// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/variations/entropy_provider.h"
#include <algorithm>
#include <limits>
#include <vector>
#include "base/logging.h"
#include "base/rand_util.h"
#include "base/sha1.h"
#include "base/sys_byteorder.h"
#include "components/variations/metrics_util.h"
namespace metrics {
namespace internal {
SeededRandGenerator::SeededRandGenerator(uint32 seed) {
mersenne_twister_.init_genrand(seed);
}
SeededRandGenerator::~SeededRandGenerator() {
}
uint32 SeededRandGenerator::operator()(uint32 range) {
// Based on base::RandGenerator().
DCHECK_GT(range, 0u);
// We must discard random results above this number, as they would
// make the random generator non-uniform (consider e.g. if
// MAX_UINT64 was 7 and |range| was 5, then a result of 1 would be twice
// as likely as a result of 3 or 4).
uint32 max_acceptable_value =
(std::numeric_limits<uint32>::max() / range) * range - 1;
uint32 value;
do {
value = mersenne_twister_.genrand_int32();
} while (value > max_acceptable_value);
return value % range;
}
void PermuteMappingUsingRandomizationSeed(uint32 randomization_seed,
std::vector<uint16>* mapping) {
for (size_t i = 0; i < mapping->size(); ++i)
(*mapping)[i] = static_cast<uint16>(i);
SeededRandGenerator generator(randomization_seed);
// Do a deterministic random shuffle of the mapping using |generator|.
//
// Note: This logic is identical to the following call with libstdc++ and VS:
//
// std::random_shuffle(mapping->begin(), mapping->end(), generator);
//
// However, this is not guaranteed by the spec and some implementations (e.g.
// libc++) use a different algorithm. To ensure results are consistent
// regardless of the compiler toolchain used, use our own version.
for (size_t i = 1; i < mapping->size(); ++i) {
// Pick an element in mapping[:i+1] with which to exchange mapping[i].
size_t j = generator(i + 1);
std::swap((*mapping)[i], (*mapping)[j]);
}
}
} // namespace internal
SHA1EntropyProvider::SHA1EntropyProvider(const std::string& entropy_source)
: entropy_source_(entropy_source) {
}
SHA1EntropyProvider::~SHA1EntropyProvider() {
}
double SHA1EntropyProvider::GetEntropyForTrial(
const std::string& trial_name,
uint32 randomization_seed) const {
// Given enough input entropy, SHA-1 will produce a uniformly random spread
// in its output space. In this case, the input entropy that is used is the
// combination of the original |entropy_source_| and the |trial_name|.
//
// Note: If |entropy_source_| has very low entropy, such as 13 bits or less,
// it has been observed that this method does not result in a uniform
// distribution given the same |trial_name|. When using such a low entropy
// source, PermutedEntropyProvider should be used instead.
std::string input(entropy_source_ + trial_name);
unsigned char sha1_hash[base::kSHA1Length];
base::SHA1HashBytes(reinterpret_cast<const unsigned char*>(input.c_str()),
input.size(),
sha1_hash);
uint64 bits;
COMPILE_ASSERT(sizeof(bits) < sizeof(sha1_hash), need_more_data);
memcpy(&bits, sha1_hash, sizeof(bits));
bits = base::ByteSwapToLE64(bits);
return base::BitsToOpenEndedUnitInterval(bits);
}
PermutedEntropyProvider::PermutedEntropyProvider(
uint16 low_entropy_source,
size_t low_entropy_source_max)
: low_entropy_source_(low_entropy_source),
low_entropy_source_max_(low_entropy_source_max) {
DCHECK_LT(low_entropy_source, low_entropy_source_max);
DCHECK_LE(low_entropy_source_max, std::numeric_limits<uint16>::max());
}
PermutedEntropyProvider::~PermutedEntropyProvider() {
}
double PermutedEntropyProvider::GetEntropyForTrial(
const std::string& trial_name,
uint32 randomization_seed) const {
if (randomization_seed == 0)
randomization_seed = HashName(trial_name);
return GetPermutedValue(randomization_seed) /
static_cast<double>(low_entropy_source_max_);
}
uint16 PermutedEntropyProvider::GetPermutedValue(
uint32 randomization_seed) const {
std::vector<uint16> mapping(low_entropy_source_max_);
internal::PermuteMappingUsingRandomizationSeed(randomization_seed, &mapping);
return mapping[low_entropy_source_];
}
} // namespace metrics