/*
*******************************************************************************
* Copyright (C) 2007-2013, International Business Machines Corporation and
* others. All Rights Reserved.
*******************************************************************************
*/
#include "utypeinfo.h" // for 'typeid' to work
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/rbtz.h"
#include "unicode/gregocal.h"
#include "uvector.h"
#include "gregoimp.h"
#include "cmemory.h"
#include "umutex.h"
U_NAMESPACE_BEGIN
/**
* A struct representing a time zone transition
*/
struct Transition {
UDate time;
TimeZoneRule* from;
TimeZoneRule* to;
};
static UBool compareRules(UVector* rules1, UVector* rules2) {
if (rules1 == NULL && rules2 == NULL) {
return TRUE;
} else if (rules1 == NULL || rules2 == NULL) {
return FALSE;
}
int32_t size = rules1->size();
if (size != rules2->size()) {
return FALSE;
}
for (int32_t i = 0; i < size; i++) {
TimeZoneRule *r1 = (TimeZoneRule*)rules1->elementAt(i);
TimeZoneRule *r2 = (TimeZoneRule*)rules2->elementAt(i);
if (*r1 != *r2) {
return FALSE;
}
}
return TRUE;
}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedTimeZone)
RuleBasedTimeZone::RuleBasedTimeZone(const UnicodeString& id, InitialTimeZoneRule* initialRule)
: BasicTimeZone(id), fInitialRule(initialRule), fHistoricRules(NULL), fFinalRules(NULL),
fHistoricTransitions(NULL), fUpToDate(FALSE) {
}
RuleBasedTimeZone::RuleBasedTimeZone(const RuleBasedTimeZone& source)
: BasicTimeZone(source), fInitialRule(source.fInitialRule->clone()),
fHistoricTransitions(NULL), fUpToDate(FALSE) {
fHistoricRules = copyRules(source.fHistoricRules);
fFinalRules = copyRules(source.fFinalRules);
if (source.fUpToDate) {
UErrorCode status = U_ZERO_ERROR;
complete(status);
}
}
RuleBasedTimeZone::~RuleBasedTimeZone() {
deleteTransitions();
deleteRules();
}
RuleBasedTimeZone&
RuleBasedTimeZone::operator=(const RuleBasedTimeZone& right) {
if (*this != right) {
BasicTimeZone::operator=(right);
deleteRules();
fInitialRule = right.fInitialRule->clone();
fHistoricRules = copyRules(right.fHistoricRules);
fFinalRules = copyRules(right.fFinalRules);
deleteTransitions();
fUpToDate = FALSE;
}
return *this;
}
UBool
RuleBasedTimeZone::operator==(const TimeZone& that) const {
if (this == &that) {
return TRUE;
}
if (typeid(*this) != typeid(that)
|| BasicTimeZone::operator==(that) == FALSE) {
return FALSE;
}
RuleBasedTimeZone *rbtz = (RuleBasedTimeZone*)&that;
if (*fInitialRule != *(rbtz->fInitialRule)) {
return FALSE;
}
if (compareRules(fHistoricRules, rbtz->fHistoricRules)
&& compareRules(fFinalRules, rbtz->fFinalRules)) {
return TRUE;
}
return FALSE;
}
UBool
RuleBasedTimeZone::operator!=(const TimeZone& that) const {
return !operator==(that);
}
void
RuleBasedTimeZone::addTransitionRule(TimeZoneRule* rule, UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
AnnualTimeZoneRule* atzrule = dynamic_cast<AnnualTimeZoneRule*>(rule);
if (atzrule != NULL && atzrule->getEndYear() == AnnualTimeZoneRule::MAX_YEAR) {
// A final rule
if (fFinalRules == NULL) {
fFinalRules = new UVector(status);
if (U_FAILURE(status)) {
return;
}
} else if (fFinalRules->size() >= 2) {
// Cannot handle more than two final rules
status = U_INVALID_STATE_ERROR;
return;
}
fFinalRules->addElement((void*)rule, status);
} else {
// Non-final rule
if (fHistoricRules == NULL) {
fHistoricRules = new UVector(status);
if (U_FAILURE(status)) {
return;
}
}
fHistoricRules->addElement((void*)rule, status);
}
// Mark dirty, so transitions are recalculated at next complete() call
fUpToDate = FALSE;
}
static UMutex gLock = U_MUTEX_INITIALIZER;
void
RuleBasedTimeZone::completeConst(UErrorCode& status) const {
if (U_FAILURE(status)) {
return;
}
umtx_lock(&gLock);
if (!fUpToDate) {
RuleBasedTimeZone *ncThis = const_cast<RuleBasedTimeZone*>(this);
ncThis->complete(status);
}
umtx_unlock(&gLock);
}
void
RuleBasedTimeZone::complete(UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
if (fUpToDate) {
return;
}
// Make sure either no final rules or a pair of AnnualTimeZoneRules
// are available.
if (fFinalRules != NULL && fFinalRules->size() != 2) {
status = U_INVALID_STATE_ERROR;
return;
}
UBool *done = NULL;
// Create a TimezoneTransition and add to the list
if (fHistoricRules != NULL || fFinalRules != NULL) {
TimeZoneRule *curRule = fInitialRule;
UDate lastTransitionTime = MIN_MILLIS;
// Build the transition array which represents historical time zone
// transitions.
if (fHistoricRules != NULL && fHistoricRules->size() > 0) {
int32_t i;
int32_t historicCount = fHistoricRules->size();
done = (UBool*)uprv_malloc(sizeof(UBool) * historicCount);
if (done == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
for (i = 0; i < historicCount; i++) {
done[i] = FALSE;
}
while (TRUE) {
int32_t curStdOffset = curRule->getRawOffset();
int32_t curDstSavings = curRule->getDSTSavings();
UDate nextTransitionTime = MAX_MILLIS;
TimeZoneRule *nextRule = NULL;
TimeZoneRule *r = NULL;
UBool avail;
UDate tt;
UnicodeString curName, name;
curRule->getName(curName);
for (i = 0; i < historicCount; i++) {
if (done[i]) {
continue;
}
r = (TimeZoneRule*)fHistoricRules->elementAt(i);
avail = r->getNextStart(lastTransitionTime, curStdOffset, curDstSavings, false, tt);
if (!avail) {
// No more transitions from this rule - skip this rule next time
done[i] = TRUE;
} else {
r->getName(name);
if (*r == *curRule ||
(name == curName && r->getRawOffset() == curRule->getRawOffset()
&& r->getDSTSavings() == curRule->getDSTSavings())) {
continue;
}
if (tt < nextTransitionTime) {
nextTransitionTime = tt;
nextRule = r;
}
}
}
if (nextRule == NULL) {
// Check if all historic rules are done
UBool bDoneAll = TRUE;
for (int32_t j = 0; j < historicCount; j++) {
if (!done[j]) {
bDoneAll = FALSE;
break;
}
}
if (bDoneAll) {
break;
}
}
if (fFinalRules != NULL) {
// Check if one of final rules has earlier transition date
for (i = 0; i < 2 /* fFinalRules->size() */; i++) {
TimeZoneRule *fr = (TimeZoneRule*)fFinalRules->elementAt(i);
if (*fr == *curRule) {
continue;
}
r = (TimeZoneRule*)fFinalRules->elementAt(i);
avail = r->getNextStart(lastTransitionTime, curStdOffset, curDstSavings, false, tt);
if (avail) {
if (tt < nextTransitionTime) {
nextTransitionTime = tt;
nextRule = r;
}
}
}
}
if (nextRule == NULL) {
// Nothing more
break;
}
if (fHistoricTransitions == NULL) {
fHistoricTransitions = new UVector(status);
if (U_FAILURE(status)) {
goto cleanup;
}
}
Transition *trst = (Transition*)uprv_malloc(sizeof(Transition));
if (trst == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
trst->time = nextTransitionTime;
trst->from = curRule;
trst->to = nextRule;
fHistoricTransitions->addElement(trst, status);
if (U_FAILURE(status)) {
goto cleanup;
}
lastTransitionTime = nextTransitionTime;
curRule = nextRule;
}
}
if (fFinalRules != NULL) {
if (fHistoricTransitions == NULL) {
fHistoricTransitions = new UVector(status);
if (U_FAILURE(status)) {
goto cleanup;
}
}
// Append the first transition for each
TimeZoneRule *rule0 = (TimeZoneRule*)fFinalRules->elementAt(0);
TimeZoneRule *rule1 = (TimeZoneRule*)fFinalRules->elementAt(1);
UDate tt0, tt1;
UBool avail0 = rule0->getNextStart(lastTransitionTime, curRule->getRawOffset(), curRule->getDSTSavings(), false, tt0);
UBool avail1 = rule1->getNextStart(lastTransitionTime, curRule->getRawOffset(), curRule->getDSTSavings(), false, tt1);
if (!avail0 || !avail1) {
// Should not happen, because both rules are permanent
status = U_INVALID_STATE_ERROR;
goto cleanup;
}
Transition *final0 = (Transition*)uprv_malloc(sizeof(Transition));
if (final0 == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
Transition *final1 = (Transition*)uprv_malloc(sizeof(Transition));
if (final1 == NULL) {
uprv_free(final0);
status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
if (tt0 < tt1) {
final0->time = tt0;
final0->from = curRule;
final0->to = rule0;
rule1->getNextStart(tt0, rule0->getRawOffset(), rule0->getDSTSavings(), false, final1->time);
final1->from = rule0;
final1->to = rule1;
} else {
final0->time = tt1;
final0->from = curRule;
final0->to = rule1;
rule0->getNextStart(tt1, rule1->getRawOffset(), rule1->getDSTSavings(), false, final1->time);
final1->from = rule1;
final1->to = rule0;
}
fHistoricTransitions->addElement(final0, status);
if (U_FAILURE(status)) {
goto cleanup;
}
fHistoricTransitions->addElement(final1, status);
if (U_FAILURE(status)) {
goto cleanup;
}
}
}
fUpToDate = TRUE;
if (done != NULL) {
uprv_free(done);
}
return;
cleanup:
deleteTransitions();
if (done != NULL) {
uprv_free(done);
}
fUpToDate = FALSE;
}
TimeZone*
RuleBasedTimeZone::clone(void) const {
return new RuleBasedTimeZone(*this);
}
int32_t
RuleBasedTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, int32_t day,
uint8_t dayOfWeek, int32_t millis, UErrorCode& status) const {
if (U_FAILURE(status)) {
return 0;
}
if (month < UCAL_JANUARY || month > UCAL_DECEMBER) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
} else {
return getOffset(era, year, month, day, dayOfWeek, millis,
Grego::monthLength(year, month), status);
}
}
int32_t
RuleBasedTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, int32_t day,
uint8_t /*dayOfWeek*/, int32_t millis,
int32_t /*monthLength*/, UErrorCode& status) const {
// dayOfWeek and monthLength are unused
if (U_FAILURE(status)) {
return 0;
}
if (era == GregorianCalendar::BC) {
// Convert to extended year
year = 1 - year;
}
int32_t rawOffset, dstOffset;
UDate time = (UDate)Grego::fieldsToDay(year, month, day) * U_MILLIS_PER_DAY + millis;
getOffsetInternal(time, TRUE, kDaylight, kStandard, rawOffset, dstOffset, status);
if (U_FAILURE(status)) {
return 0;
}
return (rawOffset + dstOffset);
}
void
RuleBasedTimeZone::getOffset(UDate date, UBool local, int32_t& rawOffset,
int32_t& dstOffset, UErrorCode& status) const {
getOffsetInternal(date, local, kFormer, kLatter, rawOffset, dstOffset, status);
}
void
RuleBasedTimeZone::getOffsetFromLocal(UDate date, int32_t nonExistingTimeOpt, int32_t duplicatedTimeOpt,
int32_t& rawOffset, int32_t& dstOffset, UErrorCode& status) const {
getOffsetInternal(date, TRUE, nonExistingTimeOpt, duplicatedTimeOpt, rawOffset, dstOffset, status);
}
/*
* The internal getOffset implementation
*/
void
RuleBasedTimeZone::getOffsetInternal(UDate date, UBool local,
int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt,
int32_t& rawOffset, int32_t& dstOffset,
UErrorCode& status) const {
rawOffset = 0;
dstOffset = 0;
if (U_FAILURE(status)) {
return;
}
if (!fUpToDate) {
// Transitions are not yet resolved. We cannot do it here
// because this method is const. Thus, do nothing and return
// error status.
status = U_INVALID_STATE_ERROR;
return;
}
const TimeZoneRule *rule = NULL;
if (fHistoricTransitions == NULL) {
rule = fInitialRule;
} else {
UDate tstart = getTransitionTime((Transition*)fHistoricTransitions->elementAt(0),
local, NonExistingTimeOpt, DuplicatedTimeOpt);
if (date < tstart) {
rule = fInitialRule;
} else {
int32_t idx = fHistoricTransitions->size() - 1;
UDate tend = getTransitionTime((Transition*)fHistoricTransitions->elementAt(idx),
local, NonExistingTimeOpt, DuplicatedTimeOpt);
if (date > tend) {
if (fFinalRules != NULL) {
rule = findRuleInFinal(date, local, NonExistingTimeOpt, DuplicatedTimeOpt);
}
if (rule == NULL) {
// no final rules or the given time is before the first transition
// specified by the final rules -> use the last rule
rule = ((Transition*)fHistoricTransitions->elementAt(idx))->to;
}
} else {
// Find a historical transition
while (idx >= 0) {
if (date >= getTransitionTime((Transition*)fHistoricTransitions->elementAt(idx),
local, NonExistingTimeOpt, DuplicatedTimeOpt)) {
break;
}
idx--;
}
rule = ((Transition*)fHistoricTransitions->elementAt(idx))->to;
}
}
}
if (rule != NULL) {
rawOffset = rule->getRawOffset();
dstOffset = rule->getDSTSavings();
}
}
void
RuleBasedTimeZone::setRawOffset(int32_t /*offsetMillis*/) {
// We don't support this operation at this moment.
// Nothing to do!
}
int32_t
RuleBasedTimeZone::getRawOffset(void) const {
// Note: This implementation returns standard GMT offset
// as of current time.
UErrorCode status = U_ZERO_ERROR;
int32_t raw, dst;
getOffset(uprv_getUTCtime() * U_MILLIS_PER_SECOND,
FALSE, raw, dst, status);
return raw;
}
UBool
RuleBasedTimeZone::useDaylightTime(void) const {
// Note: This implementation returns true when
// daylight saving time is used as of now or
// after the next transition.
UErrorCode status = U_ZERO_ERROR;
UDate now = uprv_getUTCtime() * U_MILLIS_PER_SECOND;
int32_t raw, dst;
getOffset(now, FALSE, raw, dst, status);
if (dst != 0) {
return TRUE;
}
// If DST is not used now, check if DST is used after the next transition
UDate time;
TimeZoneRule *from, *to;
UBool avail = findNext(now, FALSE, time, from, to);
if (avail && to->getDSTSavings() != 0) {
return TRUE;
}
return FALSE;
}
UBool
RuleBasedTimeZone::inDaylightTime(UDate date, UErrorCode& status) const {
if (U_FAILURE(status)) {
return FALSE;
}
int32_t raw, dst;
getOffset(date, FALSE, raw, dst, status);
if (dst != 0) {
return TRUE;
}
return FALSE;
}
UBool
RuleBasedTimeZone::hasSameRules(const TimeZone& other) const {
if (this == &other) {
return TRUE;
}
if (typeid(*this) != typeid(other)) {
return FALSE;
}
const RuleBasedTimeZone& that = (const RuleBasedTimeZone&)other;
if (*fInitialRule != *(that.fInitialRule)) {
return FALSE;
}
if (compareRules(fHistoricRules, that.fHistoricRules)
&& compareRules(fFinalRules, that.fFinalRules)) {
return TRUE;
}
return FALSE;
}
UBool
RuleBasedTimeZone::getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const {
UErrorCode status = U_ZERO_ERROR;
completeConst(status);
if (U_FAILURE(status)) {
return FALSE;
}
UDate transitionTime;
TimeZoneRule *fromRule, *toRule;
UBool found = findNext(base, inclusive, transitionTime, fromRule, toRule);
if (found) {
result.setTime(transitionTime);
result.setFrom((const TimeZoneRule&)*fromRule);
result.setTo((const TimeZoneRule&)*toRule);
return TRUE;
}
return FALSE;
}
UBool
RuleBasedTimeZone::getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const {
UErrorCode status = U_ZERO_ERROR;
completeConst(status);
if (U_FAILURE(status)) {
return FALSE;
}
UDate transitionTime;
TimeZoneRule *fromRule, *toRule;
UBool found = findPrev(base, inclusive, transitionTime, fromRule, toRule);
if (found) {
result.setTime(transitionTime);
result.setFrom((const TimeZoneRule&)*fromRule);
result.setTo((const TimeZoneRule&)*toRule);
return TRUE;
}
return FALSE;
}
int32_t
RuleBasedTimeZone::countTransitionRules(UErrorCode& /*status*/) const {
int32_t count = 0;
if (fHistoricRules != NULL) {
count += fHistoricRules->size();
}
if (fFinalRules != NULL) {
count += fFinalRules->size();
}
return count;
}
void
RuleBasedTimeZone::getTimeZoneRules(const InitialTimeZoneRule*& initial,
const TimeZoneRule* trsrules[],
int32_t& trscount,
UErrorCode& status) const {
if (U_FAILURE(status)) {
return;
}
// Initial rule
initial = fInitialRule;
// Transition rules
int32_t cnt = 0;
int32_t idx;
if (fHistoricRules != NULL && cnt < trscount) {
int32_t historicCount = fHistoricRules->size();
idx = 0;
while (cnt < trscount && idx < historicCount) {
trsrules[cnt++] = (const TimeZoneRule*)fHistoricRules->elementAt(idx++);
}
}
if (fFinalRules != NULL && cnt < trscount) {
int32_t finalCount = fFinalRules->size();
idx = 0;
while (cnt < trscount && idx < finalCount) {
trsrules[cnt++] = (const TimeZoneRule*)fFinalRules->elementAt(idx++);
}
}
// Set the result length
trscount = cnt;
}
void
RuleBasedTimeZone::deleteRules(void) {
delete fInitialRule;
fInitialRule = NULL;
if (fHistoricRules != NULL) {
while (!fHistoricRules->isEmpty()) {
delete (TimeZoneRule*)(fHistoricRules->orphanElementAt(0));
}
delete fHistoricRules;
fHistoricRules = NULL;
}
if (fFinalRules != NULL) {
while (!fFinalRules->isEmpty()) {
delete (AnnualTimeZoneRule*)(fFinalRules->orphanElementAt(0));
}
delete fFinalRules;
fFinalRules = NULL;
}
}
void
RuleBasedTimeZone::deleteTransitions(void) {
if (fHistoricTransitions != NULL) {
while (!fHistoricTransitions->isEmpty()) {
Transition *trs = (Transition*)fHistoricTransitions->orphanElementAt(0);
uprv_free(trs);
}
delete fHistoricTransitions;
}
fHistoricTransitions = NULL;
}
UVector*
RuleBasedTimeZone::copyRules(UVector* source) {
if (source == NULL) {
return NULL;
}
UErrorCode ec = U_ZERO_ERROR;
int32_t size = source->size();
UVector *rules = new UVector(size, ec);
if (U_FAILURE(ec)) {
return NULL;
}
int32_t i;
for (i = 0; i < size; i++) {
rules->addElement(((TimeZoneRule*)source->elementAt(i))->clone(), ec);
if (U_FAILURE(ec)) {
break;
}
}
if (U_FAILURE(ec)) {
// In case of error, clean up
for (i = 0; i < rules->size(); i++) {
TimeZoneRule *rule = (TimeZoneRule*)rules->orphanElementAt(i);
delete rule;
}
delete rules;
return NULL;
}
return rules;
}
TimeZoneRule*
RuleBasedTimeZone::findRuleInFinal(UDate date, UBool local,
int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt) const {
if (fFinalRules == NULL) {
return NULL;
}
AnnualTimeZoneRule* fr0 = (AnnualTimeZoneRule*)fFinalRules->elementAt(0);
AnnualTimeZoneRule* fr1 = (AnnualTimeZoneRule*)fFinalRules->elementAt(1);
if (fr0 == NULL || fr1 == NULL) {
return NULL;
}
UDate start0, start1;
UDate base;
int32_t localDelta;
base = date;
if (local) {
localDelta = getLocalDelta(fr1->getRawOffset(), fr1->getDSTSavings(),
fr0->getRawOffset(), fr0->getDSTSavings(),
NonExistingTimeOpt, DuplicatedTimeOpt);
base -= localDelta;
}
UBool avail0 = fr0->getPreviousStart(base, fr1->getRawOffset(), fr1->getDSTSavings(), TRUE, start0);
base = date;
if (local) {
localDelta = getLocalDelta(fr0->getRawOffset(), fr0->getDSTSavings(),
fr1->getRawOffset(), fr1->getDSTSavings(),
NonExistingTimeOpt, DuplicatedTimeOpt);
base -= localDelta;
}
UBool avail1 = fr1->getPreviousStart(base, fr0->getRawOffset(), fr0->getDSTSavings(), TRUE, start1);
if (!avail0 || !avail1) {
if (avail0) {
return fr0;
} else if (avail1) {
return fr1;
}
// Both rules take effect after the given time
return NULL;
}
return (start0 > start1) ? fr0 : fr1;
}
UBool
RuleBasedTimeZone::findNext(UDate base, UBool inclusive, UDate& transitionTime,
TimeZoneRule*& fromRule, TimeZoneRule*& toRule) const {
if (fHistoricTransitions == NULL) {
return FALSE;
}
UBool isFinal = FALSE;
UBool found = FALSE;
Transition result;
Transition *tzt = (Transition*)fHistoricTransitions->elementAt(0);
UDate tt = tzt->time;
if (tt > base || (inclusive && tt == base)) {
result = *tzt;
found = TRUE;
} else {
int32_t idx = fHistoricTransitions->size() - 1;
tzt = (Transition*)fHistoricTransitions->elementAt(idx);
tt = tzt->time;
if (inclusive && tt == base) {
result = *tzt;
found = TRUE;
} else if (tt <= base) {
if (fFinalRules != NULL) {
// Find a transion time with finalRules
TimeZoneRule *r0 = (TimeZoneRule*)fFinalRules->elementAt(0);
TimeZoneRule *r1 = (TimeZoneRule*)fFinalRules->elementAt(1);
UDate start0, start1;
UBool avail0 = r0->getNextStart(base, r1->getRawOffset(), r1->getDSTSavings(), inclusive, start0);
UBool avail1 = r1->getNextStart(base, r0->getRawOffset(), r0->getDSTSavings(), inclusive, start1);
// avail0/avail1 should be always TRUE
if (!avail0 && !avail1) {
return FALSE;
}
if (!avail1 || start0 < start1) {
result.time = start0;
result.from = r1;
result.to = r0;
} else {
result.time = start1;
result.from = r0;
result.to = r1;
}
isFinal = TRUE;
found = TRUE;
}
} else {
// Find a transition within the historic transitions
idx--;
Transition *prev = tzt;
while (idx > 0) {
tzt = (Transition*)fHistoricTransitions->elementAt(idx);
tt = tzt->time;
if (tt < base || (!inclusive && tt == base)) {
break;
}
idx--;
prev = tzt;
}
result.time = prev->time;
result.from = prev->from;
result.to = prev->to;
found = TRUE;
}
}
if (found) {
// For now, this implementation ignore transitions with only zone name changes.
if (result.from->getRawOffset() == result.to->getRawOffset()
&& result.from->getDSTSavings() == result.to->getDSTSavings()) {
if (isFinal) {
return FALSE;
} else {
// No offset changes. Try next one if not final
return findNext(result.time, FALSE /* always exclusive */,
transitionTime, fromRule, toRule);
}
}
transitionTime = result.time;
fromRule = result.from;
toRule = result.to;
return TRUE;
}
return FALSE;
}
UBool
RuleBasedTimeZone::findPrev(UDate base, UBool inclusive, UDate& transitionTime,
TimeZoneRule*& fromRule, TimeZoneRule*& toRule) const {
if (fHistoricTransitions == NULL) {
return FALSE;
}
UBool found = FALSE;
Transition result;
Transition *tzt = (Transition*)fHistoricTransitions->elementAt(0);
UDate tt = tzt->time;
if (inclusive && tt == base) {
result = *tzt;
found = TRUE;
} else if (tt < base) {
int32_t idx = fHistoricTransitions->size() - 1;
tzt = (Transition*)fHistoricTransitions->elementAt(idx);
tt = tzt->time;
if (inclusive && tt == base) {
result = *tzt;
found = TRUE;
} else if (tt < base) {
if (fFinalRules != NULL) {
// Find a transion time with finalRules
TimeZoneRule *r0 = (TimeZoneRule*)fFinalRules->elementAt(0);
TimeZoneRule *r1 = (TimeZoneRule*)fFinalRules->elementAt(1);
UDate start0, start1;
UBool avail0 = r0->getPreviousStart(base, r1->getRawOffset(), r1->getDSTSavings(), inclusive, start0);
UBool avail1 = r1->getPreviousStart(base, r0->getRawOffset(), r0->getDSTSavings(), inclusive, start1);
// avail0/avail1 should be always TRUE
if (!avail0 && !avail1) {
return FALSE;
}
if (!avail1 || start0 > start1) {
result.time = start0;
result.from = r1;
result.to = r0;
} else {
result.time = start1;
result.from = r0;
result.to = r1;
}
} else {
result = *tzt;
}
found = TRUE;
} else {
// Find a transition within the historic transitions
idx--;
while (idx >= 0) {
tzt = (Transition*)fHistoricTransitions->elementAt(idx);
tt = tzt->time;
if (tt < base || (inclusive && tt == base)) {
break;
}
idx--;
}
result = *tzt;
found = TRUE;
}
}
if (found) {
// For now, this implementation ignore transitions with only zone name changes.
if (result.from->getRawOffset() == result.to->getRawOffset()
&& result.from->getDSTSavings() == result.to->getDSTSavings()) {
// No offset changes. Try next one if not final
return findPrev(result.time, FALSE /* always exclusive */,
transitionTime, fromRule, toRule);
}
transitionTime = result.time;
fromRule = result.from;
toRule = result.to;
return TRUE;
}
return FALSE;
}
UDate
RuleBasedTimeZone::getTransitionTime(Transition* transition, UBool local,
int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt) const {
UDate time = transition->time;
if (local) {
time += getLocalDelta(transition->from->getRawOffset(), transition->from->getDSTSavings(),
transition->to->getRawOffset(), transition->to->getDSTSavings(),
NonExistingTimeOpt, DuplicatedTimeOpt);
}
return time;
}
int32_t
RuleBasedTimeZone::getLocalDelta(int32_t rawBefore, int32_t dstBefore, int32_t rawAfter, int32_t dstAfter,
int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt) const {
int32_t delta = 0;
int32_t offsetBefore = rawBefore + dstBefore;
int32_t offsetAfter = rawAfter + dstAfter;
UBool dstToStd = (dstBefore != 0) && (dstAfter == 0);
UBool stdToDst = (dstBefore == 0) && (dstAfter != 0);
if (offsetAfter - offsetBefore >= 0) {
// Positive transition, which makes a non-existing local time range
if (((NonExistingTimeOpt & kStdDstMask) == kStandard && dstToStd)
|| ((NonExistingTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
delta = offsetBefore;
} else if (((NonExistingTimeOpt & kStdDstMask) == kStandard && stdToDst)
|| ((NonExistingTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
delta = offsetAfter;
} else if ((NonExistingTimeOpt & kFormerLatterMask) == kLatter) {
delta = offsetBefore;
} else {
// Interprets the time with rule before the transition,
// default for non-existing time range
delta = offsetAfter;
}
} else {
// Negative transition, which makes a duplicated local time range
if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && dstToStd)
|| ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
delta = offsetAfter;
} else if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && stdToDst)
|| ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
delta = offsetBefore;
} else if ((DuplicatedTimeOpt & kFormerLatterMask) == kFormer) {
delta = offsetBefore;
} else {
// Interprets the time with rule after the transition,
// default for duplicated local time range
delta = offsetAfter;
}
}
return delta;
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
//eof