}
/// \brief Suppress traversal of template argument pack expansions.
bool TraverseTemplateArgument(const TemplateArgument &Arg) {
if (Arg.isPackExpansion())
return true;
return inherited::TraverseTemplateArgument(Arg);
}
/// \brief Suppress traversal of template argument pack expansions.
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc) {
if (ArgLoc.getArgument().isPackExpansion())
return true;
return inherited::TraverseTemplateArgumentLoc(ArgLoc);
}
/// \brief Note whether we're traversing a lambda containing an unexpanded
/// parameter pack. In this case, the unexpanded pack can occur anywhere,
/// including all the places where we normally wouldn't look. Within a
/// lambda, we don't propagate the 'contains unexpanded parameter pack' bit
/// outside an expression.
bool TraverseLambdaExpr(LambdaExpr *Lambda) {
// The ContainsUnexpandedParameterPack bit on a lambda is always correct,
// even if it's contained within another lambda.
if (!Lambda->containsUnexpandedParameterPack())
return true;
bool WasInLambda = InLambda;
InLambda = true;
// If any capture names a function parameter pack, that pack is expanded
// when the lambda is expanded.
for (LambdaExpr::capture_iterator I = Lambda->capture_begin(),
E = Lambda->capture_end();
I != E; ++I) {
if (I->capturesVariable()) {
VarDecl *VD = I->getCapturedVar();
if (VD->isParameterPack())
Unexpanded.push_back(std::make_pair(VD, I->getLocation()));
}
}
inherited::TraverseLambdaExpr(Lambda);
InLambda = WasInLambda;
return true;
}
};
}
/// \brief Diagnose all of the unexpanded parameter packs in the given
/// vector.
bool
Sema::DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
UnexpandedParameterPackContext UPPC,
ArrayRef<UnexpandedParameterPack> Unexpanded) {
if (Unexpanded.empty())
return false;
// If we are within a lambda expression, that lambda contains an unexpanded
// parameter pack, and we are done.
// FIXME: Store 'Unexpanded' on the lambda so we don't need to recompute it
// later.
for (unsigned N = FunctionScopes.size(); N; --N) {
if (sema::LambdaScopeInfo *LSI =
dyn_cast<sema::LambdaScopeInfo>(FunctionScopes[N-1])) {
LSI->ContainsUnexpandedParameterPack = true;
return false;
}
}
SmallVector<SourceLocation, 4> Locations;
SmallVector<IdentifierInfo *, 4> Names;
llvm::SmallPtrSet<IdentifierInfo *, 4> NamesKnown;
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
IdentifierInfo *Name = nullptr;
if (const TemplateTypeParmType *TTP
= Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>())
Name = TTP->getIdentifier();
else
Name = Unexpanded[I].first.get<NamedDecl *>()->getIdentifier();
if (Name && NamesKnown.insert(Name))
Names.push_back(Name);
if (Unexpanded[I].second.isValid())
Locations.push_back(Unexpanded[I].second);
}
DiagnosticBuilder DB
= Names.size() == 0? Diag(Loc, diag::err_unexpanded_parameter_pack_0)
<< (int)UPPC
: Names.size() == 1? Diag(Loc, diag::err_unexpanded_parameter_pack_1)
<< (int)UPPC << Names[0]
: Names.size() == 2? Diag(Loc, diag::err_unexpanded_parameter_pack_2)
<< (int)UPPC << Names[0] << Names[1]
: Diag(Loc, diag::err_unexpanded_parameter_pack_3_or_more)
<< (int)UPPC << Names[0] << Names[1];
for (unsigned I = 0, N = Locations.size(); I != N; ++I)
DB << SourceRange(Locations[I]);
return true;
}
bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
TypeSourceInfo *T,
UnexpandedParameterPackContext UPPC) {
// C++0x [temp.variadic]p5:
// An appearance of a name of a parameter pack that is not expanded is
// ill-formed.
if (!T->getType()->containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(
T->getTypeLoc());
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPack(Expr *E,
UnexpandedParameterPackContext UPPC) {
// C++0x [temp.variadic]p5:
// An appearance of a name of a parameter pack that is not expanded is
// ill-formed.
if (!E->containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(E);
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(E->getLocStart(), UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
UnexpandedParameterPackContext UPPC) {
// C++0x [temp.variadic]p5:
// An appearance of a name of a parameter pack that is not expanded is
// ill-formed.
if (!SS.getScopeRep() ||
!SS.getScopeRep()->containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseNestedNameSpecifier(SS.getScopeRep());
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(SS.getRange().getBegin(),
UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
UnexpandedParameterPackContext UPPC) {
// C++0x [temp.variadic]p5:
// An appearance of a name of a parameter pack that is not expanded is
// ill-formed.
switch (NameInfo.getName().getNameKind()) {
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
return false;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
// FIXME: We shouldn't need this null check!
if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
return DiagnoseUnexpandedParameterPack(NameInfo.getLoc(), TSInfo, UPPC);
if (!NameInfo.getName().getCXXNameType()->containsUnexpandedParameterPack())
return false;
break;
}
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseType(NameInfo.getName().getCXXNameType());
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(NameInfo.getLoc(), UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
TemplateName Template,
UnexpandedParameterPackContext UPPC) {
if (Template.isNull() || !Template.containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseTemplateName(Template);
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
UnexpandedParameterPackContext UPPC) {
if (Arg.getArgument().isNull() ||
!Arg.getArgument().containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseTemplateArgumentLoc(Arg);
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(Arg.getLocation(), UPPC, Unexpanded);
}
void Sema::collectUnexpandedParameterPacks(TemplateArgument Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseTemplateArgument(Arg);
}
void Sema::collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseTemplateArgumentLoc(Arg);
}
void Sema::collectUnexpandedParameterPacks(QualType T,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(T);
}
void Sema::collectUnexpandedParameterPacks(TypeLoc TL,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(TL);
}
void Sema::collectUnexpandedParameterPacks(CXXScopeSpec &SS,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
NestedNameSpecifier *Qualifier = SS.getScopeRep();
if (!Qualifier)
return;
NestedNameSpecifierLoc QualifierLoc(Qualifier, SS.location_data());
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseNestedNameSpecifierLoc(QualifierLoc);
}
void Sema::collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseDeclarationNameInfo(NameInfo);
}
ParsedTemplateArgument
Sema::ActOnPackExpansion(const ParsedTemplateArgument &Arg,
SourceLocation EllipsisLoc) {
if (Arg.isInvalid())
return Arg;
switch (Arg.getKind()) {
case ParsedTemplateArgument::Type: {
TypeResult Result = ActOnPackExpansion(Arg.getAsType(), EllipsisLoc);
if (Result.isInvalid())
return ParsedTemplateArgument();
return ParsedTemplateArgument(Arg.getKind(), Result.get().getAsOpaquePtr(),
Arg.getLocation());
}
case ParsedTemplateArgument::NonType: {
ExprResult Result = ActOnPackExpansion(Arg.getAsExpr(), EllipsisLoc);
if (Result.isInvalid())
return ParsedTemplateArgument();
return ParsedTemplateArgument(Arg.getKind(), Result.get(),
Arg.getLocation());
}
case ParsedTemplateArgument::Template:
if (!Arg.getAsTemplate().get().containsUnexpandedParameterPack()) {
SourceRange R(Arg.getLocation());
if (Arg.getScopeSpec().isValid())
R.setBegin(Arg.getScopeSpec().getBeginLoc());
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< R;
return ParsedTemplateArgument();
}
return Arg.getTemplatePackExpansion(EllipsisLoc);
}
llvm_unreachable("Unhandled template argument kind?");
}
TypeResult Sema::ActOnPackExpansion(ParsedType Type,
SourceLocation EllipsisLoc) {
TypeSourceInfo *TSInfo;
GetTypeFromParser(Type, &TSInfo);
if (!TSInfo)
return true;
TypeSourceInfo *TSResult = CheckPackExpansion(TSInfo, EllipsisLoc, None);
if (!TSResult)
return true;
return CreateParsedType(TSResult->getType(), TSResult);
}
TypeSourceInfo *
Sema::CheckPackExpansion(TypeSourceInfo *Pattern, SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions) {
// Create the pack expansion type and source-location information.
QualType Result = CheckPackExpansion(Pattern->getType(),
Pattern->getTypeLoc().getSourceRange(),
EllipsisLoc, NumExpansions);
if (Result.isNull())
return nullptr;
TypeLocBuilder TLB;
TLB.pushFullCopy(Pattern->getTypeLoc());
PackExpansionTypeLoc TL = TLB.push<PackExpansionTypeLoc>(Result);
TL.setEllipsisLoc(EllipsisLoc);
return TLB.getTypeSourceInfo(Context, Result);
}
QualType Sema::CheckPackExpansion(QualType Pattern, SourceRange PatternRange,
SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions) {
// C++0x [temp.variadic]p5:
// The pattern of a pack expansion shall name one or more
// parameter packs that are not expanded by a nested pack
// expansion.
if (!Pattern->containsUnexpandedParameterPack()) {
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< PatternRange;
return QualType();
}
return Context.getPackExpansionType(Pattern, NumExpansions);
}
ExprResult Sema::ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc) {
return CheckPackExpansion(Pattern, EllipsisLoc, None);
}
ExprResult Sema::CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions) {
if (!Pattern)
return ExprError();
// C++0x [temp.variadic]p5:
// The pattern of a pack expansion shall name one or more
// parameter packs that are not expanded by a nested pack
// expansion.
if (!Pattern->containsUnexpandedParameterPack()) {
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< Pattern->getSourceRange();
return ExprError();
}
// Create the pack expansion expression and source-location information.
return new (Context)
PackExpansionExpr(Context.DependentTy, Pattern, EllipsisLoc, NumExpansions);
}
/// \brief Retrieve the depth and index of a parameter pack.
static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl *ND) {
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
return std::make_pair(TTP->getDepth(), TTP->getIndex());
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
return std::make_pair(TTP->getDepth(), TTP->getIndex());
}
bool Sema::CheckParameterPacksForExpansion(
SourceLocation EllipsisLoc, SourceRange PatternRange,
ArrayRef<UnexpandedParameterPack> Unexpanded,
const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand,
bool &RetainExpansion, Optional<unsigned> &NumExpansions) {
ShouldExpand = true;
RetainExpansion = false;
std::pair<IdentifierInfo *, SourceLocation> FirstPack;
bool HaveFirstPack = false;
for (ArrayRef<UnexpandedParameterPack>::iterator i = Unexpanded.begin(),
end = Unexpanded.end();
i != end; ++i) {
// Compute the depth and index for this parameter pack.
unsigned Depth = 0, Index = 0;
IdentifierInfo *Name;
bool IsFunctionParameterPack = false;
if (const TemplateTypeParmType *TTP
= i->first.dyn_cast<const TemplateTypeParmType *>()) {
Depth = TTP->getDepth();
Index = TTP->getIndex();
Name = TTP->getIdentifier();
} else {
NamedDecl *ND = i->first.get<NamedDecl *>();
if (isa<ParmVarDecl>(ND))
IsFunctionParameterPack = true;
else
std::tie(Depth, Index) = getDepthAndIndex(ND);
Name = ND->getIdentifier();
}
// Determine the size of this argument pack.
unsigned NewPackSize;
if (IsFunctionParameterPack) {
// Figure out whether we're instantiating to an argument pack or not.
typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
llvm::PointerUnion<Decl *, DeclArgumentPack *> *Instantiation
= CurrentInstantiationScope->findInstantiationOf(
i->first.get<NamedDecl *>());
if (Instantiation->is<DeclArgumentPack *>()) {
// We could expand this function parameter pack.
NewPackSize = Instantiation->get<DeclArgumentPack *>()->size();
} else {
// We can't expand this function parameter pack, so we can't expand
// the pack expansion.
ShouldExpand = false;
continue;
}
} else {
// If we don't have a template argument at this depth/index, then we
// cannot expand the pack expansion. Make a note of this, but we still
// want to check any parameter packs we *do* have arguments for.
if (Depth >= TemplateArgs.getNumLevels() ||
!TemplateArgs.hasTemplateArgument(Depth, Index)) {
ShouldExpand = false;
continue;
}
// Determine the size of the argument pack.
NewPackSize = TemplateArgs(Depth, Index).pack_size();
}
// C++0x [temp.arg.explicit]p9:
// Template argument deduction can extend the sequence of template
// arguments corresponding to a template parameter pack, even when the
// sequence contains explicitly specified template arguments.
if (!IsFunctionParameterPack) {
if (NamedDecl *PartialPack
= CurrentInstantiationScope->getPartiallySubstitutedPack()){
unsigned PartialDepth, PartialIndex;
std::tie(PartialDepth, PartialIndex) = getDepthAndIndex(PartialPack);
if (PartialDepth == Depth && PartialIndex == Index)
RetainExpansion = true;
}
}
if (!NumExpansions) {
// The is the first pack we've seen for which we have an argument.
// Record it.
NumExpansions = NewPackSize;
FirstPack.first = Name;
FirstPack.second = i->second;
HaveFirstPack = true;
continue;
}
if (NewPackSize != *NumExpansions) {
// C++0x [temp.variadic]p5:
// All of the parameter packs expanded by a pack expansion shall have
// the same number of arguments specified.
if (HaveFirstPack)
Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict)
<< FirstPack.first << Name << *NumExpansions << NewPackSize
<< SourceRange(FirstPack.second) << SourceRange(i->second);
else
Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_multilevel)
<< Name << *NumExpansions << NewPackSize
<< SourceRange(i->second);
return true;
}
}
return false;
}
Optional<unsigned> Sema::getNumArgumentsInExpansion(QualType T,
const MultiLevelTemplateArgumentList &TemplateArgs) {
QualType Pattern = cast<PackExpansionType>(T)->getPattern();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(Pattern);
Optional<unsigned> Result;
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
// Compute the depth and index for this parameter pack.
unsigned Depth;
unsigned Index;
if (const TemplateTypeParmType *TTP
= Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>()) {
Depth = TTP->getDepth();
Index = TTP->getIndex();
} else {
NamedDecl *ND = Unexpanded[I].first.get<NamedDecl *>();
if (isa<ParmVarDecl>(ND)) {
// Function parameter pack.
typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
llvm::PointerUnion<Decl *, DeclArgumentPack *> *Instantiation
= CurrentInstantiationScope->findInstantiationOf(
Unexpanded[I].first.get<NamedDecl *>());
if (Instantiation->is<Decl*>())
// The pattern refers to an unexpanded pack. We're not ready to expand
// this pack yet.
return None;
unsigned Size = Instantiation->get<DeclArgumentPack *>()->size();
assert((!Result || *Result == Size) && "inconsistent pack sizes");
Result = Size;
continue;
}
std::tie(Depth, Index) = getDepthAndIndex(ND);
}
if (Depth >= TemplateArgs.getNumLevels() ||
!TemplateArgs.hasTemplateArgument(Depth, Index))
// The pattern refers to an unknown template argument. We're not ready to
// expand this pack yet.
return None;
// Determine the size of the argument pack.
unsigned Size = TemplateArgs(Depth, Index).pack_size();
assert((!Result || *Result == Size) && "inconsistent pack sizes");
Result = Size;
}
return Result;
}
bool Sema::containsUnexpandedParameterPacks(Declarator &D) {
const DeclSpec &DS = D.getDeclSpec();
switch (DS.getTypeSpecType()) {
case TST_typename:
case TST_typeofType:
case TST_underlyingType:
case TST_atomic: {
QualType T = DS.getRepAsType().get();
if (!T.isNull() && T->containsUnexpandedParameterPack())
return true;
break;
}
case TST_typeofExpr:
case TST_decltype:
if (DS.getRepAsExpr() &&
DS.getRepAsExpr()->containsUnexpandedParameterPack())
return true;
break;
case TST_unspecified:
case TST_void:
case TST_char:
case TST_wchar:
case TST_char16:
case TST_char32:
case TST_int:
case TST_int128:
case TST_half:
case TST_float:
case TST_double:
case TST_bool:
case TST_decimal32:
case TST_decimal64:
case TST_decimal128:
case TST_enum:
case TST_union:
case TST_struct:
case TST_interface:
case TST_class:
case TST_auto:
case TST_decltype_auto:
case TST_unknown_anytype:
case TST_error:
break;
}
for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
const DeclaratorChunk &Chunk = D.getTypeObject(I);
switch (Chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Paren:
// These declarator chunks cannot contain any parameter packs.
break;
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
// Syntactically, these kinds of declarator chunks all come after the
// declarator-id (conceptually), so the parser should not invoke this
// routine at this time.
llvm_unreachable("Could not have seen this kind of declarator chunk");
case DeclaratorChunk::MemberPointer:
if (Chunk.Mem.Scope().getScopeRep() &&
Chunk.Mem.Scope().getScopeRep()->containsUnexpandedParameterPack())
return true;
break;
}
}
return false;
}
namespace {
// Callback to only accept typo corrections that refer to parameter packs.
class ParameterPackValidatorCCC : public CorrectionCandidateCallback {
public:
bool ValidateCandidate(const TypoCorrection &candidate) override {
NamedDecl *ND = candidate.getCorrectionDecl();
return ND && ND->isParameterPack();
}
};
}
/// \brief Called when an expression computing the size of a parameter pack
/// is parsed.
///
/// \code
/// template<typename ...Types> struct count {
/// static const unsigned value = sizeof...(Types);
/// };
/// \endcode
///
//
/// \param OpLoc The location of the "sizeof" keyword.
/// \param Name The name of the parameter pack whose size will be determined.
/// \param NameLoc The source location of the name of the parameter pack.
/// \param RParenLoc The location of the closing parentheses.
ExprResult Sema::ActOnSizeofParameterPackExpr(Scope *S,
SourceLocation OpLoc,
IdentifierInfo &Name,
SourceLocation NameLoc,
SourceLocation RParenLoc) {
// C++0x [expr.sizeof]p5:
// The identifier in a sizeof... expression shall name a parameter pack.
LookupResult R(*this, &Name, NameLoc, LookupOrdinaryName);
LookupName(R, S);
NamedDecl *ParameterPack = nullptr;
ParameterPackValidatorCCC Validator;
switch (R.getResultKind()) {
case LookupResult::Found:
ParameterPack = R.getFoundDecl();
break;
case LookupResult::NotFound:
case LookupResult::NotFoundInCurrentInstantiation:
if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
R.getLookupKind(), S, nullptr,
Validator, CTK_ErrorRecovery)) {
diagnoseTypo(Corrected,
PDiag(diag::err_sizeof_pack_no_pack_name_suggest) << &Name,
PDiag(diag::note_parameter_pack_here));
ParameterPack = Corrected.getCorrectionDecl();
}
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue:
break;
case LookupResult::Ambiguous:
DiagnoseAmbiguousLookup(R);
return ExprError();
}
if (!ParameterPack || !ParameterPack->isParameterPack()) {
Diag(NameLoc, diag::err_sizeof_pack_no_pack_name)
<< &Name;
return ExprError();
}
MarkAnyDeclReferenced(OpLoc, ParameterPack, true);
return new (Context) SizeOfPackExpr(Context.getSizeType(), OpLoc,
ParameterPack, NameLoc, RParenLoc);
}
TemplateArgumentLoc
Sema::getTemplateArgumentPackExpansionPattern(
TemplateArgumentLoc OrigLoc,
SourceLocation &Ellipsis, Optional<unsigned> &NumExpansions) const {
const TemplateArgument &Argument = OrigLoc.getArgument();
assert(Argument.isPackExpansion());
switch (Argument.getKind()) {
case TemplateArgument::Type: {
// FIXME: We shouldn't ever have to worry about missing
// type-source info!
TypeSourceInfo *ExpansionTSInfo = OrigLoc.getTypeSourceInfo();
if (!ExpansionTSInfo)
ExpansionTSInfo = Context.getTrivialTypeSourceInfo(Argument.getAsType(),
Ellipsis);
PackExpansionTypeLoc Expansion =
ExpansionTSInfo->getTypeLoc().castAs<PackExpansionTypeLoc>();
Ellipsis = Expansion.getEllipsisLoc();
TypeLoc Pattern = Expansion.getPatternLoc();
NumExpansions = Expansion.getTypePtr()->getNumExpansions();
// We need to copy the TypeLoc because TemplateArgumentLocs store a
// TypeSourceInfo.
// FIXME: Find some way to avoid the copy?
TypeLocBuilder TLB;
TLB.pushFullCopy(Pattern);
TypeSourceInfo *PatternTSInfo =
TLB.getTypeSourceInfo(Context, Pattern.getType());
return TemplateArgumentLoc(TemplateArgument(Pattern.getType()),
PatternTSInfo);
}
case TemplateArgument::Expression: {
PackExpansionExpr *Expansion
= cast<PackExpansionExpr>(Argument.getAsExpr());
Expr *Pattern = Expansion->getPattern();
Ellipsis = Expansion->getEllipsisLoc();
NumExpansions = Expansion->getNumExpansions();
return TemplateArgumentLoc(Pattern, Pattern);
}
case TemplateArgument::TemplateExpansion:
Ellipsis = OrigLoc.getTemplateEllipsisLoc();
NumExpansions = Argument.getNumTemplateExpansions();
return TemplateArgumentLoc(Argument.getPackExpansionPattern(),
OrigLoc.getTemplateQualifierLoc(),
OrigLoc.getTemplateNameLoc());
case TemplateArgument::Declaration:
case TemplateArgument::NullPtr:
case TemplateArgument::Template:
case TemplateArgument::Integral:
case TemplateArgument::Pack:
case TemplateArgument::Null:
return TemplateArgumentLoc();
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}