// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// When possible, we implement allocator functions on top of the basic
// low-level functions malloc() and free(). This way, including a new
// allocator is as simple as providing just a small interface.
//
// As such, this file should not contain any allocator-specific code.
// Implement a C++ style allocation, which always calls the new_handler
// on failure.
inline void* generic_cpp_alloc(size_t size, bool nothrow) {
void* ptr;
for (;;) {
ptr = malloc(size);
if (ptr)
return ptr;
if (!call_new_handler(nothrow))
break;
}
return ptr;
}
extern "C++" {
void* operator new(size_t size) {
return generic_cpp_alloc(size, false);
}
void operator delete(void* p) {
free(p);
}
void* operator new[](size_t size) {
return generic_cpp_alloc(size, false);
}
void operator delete[](void* p) {
free(p);
}
void* operator new(size_t size, const std::nothrow_t& nt) {
return generic_cpp_alloc(size, true);
}
void operator delete(void* p, const std::nothrow_t& nt) {
free(p);
}
void* operator new[](size_t size, const std::nothrow_t& nt) {
return generic_cpp_alloc(size, true);
}
void operator delete[](void* p, const std::nothrow_t& nt) {
free(p);
}
// This function behaves similarly to MSVC's _set_new_mode.
// If flag is 0 (default), calls to malloc will behave normally.
// If flag is 1, calls to malloc will behave like calls to new,
// and the std_new_handler will be invoked on failure.
// Returns the previous mode.
int _set_new_mode(int flag) throw() {
int old_mode = new_mode;
new_mode = flag;
return old_mode;
}
} // extern "C++"
extern "C" {
void* calloc(size_t n, size_t elem_size) {
// Overflow check
const size_t size = n * elem_size;
if (elem_size != 0 && size / elem_size != n) return NULL;
void* result = malloc(size);
if (result != NULL) {
memset(result, 0, size);
}
return result;
}
void cfree(void* p) __THROW {
free(p);
}
#ifdef WIN32
void* _recalloc(void* p, size_t n, size_t elem_size) {
if (!p)
return calloc(n, elem_size);
// This API is a bit odd.
// Note: recalloc only guarantees zeroed memory when p is NULL.
// Generally, calls to malloc() have padding. So a request
// to malloc N bytes actually malloc's N+x bytes. Later, if
// that buffer is passed to recalloc, we don't know what N
// was anymore. We only know what N+x is. As such, there is
// no way to know what to zero out.
const size_t size = n * elem_size;
if (elem_size != 0 && size / elem_size != n) return NULL;
return realloc(p, size);
}
void* _calloc_impl(size_t n, size_t size) {
return calloc(n, size);
}
#ifndef NDEBUG
#undef malloc
#undef free
#undef calloc
static int error_handler(int reportType) {
switch (reportType) {
case 0: // _CRT_WARN
__debugbreak();
return 0;
case 1: // _CRT_ERROR
__debugbreak();
return 0;
case 2: // _CRT_ASSERT
__debugbreak();
return 0;
}
char* p = NULL;
*p = '\0';
return 0;
}
int _CrtDbgReport(int reportType,
const char*,
int, const char*,
const char*,
...) {
return error_handler(reportType);
}
int _CrtDbgReportW(int reportType,
const wchar_t*,
int, const wchar_t*,
const wchar_t*,
...) {
return error_handler(reportType);
}
int _CrtSetReportMode(int, int) {
return 0;
}
void* _malloc_dbg(size_t size, int , const char*, int) {
return malloc(size);
}
void* _realloc_dbg(void* ptr, size_t size, int, const char*, int) {
return realloc(ptr, size);
}
void _free_dbg(void* ptr, int) {
free(ptr);
}
void* _calloc_dbg(size_t n, size_t size, int, const char*, int) {
return calloc(n, size);
}
#endif // NDEBUG
#endif // WIN32
} // extern C