// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_data_writer.h"
#include "base/memory/scoped_ptr.h"
#include "net/quic/quic_data_reader.h"
#include "net/test/gtest_util.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace test {
namespace {
TEST(QuicDataWriterTest, WriteUInt8ToOffset) {
QuicDataWriter writer(4);
writer.WriteUInt32(0xfefdfcfb);
EXPECT_TRUE(writer.WriteUInt8ToOffset(1, 0));
EXPECT_TRUE(writer.WriteUInt8ToOffset(2, 1));
EXPECT_TRUE(writer.WriteUInt8ToOffset(3, 2));
EXPECT_TRUE(writer.WriteUInt8ToOffset(4, 3));
scoped_ptr<char[]> data(writer.take());
EXPECT_EQ(1, data[0]);
EXPECT_EQ(2, data[1]);
EXPECT_EQ(3, data[2]);
EXPECT_EQ(4, data[3]);
}
TEST(QuicDataWriterDeathTest, WriteUInt8ToOffset) {
QuicDataWriter writer(4);
EXPECT_DFATAL(EXPECT_FALSE(writer.WriteUInt8ToOffset(5, 4)),
"offset: 4 >= capacity: 4");
}
TEST(QuicDataWriterTest, SanityCheckUFloat16Consts) {
// Check the arithmetic on the constants - otherwise the values below make
// no sense.
EXPECT_EQ(30, kUFloat16MaxExponent);
EXPECT_EQ(11, kUFloat16MantissaBits);
EXPECT_EQ(12, kUFloat16MantissaEffectiveBits);
EXPECT_EQ(GG_UINT64_C(0x3FFC0000000), kUFloat16MaxValue);
}
TEST(QuicDataWriterTest, WriteUFloat16) {
struct TestCase {
uint64 decoded;
uint16 encoded;
};
TestCase test_cases[] = {
// Small numbers represent themselves.
{ 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, { 4, 4 }, { 5, 5 }, { 6, 6 },
{ 7, 7 }, { 15, 15 }, { 31, 31 }, { 42, 42 }, { 123, 123 }, { 1234, 1234 },
// Check transition through 2^11.
{ 2046, 2046 }, { 2047, 2047 }, { 2048, 2048 }, { 2049, 2049 },
// Running out of mantissa at 2^12.
{ 4094, 4094 }, { 4095, 4095 }, { 4096, 4096 }, { 4097, 4096 },
{ 4098, 4097 }, { 4099, 4097 }, { 4100, 4098 }, { 4101, 4098 },
// Check transition through 2^13.
{ 8190, 6143 }, { 8191, 6143 }, { 8192, 6144 }, { 8193, 6144 },
{ 8194, 6144 }, { 8195, 6144 }, { 8196, 6145 }, { 8197, 6145 },
// Half-way through the exponents.
{ 0x7FF8000, 0x87FF }, { 0x7FFFFFF, 0x87FF }, { 0x8000000, 0x8800 },
{ 0xFFF0000, 0x8FFF }, { 0xFFFFFFF, 0x8FFF }, { 0x10000000, 0x9000 },
// Transition into the largest exponent.
{ 0x1FFFFFFFFFE, 0xF7FF}, { 0x1FFFFFFFFFF, 0xF7FF},
{ 0x20000000000, 0xF800}, { 0x20000000001, 0xF800},
{ 0x2003FFFFFFE, 0xF800}, { 0x2003FFFFFFF, 0xF800},
{ 0x20040000000, 0xF801}, { 0x20040000001, 0xF801},
// Transition into the max value and clamping.
{ 0x3FF80000000, 0xFFFE}, { 0x3FFBFFFFFFF, 0xFFFE},
{ 0x3FFC0000000, 0xFFFF}, { 0x3FFC0000001, 0xFFFF},
{ 0x3FFFFFFFFFF, 0xFFFF}, { 0x40000000000, 0xFFFF},
{ 0xFFFFFFFFFFFFFFFF, 0xFFFF},
};
int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]);
for (int i = 0; i < num_test_cases; ++i) {
QuicDataWriter writer(2);
EXPECT_TRUE(writer.WriteUFloat16(test_cases[i].decoded));
scoped_ptr<char[]> data(writer.take());
EXPECT_EQ(test_cases[i].encoded, *reinterpret_cast<uint16*>(data.get()));
}
}
TEST(QuicDataWriterTest, ReadUFloat16) {
struct TestCase {
uint64 decoded;
uint16 encoded;
};
TestCase test_cases[] = {
// There are fewer decoding test cases because encoding truncates, and
// decoding returns the smallest expansion.
// Small numbers represent themselves.
{ 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, { 4, 4 }, { 5, 5 }, { 6, 6 },
{ 7, 7 }, { 15, 15 }, { 31, 31 }, { 42, 42 }, { 123, 123 }, { 1234, 1234 },
// Check transition through 2^11.
{ 2046, 2046 }, { 2047, 2047 }, { 2048, 2048 }, { 2049, 2049 },
// Running out of mantissa at 2^12.
{ 4094, 4094 }, { 4095, 4095 }, { 4096, 4096 },
{ 4098, 4097 }, { 4100, 4098 },
// Check transition through 2^13.
{ 8190, 6143 }, { 8192, 6144 }, { 8196, 6145 },
// Half-way through the exponents.
{ 0x7FF8000, 0x87FF }, { 0x8000000, 0x8800 },
{ 0xFFF0000, 0x8FFF }, { 0x10000000, 0x9000 },
// Transition into the largest exponent.
{ 0x1FFE0000000, 0xF7FF}, { 0x20000000000, 0xF800},
{ 0x20040000000, 0xF801},
// Transition into the max value.
{ 0x3FF80000000, 0xFFFE}, { 0x3FFC0000000, 0xFFFF},
};
int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]);
for (int i = 0; i < num_test_cases; ++i) {
QuicDataReader reader(reinterpret_cast<char*>(&test_cases[i].encoded), 2);
uint64 value;
EXPECT_TRUE(reader.ReadUFloat16(&value));
EXPECT_EQ(test_cases[i].decoded, value);
}
}
TEST(QuicDataWriterTest, RoundTripUFloat16) {
// Just test all 16-bit encoded values. 0 and max already tested above.
uint64 previous_value = 0;
for (uint16 i = 1; i < 0xFFFF; ++i) {
// Read the two bytes.
QuicDataReader reader(reinterpret_cast<char*>(&i), 2);
uint64 value;
// All values must be decodable.
EXPECT_TRUE(reader.ReadUFloat16(&value));
// Check that small numbers represent themselves
if (i < 4097)
EXPECT_EQ(i, value);
// Check there's monotonic growth.
EXPECT_LT(previous_value, value);
// Check that precision is within 0.5% away from the denormals.
if (i > 2000)
EXPECT_GT(previous_value * 1005, value * 1000);
// Check we're always within the promised range.
EXPECT_LT(value, GG_UINT64_C(0x3FFC0000000));
previous_value = value;
QuicDataWriter writer(6);
EXPECT_TRUE(writer.WriteUFloat16(value - 1));
EXPECT_TRUE(writer.WriteUFloat16(value));
EXPECT_TRUE(writer.WriteUFloat16(value + 1));
scoped_ptr<char[]> data(writer.take());
// Check minimal decoding (previous decoding has previous encoding).
EXPECT_EQ(i-1, *reinterpret_cast<uint16*>(data.get()));
// Check roundtrip.
EXPECT_EQ(i, *reinterpret_cast<uint16*>(data.get() + 2));
// Check next decoding.
EXPECT_EQ(i < 4096? i+1 : i, *reinterpret_cast<uint16*>(data.get() + 4));
}
}
} // namespace
} // namespace test
} // namespace net