/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "inline_method_analyser.h"
#include "dex_instruction.h"
#include "dex_instruction-inl.h"
#include "mirror/art_field.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method.h"
#include "mirror/art_method-inl.h"
#include "mirror/class.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache.h"
#include "mirror/dex_cache-inl.h"
#include "verifier/method_verifier.h"
#include "verifier/method_verifier-inl.h"
/*
* NOTE: This code is part of the quick compiler. It lives in the runtime
* only to allow the debugger to check whether a method has been inlined.
*/
namespace art {
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET),
check_iget_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_WIDE),
check_iget_wide_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_OBJECT),
check_iget_object_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_BOOLEAN),
check_iget_boolean_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_BYTE),
check_iget_byte_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_CHAR),
check_iget_char_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_SHORT),
check_iget_short_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT),
check_iput_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_WIDE),
check_iput_wide_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_OBJECT),
check_iput_object_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_BOOLEAN),
check_iput_boolean_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_BYTE),
check_iput_byte_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_CHAR),
check_iput_char_type);
COMPILE_ASSERT(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_SHORT),
check_iput_short_type);
COMPILE_ASSERT(InlineMethodAnalyser::IGetVariant(Instruction::IGET) ==
InlineMethodAnalyser::IPutVariant(Instruction::IPUT), check_iget_iput_variant);
COMPILE_ASSERT(InlineMethodAnalyser::IGetVariant(Instruction::IGET_WIDE) ==
InlineMethodAnalyser::IPutVariant(Instruction::IPUT_WIDE), check_iget_iput_wide_variant);
COMPILE_ASSERT(InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT) ==
InlineMethodAnalyser::IPutVariant(Instruction::IPUT_OBJECT), check_iget_iput_object_variant);
COMPILE_ASSERT(InlineMethodAnalyser::IGetVariant(Instruction::IGET_BOOLEAN) ==
InlineMethodAnalyser::IPutVariant(Instruction::IPUT_BOOLEAN), check_iget_iput_boolean_variant);
COMPILE_ASSERT(InlineMethodAnalyser::IGetVariant(Instruction::IGET_BYTE) ==
InlineMethodAnalyser::IPutVariant(Instruction::IPUT_BYTE), check_iget_iput_byte_variant);
COMPILE_ASSERT(InlineMethodAnalyser::IGetVariant(Instruction::IGET_CHAR) ==
InlineMethodAnalyser::IPutVariant(Instruction::IPUT_CHAR), check_iget_iput_char_variant);
COMPILE_ASSERT(InlineMethodAnalyser::IGetVariant(Instruction::IGET_SHORT) ==
InlineMethodAnalyser::IPutVariant(Instruction::IPUT_SHORT), check_iget_iput_short_variant);
// This is used by compiler and debugger. We look into the dex cache for resolved methods and
// fields. However, in the context of the debugger, not all methods and fields are resolved. Since
// we need to be able to detect possibly inlined method, we pass a null inline method to indicate
// we don't want to take unresolved methods and fields into account during analysis.
bool InlineMethodAnalyser::AnalyseMethodCode(verifier::MethodVerifier* verifier,
InlineMethod* method) {
DCHECK(verifier != nullptr);
DCHECK_EQ(Runtime::Current()->IsCompiler(), method != nullptr);
DCHECK_EQ(verifier->CanLoadClasses(), method != nullptr);
// We currently support only plain return or 2-instruction methods.
const DexFile::CodeItem* code_item = verifier->CodeItem();
DCHECK_NE(code_item->insns_size_in_code_units_, 0u);
const Instruction* instruction = Instruction::At(code_item->insns_);
Instruction::Code opcode = instruction->Opcode();
switch (opcode) {
case Instruction::RETURN_VOID:
if (method != nullptr) {
method->opcode = kInlineOpNop;
method->flags = kInlineSpecial;
method->d.data = 0u;
}
return true;
case Instruction::RETURN:
case Instruction::RETURN_OBJECT:
case Instruction::RETURN_WIDE:
return AnalyseReturnMethod(code_item, method);
case Instruction::CONST:
case Instruction::CONST_4:
case Instruction::CONST_16:
case Instruction::CONST_HIGH16:
// TODO: Support wide constants (RETURN_WIDE).
return AnalyseConstMethod(code_item, method);
case Instruction::IGET:
case Instruction::IGET_OBJECT:
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
case Instruction::IGET_CHAR:
case Instruction::IGET_SHORT:
case Instruction::IGET_WIDE:
return AnalyseIGetMethod(verifier, method);
case Instruction::IPUT:
case Instruction::IPUT_OBJECT:
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
case Instruction::IPUT_CHAR:
case Instruction::IPUT_SHORT:
case Instruction::IPUT_WIDE:
return AnalyseIPutMethod(verifier, method);
default:
return false;
}
}
bool InlineMethodAnalyser::IsSyntheticAccessor(MethodReference ref) {
const DexFile::MethodId& method_id = ref.dex_file->GetMethodId(ref.dex_method_index);
const char* method_name = ref.dex_file->GetMethodName(method_id);
return strncmp(method_name, "access$", strlen("access$")) == 0;
}
bool InlineMethodAnalyser::AnalyseReturnMethod(const DexFile::CodeItem* code_item,
InlineMethod* result) {
const Instruction* return_instruction = Instruction::At(code_item->insns_);
Instruction::Code return_opcode = return_instruction->Opcode();
uint32_t reg = return_instruction->VRegA_11x();
uint32_t arg_start = code_item->registers_size_ - code_item->ins_size_;
DCHECK_GE(reg, arg_start);
DCHECK_LT((return_opcode == Instruction::RETURN_WIDE) ? reg + 1 : reg,
code_item->registers_size_);
if (result != nullptr) {
result->opcode = kInlineOpReturnArg;
result->flags = kInlineSpecial;
InlineReturnArgData* data = &result->d.return_data;
data->arg = reg - arg_start;
data->is_wide = (return_opcode == Instruction::RETURN_WIDE) ? 1u : 0u;
data->is_object = (return_opcode == Instruction::RETURN_OBJECT) ? 1u : 0u;
data->reserved = 0u;
data->reserved2 = 0u;
}
return true;
}
bool InlineMethodAnalyser::AnalyseConstMethod(const DexFile::CodeItem* code_item,
InlineMethod* result) {
const Instruction* instruction = Instruction::At(code_item->insns_);
const Instruction* return_instruction = instruction->Next();
Instruction::Code return_opcode = return_instruction->Opcode();
if (return_opcode != Instruction::RETURN &&
return_opcode != Instruction::RETURN_OBJECT) {
return false;
}
int32_t return_reg = return_instruction->VRegA_11x();
DCHECK_LT(return_reg, code_item->registers_size_);
int32_t const_value = instruction->VRegB();
if (instruction->Opcode() == Instruction::CONST_HIGH16) {
const_value <<= 16;
}
DCHECK_LT(instruction->VRegA(), code_item->registers_size_);
if (instruction->VRegA() != return_reg) {
return false; // Not returning the value set by const?
}
if (return_opcode == Instruction::RETURN_OBJECT && const_value != 0) {
return false; // Returning non-null reference constant?
}
if (result != nullptr) {
result->opcode = kInlineOpNonWideConst;
result->flags = kInlineSpecial;
result->d.data = static_cast<uint64_t>(const_value);
}
return true;
}
bool InlineMethodAnalyser::AnalyseIGetMethod(verifier::MethodVerifier* verifier,
InlineMethod* result) {
const DexFile::CodeItem* code_item = verifier->CodeItem();
const Instruction* instruction = Instruction::At(code_item->insns_);
Instruction::Code opcode = instruction->Opcode();
DCHECK(IsInstructionIGet(opcode));
const Instruction* return_instruction = instruction->Next();
Instruction::Code return_opcode = return_instruction->Opcode();
if (!(return_opcode == Instruction::RETURN_WIDE && opcode == Instruction::IGET_WIDE) &&
!(return_opcode == Instruction::RETURN_OBJECT && opcode == Instruction::IGET_OBJECT) &&
!(return_opcode == Instruction::RETURN && opcode != Instruction::IGET_WIDE &&
opcode != Instruction::IGET_OBJECT)) {
return false;
}
uint32_t return_reg = return_instruction->VRegA_11x();
DCHECK_LT(return_opcode == Instruction::RETURN_WIDE ? return_reg + 1 : return_reg,
code_item->registers_size_);
uint32_t dst_reg = instruction->VRegA_22c();
uint32_t object_reg = instruction->VRegB_22c();
uint32_t field_idx = instruction->VRegC_22c();
uint32_t arg_start = code_item->registers_size_ - code_item->ins_size_;
DCHECK_GE(object_reg, arg_start);
DCHECK_LT(object_reg, code_item->registers_size_);
uint32_t object_arg = object_reg - arg_start;
DCHECK_LT(opcode == Instruction::IGET_WIDE ? dst_reg + 1 : dst_reg, code_item->registers_size_);
if (dst_reg != return_reg) {
return false; // Not returning the value retrieved by IGET?
}
if ((verifier->GetAccessFlags() & kAccStatic) != 0u || object_arg != 0u) {
// TODO: Implement inlining of IGET on non-"this" registers (needs correct stack trace for NPE).
// Allow synthetic accessors. We don't care about losing their stack frame in NPE.
if (!IsSyntheticAccessor(verifier->GetMethodReference())) {
return false;
}
}
// InlineIGetIPutData::object_arg is only 4 bits wide.
static constexpr uint16_t kMaxObjectArg = 15u;
if (object_arg > kMaxObjectArg) {
return false;
}
if (result != nullptr) {
InlineIGetIPutData* data = &result->d.ifield_data;
if (!ComputeSpecialAccessorInfo(field_idx, false, verifier, data)) {
return false;
}
result->opcode = kInlineOpIGet;
result->flags = kInlineSpecial;
data->op_variant = IGetVariant(opcode);
data->method_is_static = (verifier->GetAccessFlags() & kAccStatic) != 0u ? 1u : 0u;
data->object_arg = object_arg; // Allow IGET on any register, not just "this".
data->src_arg = 0u;
data->return_arg_plus1 = 0u;
}
return true;
}
bool InlineMethodAnalyser::AnalyseIPutMethod(verifier::MethodVerifier* verifier,
InlineMethod* result) {
const DexFile::CodeItem* code_item = verifier->CodeItem();
const Instruction* instruction = Instruction::At(code_item->insns_);
Instruction::Code opcode = instruction->Opcode();
DCHECK(IsInstructionIPut(opcode));
const Instruction* return_instruction = instruction->Next();
Instruction::Code return_opcode = return_instruction->Opcode();
uint32_t arg_start = code_item->registers_size_ - code_item->ins_size_;
uint16_t return_arg_plus1 = 0u;
if (return_opcode != Instruction::RETURN_VOID) {
if (return_opcode != Instruction::RETURN &&
return_opcode != Instruction::RETURN_OBJECT &&
return_opcode != Instruction::RETURN_WIDE) {
return false;
}
// Returning an argument.
uint32_t return_reg = return_instruction->VRegA_11x();
DCHECK_GE(return_reg, arg_start);
DCHECK_LT(return_opcode == Instruction::RETURN_WIDE ? return_reg + 1u : return_reg,
code_item->registers_size_);
return_arg_plus1 = return_reg - arg_start + 1u;
}
uint32_t src_reg = instruction->VRegA_22c();
uint32_t object_reg = instruction->VRegB_22c();
uint32_t field_idx = instruction->VRegC_22c();
DCHECK_GE(object_reg, arg_start);
DCHECK_LT(object_reg, code_item->registers_size_);
DCHECK_GE(src_reg, arg_start);
DCHECK_LT(opcode == Instruction::IPUT_WIDE ? src_reg + 1 : src_reg, code_item->registers_size_);
uint32_t object_arg = object_reg - arg_start;
uint32_t src_arg = src_reg - arg_start;
if ((verifier->GetAccessFlags() & kAccStatic) != 0u || object_arg != 0u) {
// TODO: Implement inlining of IPUT on non-"this" registers (needs correct stack trace for NPE).
// Allow synthetic accessors. We don't care about losing their stack frame in NPE.
if (!IsSyntheticAccessor(verifier->GetMethodReference())) {
return false;
}
}
// InlineIGetIPutData::object_arg/src_arg/return_arg_plus1 are each only 4 bits wide.
static constexpr uint16_t kMaxObjectArg = 15u;
static constexpr uint16_t kMaxSrcArg = 15u;
static constexpr uint16_t kMaxReturnArgPlus1 = 15u;
if (object_arg > kMaxObjectArg || src_arg > kMaxSrcArg || return_arg_plus1 > kMaxReturnArgPlus1) {
return false;
}
if (result != nullptr) {
InlineIGetIPutData* data = &result->d.ifield_data;
if (!ComputeSpecialAccessorInfo(field_idx, true, verifier, data)) {
return false;
}
result->opcode = kInlineOpIPut;
result->flags = kInlineSpecial;
data->op_variant = IPutVariant(opcode);
data->method_is_static = (verifier->GetAccessFlags() & kAccStatic) != 0u ? 1u : 0u;
data->object_arg = object_arg; // Allow IPUT on any register, not just "this".
data->src_arg = src_arg;
data->return_arg_plus1 = return_arg_plus1;
}
return true;
}
bool InlineMethodAnalyser::ComputeSpecialAccessorInfo(uint32_t field_idx, bool is_put,
verifier::MethodVerifier* verifier,
InlineIGetIPutData* result) {
mirror::DexCache* dex_cache = verifier->GetDexCache();
uint32_t method_idx = verifier->GetMethodReference().dex_method_index;
mirror::ArtMethod* method = dex_cache->GetResolvedMethod(method_idx);
mirror::ArtField* field = dex_cache->GetResolvedField(field_idx);
if (method == nullptr || field == nullptr || field->IsStatic()) {
return false;
}
mirror::Class* method_class = method->GetDeclaringClass();
mirror::Class* field_class = field->GetDeclaringClass();
if (!method_class->CanAccessResolvedField(field_class, field, dex_cache, field_idx) ||
(is_put && field->IsFinal() && method_class != field_class)) {
return false;
}
DCHECK_GE(field->GetOffset().Int32Value(), 0);
result->field_idx = field_idx;
result->field_offset = field->GetOffset().Int32Value();
result->is_volatile = field->IsVolatile();
return true;
}
} // namespace art