/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "assembler_arm.h"
#include "base/logging.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "offsets.h"
#include "thread.h"
#include "utils.h"
namespace art {
namespace arm {
const char* kRegisterNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10",
"fp", "ip", "sp", "lr", "pc"
};
const char* kConditionNames[] = {
"EQ", "NE", "CS", "CC", "MI", "PL", "VS", "VC", "HI", "LS", "GE", "LT", "GT",
"LE", "AL",
};
std::ostream& operator<<(std::ostream& os, const Register& rhs) {
if (rhs >= R0 && rhs <= PC) {
os << kRegisterNames[rhs];
} else {
os << "Register[" << static_cast<int>(rhs) << "]";
}
return os;
}
std::ostream& operator<<(std::ostream& os, const SRegister& rhs) {
if (rhs >= S0 && rhs < kNumberOfSRegisters) {
os << "s" << static_cast<int>(rhs);
} else {
os << "SRegister[" << static_cast<int>(rhs) << "]";
}
return os;
}
std::ostream& operator<<(std::ostream& os, const DRegister& rhs) {
if (rhs >= D0 && rhs < kNumberOfDRegisters) {
os << "d" << static_cast<int>(rhs);
} else {
os << "DRegister[" << static_cast<int>(rhs) << "]";
}
return os;
}
std::ostream& operator<<(std::ostream& os, const Condition& rhs) {
if (rhs >= EQ && rhs <= AL) {
os << kConditionNames[rhs];
} else {
os << "Condition[" << static_cast<int>(rhs) << "]";
}
return os;
}
ShifterOperand::ShifterOperand(uint32_t immed)
: type_(kImmediate), rm_(kNoRegister), rs_(kNoRegister),
is_rotate_(false), is_shift_(false), shift_(kNoShift), rotate_(0), immed_(immed) {
CHECK(immed < (1u << 12) || ArmAssembler::ModifiedImmediate(immed) != kInvalidModifiedImmediate);
}
uint32_t ShifterOperand::encodingArm() const {
CHECK(is_valid());
switch (type_) {
case kImmediate:
if (is_rotate_) {
return (rotate_ << kRotateShift) | (immed_ << kImmed8Shift);
} else {
return immed_;
}
break;
case kRegister:
if (is_shift_) {
// Shifted immediate or register.
if (rs_ == kNoRegister) {
// Immediate shift.
return immed_ << kShiftImmShift |
static_cast<uint32_t>(shift_) << kShiftShift |
static_cast<uint32_t>(rm_);
} else {
// Register shift.
return static_cast<uint32_t>(rs_) << kShiftRegisterShift |
static_cast<uint32_t>(shift_) << kShiftShift | (1 << 4) |
static_cast<uint32_t>(rm_);
}
} else {
// Simple register
return static_cast<uint32_t>(rm_);
}
break;
default:
// Can't get here.
LOG(FATAL) << "Invalid shifter operand for ARM";
return 0;
}
}
uint32_t ShifterOperand::encodingThumb() const {
switch (type_) {
case kImmediate:
return immed_;
case kRegister:
if (is_shift_) {
// Shifted immediate or register.
if (rs_ == kNoRegister) {
// Immediate shift.
if (shift_ == RRX) {
// RRX is encoded as an ROR with imm 0.
return ROR << 4 | static_cast<uint32_t>(rm_);
} else {
uint32_t imm3 = immed_ >> 2;
uint32_t imm2 = immed_ & 0b11;
return imm3 << 12 | imm2 << 6 | shift_ << 4 |
static_cast<uint32_t>(rm_);
}
} else {
LOG(FATAL) << "No register-shifted register instruction available in thumb";
return 0;
}
} else {
// Simple register
return static_cast<uint32_t>(rm_);
}
break;
default:
// Can't get here.
LOG(FATAL) << "Invalid shifter operand for thumb";
return 0;
}
return 0;
}
bool ShifterOperand::CanHoldThumb(Register rd, Register rn, Opcode opcode,
uint32_t immediate, ShifterOperand* shifter_op) {
shifter_op->type_ = kImmediate;
shifter_op->immed_ = immediate;
shifter_op->is_shift_ = false;
shifter_op->is_rotate_ = false;
switch (opcode) {
case ADD:
case SUB:
if (rn == SP) {
if (rd == SP) {
return immediate < (1 << 9); // 9 bits allowed.
} else {
return immediate < (1 << 12); // 12 bits.
}
}
if (immediate < (1 << 12)) { // Less than (or equal to) 12 bits can always be done.
return true;
}
return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate;
case MOV:
// TODO: Support less than or equal to 12bits.
return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate;
case MVN:
default:
return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate;
}
}
uint32_t Address::encodingArm() const {
CHECK(IsAbsoluteUint(12, offset_));
uint32_t encoding;
if (is_immed_offset_) {
if (offset_ < 0) {
encoding = (am_ ^ (1 << kUShift)) | -offset_; // Flip U to adjust sign.
} else {
encoding = am_ | offset_;
}
} else {
uint32_t imm5 = offset_;
uint32_t shift = shift_;
if (shift == RRX) {
imm5 = 0;
shift = ROR;
}
encoding = am_ | static_cast<uint32_t>(rm_) | shift << 5 | offset_ << 7 | B25;
}
encoding |= static_cast<uint32_t>(rn_) << kRnShift;
return encoding;
}
uint32_t Address::encodingThumb(bool is_32bit) const {
uint32_t encoding = 0;
if (is_immed_offset_) {
encoding = static_cast<uint32_t>(rn_) << 16;
// Check for the T3/T4 encoding.
// PUW must Offset for T3
// Convert ARM PU0W to PUW
// The Mode is in ARM encoding format which is:
// |P|U|0|W|
// we need this in thumb2 mode:
// |P|U|W|
uint32_t am = am_;
int32_t offset = offset_;
if (offset < 0) {
am ^= 1 << kUShift;
offset = -offset;
}
if (offset_ < 0 || (offset >= 0 && offset < 256 &&
am_ != Mode::Offset)) {
// T4 encoding.
uint32_t PUW = am >> 21; // Move down to bottom of word.
PUW = (PUW >> 1) | (PUW & 1); // Bits 3, 2 and 0.
// If P is 0 then W must be 1 (Different from ARM).
if ((PUW & 0b100) == 0) {
PUW |= 0b1;
}
encoding |= B11 | PUW << 8 | offset;
} else {
// T3 encoding (also sets op1 to 0b01).
encoding |= B23 | offset_;
}
} else {
// Register offset, possibly shifted.
// Need to choose between encoding T1 (16 bit) or T2.
// Only Offset mode is supported. Shift must be LSL and the count
// is only 2 bits.
CHECK_EQ(shift_, LSL);
CHECK_LE(offset_, 4);
CHECK_EQ(am_, Offset);
bool is_t2 = is_32bit;
if (ArmAssembler::IsHighRegister(rn_) || ArmAssembler::IsHighRegister(rm_)) {
is_t2 = true;
} else if (offset_ != 0) {
is_t2 = true;
}
if (is_t2) {
encoding = static_cast<uint32_t>(rn_) << 16 | static_cast<uint32_t>(rm_) |
offset_ << 4;
} else {
encoding = static_cast<uint32_t>(rn_) << 3 | static_cast<uint32_t>(rm_) << 6;
}
}
return encoding;
}
// This is very like the ARM encoding except the offset is 10 bits.
uint32_t Address::encodingThumbLdrdStrd() const {
uint32_t encoding;
uint32_t am = am_;
// If P is 0 then W must be 1 (Different from ARM).
uint32_t PU1W = am_ >> 21; // Move down to bottom of word.
if ((PU1W & 0b1000) == 0) {
am |= 1 << 21; // Set W bit.
}
if (offset_ < 0) {
int32_t off = -offset_;
CHECK_LT(off, 1024);
CHECK_EQ((off & 0b11), 0); // Must be multiple of 4.
encoding = (am ^ (1 << kUShift)) | off >> 2; // Flip U to adjust sign.
} else {
CHECK_LT(offset_, 1024);
CHECK_EQ((offset_ & 0b11), 0); // Must be multiple of 4.
encoding = am | offset_ >> 2;
}
encoding |= static_cast<uint32_t>(rn_) << 16;
return encoding;
}
// Encoding for ARM addressing mode 3.
uint32_t Address::encoding3() const {
const uint32_t offset_mask = (1 << 12) - 1;
uint32_t encoding = encodingArm();
uint32_t offset = encoding & offset_mask;
CHECK_LT(offset, 256u);
return (encoding & ~offset_mask) | ((offset & 0xf0) << 4) | (offset & 0xf);
}
// Encoding for vfp load/store addressing.
uint32_t Address::vencoding() const {
const uint32_t offset_mask = (1 << 12) - 1;
uint32_t encoding = encodingArm();
uint32_t offset = encoding & offset_mask;
CHECK(IsAbsoluteUint(10, offset)); // In the range -1020 to +1020.
CHECK_ALIGNED(offset, 2); // Multiple of 4.
CHECK((am_ == Offset) || (am_ == NegOffset));
uint32_t vencoding = (encoding & (0xf << kRnShift)) | (offset >> 2);
if (am_ == Offset) {
vencoding |= 1 << 23;
}
return vencoding;
}
bool Address::CanHoldLoadOffsetArm(LoadOperandType type, int offset) {
switch (type) {
case kLoadSignedByte:
case kLoadSignedHalfword:
case kLoadUnsignedHalfword:
case kLoadWordPair:
return IsAbsoluteUint(8, offset); // Addressing mode 3.
case kLoadUnsignedByte:
case kLoadWord:
return IsAbsoluteUint(12, offset); // Addressing mode 2.
case kLoadSWord:
case kLoadDWord:
return IsAbsoluteUint(10, offset); // VFP addressing mode.
default:
LOG(FATAL) << "UNREACHABLE";
return false;
}
}
bool Address::CanHoldStoreOffsetArm(StoreOperandType type, int offset) {
switch (type) {
case kStoreHalfword:
case kStoreWordPair:
return IsAbsoluteUint(8, offset); // Addressing mode 3.
case kStoreByte:
case kStoreWord:
return IsAbsoluteUint(12, offset); // Addressing mode 2.
case kStoreSWord:
case kStoreDWord:
return IsAbsoluteUint(10, offset); // VFP addressing mode.
default:
LOG(FATAL) << "UNREACHABLE";
return false;
}
}
bool Address::CanHoldLoadOffsetThumb(LoadOperandType type, int offset) {
switch (type) {
case kLoadSignedByte:
case kLoadSignedHalfword:
case kLoadUnsignedHalfword:
case kLoadUnsignedByte:
case kLoadWord:
return IsAbsoluteUint(12, offset);
case kLoadSWord:
case kLoadDWord:
return IsAbsoluteUint(10, offset); // VFP addressing mode.
case kLoadWordPair:
return IsAbsoluteUint(10, offset);
default:
LOG(FATAL) << "UNREACHABLE";
return false;
}
}
bool Address::CanHoldStoreOffsetThumb(StoreOperandType type, int offset) {
switch (type) {
case kStoreHalfword:
case kStoreByte:
case kStoreWord:
return IsAbsoluteUint(12, offset);
case kStoreSWord:
case kStoreDWord:
return IsAbsoluteUint(10, offset); // VFP addressing mode.
case kStoreWordPair:
return IsAbsoluteUint(10, offset);
default:
LOG(FATAL) << "UNREACHABLE";
return false;
}
}
void ArmAssembler::Pad(uint32_t bytes) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
for (uint32_t i = 0; i < bytes; ++i) {
buffer_.Emit<byte>(0);
}
}
constexpr size_t kFramePointerSize = 4;
void ArmAssembler::BuildFrame(size_t frame_size, ManagedRegister method_reg,
const std::vector<ManagedRegister>& callee_save_regs,
const ManagedRegisterEntrySpills& entry_spills) {
CHECK_ALIGNED(frame_size, kStackAlignment);
CHECK_EQ(R0, method_reg.AsArm().AsCoreRegister());
// Push callee saves and link register.
RegList push_list = 1 << LR;
size_t pushed_values = 1;
for (size_t i = 0; i < callee_save_regs.size(); i++) {
Register reg = callee_save_regs.at(i).AsArm().AsCoreRegister();
push_list |= 1 << reg;
pushed_values++;
}
PushList(push_list);
// Increase frame to required size.
CHECK_GT(frame_size, pushed_values * kFramePointerSize); // Must at least have space for Method*.
size_t adjust = frame_size - (pushed_values * kFramePointerSize);
IncreaseFrameSize(adjust);
// Write out Method*.
StoreToOffset(kStoreWord, R0, SP, 0);
// Write out entry spills.
for (size_t i = 0; i < entry_spills.size(); ++i) {
Register reg = entry_spills.at(i).AsArm().AsCoreRegister();
StoreToOffset(kStoreWord, reg, SP, frame_size + kFramePointerSize + (i * kFramePointerSize));
}
}
void ArmAssembler::RemoveFrame(size_t frame_size,
const std::vector<ManagedRegister>& callee_save_regs) {
CHECK_ALIGNED(frame_size, kStackAlignment);
// Compute callee saves to pop and PC.
RegList pop_list = 1 << PC;
size_t pop_values = 1;
for (size_t i = 0; i < callee_save_regs.size(); i++) {
Register reg = callee_save_regs.at(i).AsArm().AsCoreRegister();
pop_list |= 1 << reg;
pop_values++;
}
// Decrease frame to start of callee saves.
CHECK_GT(frame_size, pop_values * kFramePointerSize);
size_t adjust = frame_size - (pop_values * kFramePointerSize);
DecreaseFrameSize(adjust);
// Pop callee saves and PC.
PopList(pop_list);
}
void ArmAssembler::IncreaseFrameSize(size_t adjust) {
AddConstant(SP, -adjust);
}
void ArmAssembler::DecreaseFrameSize(size_t adjust) {
AddConstant(SP, adjust);
}
void ArmAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) {
ArmManagedRegister src = msrc.AsArm();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsCoreRegister()) {
CHECK_EQ(4u, size);
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
} else if (src.IsRegisterPair()) {
CHECK_EQ(8u, size);
StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value());
StoreToOffset(kStoreWord, src.AsRegisterPairHigh(),
SP, dest.Int32Value() + 4);
} else if (src.IsSRegister()) {
StoreSToOffset(src.AsSRegister(), SP, dest.Int32Value());
} else {
CHECK(src.IsDRegister()) << src;
StoreDToOffset(src.AsDRegister(), SP, dest.Int32Value());
}
}
void ArmAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
ArmManagedRegister src = msrc.AsArm();
CHECK(src.IsCoreRegister()) << src;
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
}
void ArmAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
ArmManagedRegister src = msrc.AsArm();
CHECK(src.IsCoreRegister()) << src;
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
}
void ArmAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc,
FrameOffset in_off, ManagedRegister mscratch) {
ArmManagedRegister src = msrc.AsArm();
ArmManagedRegister scratch = mscratch.AsArm();
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + 4);
}
void ArmAssembler::CopyRef(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
}
void ArmAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base,
MemberOffset offs) {
ArmManagedRegister dst = mdest.AsArm();
CHECK(dst.IsCoreRegister() && dst.IsCoreRegister()) << dst;
LoadFromOffset(kLoadWord, dst.AsCoreRegister(),
base.AsArm().AsCoreRegister(), offs.Int32Value());
if (kPoisonHeapReferences) {
rsb(dst.AsCoreRegister(), dst.AsCoreRegister(), ShifterOperand(0));
}
}
void ArmAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
ArmManagedRegister dst = mdest.AsArm();
CHECK(dst.IsCoreRegister()) << dst;
LoadFromOffset(kLoadWord, dst.AsCoreRegister(), SP, src.Int32Value());
}
void ArmAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base,
Offset offs) {
ArmManagedRegister dst = mdest.AsArm();
CHECK(dst.IsCoreRegister() && dst.IsCoreRegister()) << dst;
LoadFromOffset(kLoadWord, dst.AsCoreRegister(),
base.AsArm().AsCoreRegister(), offs.Int32Value());
}
void ArmAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadImmediate(scratch.AsCoreRegister(), imm);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
}
void ArmAssembler::StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadImmediate(scratch.AsCoreRegister(), imm);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), TR, dest.Int32Value());
}
static void EmitLoad(ArmAssembler* assembler, ManagedRegister m_dst,
Register src_register, int32_t src_offset, size_t size) {
ArmManagedRegister dst = m_dst.AsArm();
if (dst.IsNoRegister()) {
CHECK_EQ(0u, size) << dst;
} else if (dst.IsCoreRegister()) {
CHECK_EQ(4u, size) << dst;
assembler->LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset);
} else if (dst.IsRegisterPair()) {
CHECK_EQ(8u, size) << dst;
assembler->LoadFromOffset(kLoadWord, dst.AsRegisterPairLow(), src_register, src_offset);
assembler->LoadFromOffset(kLoadWord, dst.AsRegisterPairHigh(), src_register, src_offset + 4);
} else if (dst.IsSRegister()) {
assembler->LoadSFromOffset(dst.AsSRegister(), src_register, src_offset);
} else {
CHECK(dst.IsDRegister()) << dst;
assembler->LoadDFromOffset(dst.AsDRegister(), src_register, src_offset);
}
}
void ArmAssembler::Load(ManagedRegister m_dst, FrameOffset src, size_t size) {
return EmitLoad(this, m_dst, SP, src.Int32Value(), size);
}
void ArmAssembler::LoadFromThread32(ManagedRegister m_dst, ThreadOffset<4> src, size_t size) {
return EmitLoad(this, m_dst, TR, src.Int32Value(), size);
}
void ArmAssembler::LoadRawPtrFromThread32(ManagedRegister m_dst, ThreadOffset<4> offs) {
ArmManagedRegister dst = m_dst.AsArm();
CHECK(dst.IsCoreRegister()) << dst;
LoadFromOffset(kLoadWord, dst.AsCoreRegister(), TR, offs.Int32Value());
}
void ArmAssembler::CopyRawPtrFromThread32(FrameOffset fr_offs,
ThreadOffset<4> thr_offs,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
TR, thr_offs.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
SP, fr_offs.Int32Value());
}
void ArmAssembler::CopyRawPtrToThread32(ThreadOffset<4> thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
SP, fr_offs.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
TR, thr_offs.Int32Value());
}
void ArmAssembler::StoreStackOffsetToThread32(ThreadOffset<4> thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
AddConstant(scratch.AsCoreRegister(), SP, fr_offs.Int32Value(), AL);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
TR, thr_offs.Int32Value());
}
void ArmAssembler::StoreStackPointerToThread32(ThreadOffset<4> thr_offs) {
StoreToOffset(kStoreWord, SP, TR, thr_offs.Int32Value());
}
void ArmAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL) << "no sign extension necessary for arm";
}
void ArmAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL) << "no zero extension necessary for arm";
}
void ArmAssembler::Move(ManagedRegister m_dst, ManagedRegister m_src, size_t /*size*/) {
ArmManagedRegister dst = m_dst.AsArm();
ArmManagedRegister src = m_src.AsArm();
if (!dst.Equals(src)) {
if (dst.IsCoreRegister()) {
CHECK(src.IsCoreRegister()) << src;
mov(dst.AsCoreRegister(), ShifterOperand(src.AsCoreRegister()));
} else if (dst.IsDRegister()) {
CHECK(src.IsDRegister()) << src;
vmovd(dst.AsDRegister(), src.AsDRegister());
} else if (dst.IsSRegister()) {
CHECK(src.IsSRegister()) << src;
vmovs(dst.AsSRegister(), src.AsSRegister());
} else {
CHECK(dst.IsRegisterPair()) << dst;
CHECK(src.IsRegisterPair()) << src;
// Ensure that the first move doesn't clobber the input of the second.
if (src.AsRegisterPairHigh() != dst.AsRegisterPairLow()) {
mov(dst.AsRegisterPairLow(), ShifterOperand(src.AsRegisterPairLow()));
mov(dst.AsRegisterPairHigh(), ShifterOperand(src.AsRegisterPairHigh()));
} else {
mov(dst.AsRegisterPairHigh(), ShifterOperand(src.AsRegisterPairHigh()));
mov(dst.AsRegisterPairLow(), ShifterOperand(src.AsRegisterPairLow()));
}
}
}
}
void ArmAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + 4);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + 4);
}
}
void ArmAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
ManagedRegister mscratch, size_t size) {
Register scratch = mscratch.AsArm().AsCoreRegister();
CHECK_EQ(size, 4u);
LoadFromOffset(kLoadWord, scratch, src_base.AsArm().AsCoreRegister(), src_offset.Int32Value());
StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value());
}
void ArmAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
ManagedRegister mscratch, size_t size) {
Register scratch = mscratch.AsArm().AsCoreRegister();
CHECK_EQ(size, 4u);
LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch, dest_base.AsArm().AsCoreRegister(), dest_offset.Int32Value());
}
void ArmAssembler::Copy(FrameOffset /*dst*/, FrameOffset /*src_base*/, Offset /*src_offset*/,
ManagedRegister /*mscratch*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL);
}
void ArmAssembler::Copy(ManagedRegister dest, Offset dest_offset,
ManagedRegister src, Offset src_offset,
ManagedRegister mscratch, size_t size) {
CHECK_EQ(size, 4u);
Register scratch = mscratch.AsArm().AsCoreRegister();
LoadFromOffset(kLoadWord, scratch, src.AsArm().AsCoreRegister(), src_offset.Int32Value());
StoreToOffset(kStoreWord, scratch, dest.AsArm().AsCoreRegister(), dest_offset.Int32Value());
}
void ArmAssembler::Copy(FrameOffset /*dst*/, Offset /*dest_offset*/, FrameOffset /*src*/, Offset /*src_offset*/,
ManagedRegister /*scratch*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL);
}
void ArmAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
FrameOffset handle_scope_offset,
ManagedRegister min_reg, bool null_allowed) {
ArmManagedRegister out_reg = mout_reg.AsArm();
ArmManagedRegister in_reg = min_reg.AsArm();
CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg;
CHECK(out_reg.IsCoreRegister()) << out_reg;
if (null_allowed) {
// Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
// the address in the handle scope holding the reference.
// e.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset)
if (in_reg.IsNoRegister()) {
LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
SP, handle_scope_offset.Int32Value());
in_reg = out_reg;
}
cmp(in_reg.AsCoreRegister(), ShifterOperand(0));
if (!out_reg.Equals(in_reg)) {
it(EQ, kItElse);
LoadImmediate(out_reg.AsCoreRegister(), 0, EQ);
} else {
it(NE);
}
AddConstant(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value(), NE);
} else {
AddConstant(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value(), AL);
}
}
void ArmAssembler::CreateHandleScopeEntry(FrameOffset out_off,
FrameOffset handle_scope_offset,
ManagedRegister mscratch,
bool null_allowed) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
if (null_allowed) {
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP,
handle_scope_offset.Int32Value());
// Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
// the address in the handle scope holding the reference.
// e.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset)
cmp(scratch.AsCoreRegister(), ShifterOperand(0));
it(NE);
AddConstant(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value(), NE);
} else {
AddConstant(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value(), AL);
}
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value());
}
void ArmAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg,
ManagedRegister min_reg) {
ArmManagedRegister out_reg = mout_reg.AsArm();
ArmManagedRegister in_reg = min_reg.AsArm();
CHECK(out_reg.IsCoreRegister()) << out_reg;
CHECK(in_reg.IsCoreRegister()) << in_reg;
Label null_arg;
if (!out_reg.Equals(in_reg)) {
LoadImmediate(out_reg.AsCoreRegister(), 0, EQ); // TODO: why EQ?
}
cmp(in_reg.AsCoreRegister(), ShifterOperand(0));
it(NE);
LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
in_reg.AsCoreRegister(), 0, NE);
}
void ArmAssembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) {
// TODO: not validating references.
}
void ArmAssembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) {
// TODO: not validating references.
}
void ArmAssembler::Call(ManagedRegister mbase, Offset offset,
ManagedRegister mscratch) {
ArmManagedRegister base = mbase.AsArm();
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(base.IsCoreRegister()) << base;
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
base.AsCoreRegister(), offset.Int32Value());
blx(scratch.AsCoreRegister());
// TODO: place reference map on call.
}
void ArmAssembler::Call(FrameOffset base, Offset offset,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
// Call *(*(SP + base) + offset)
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
SP, base.Int32Value());
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
scratch.AsCoreRegister(), offset.Int32Value());
blx(scratch.AsCoreRegister());
// TODO: place reference map on call
}
void ArmAssembler::CallFromThread32(ThreadOffset<4> /*offset*/, ManagedRegister /*scratch*/) {
UNIMPLEMENTED(FATAL);
}
void ArmAssembler::GetCurrentThread(ManagedRegister tr) {
mov(tr.AsArm().AsCoreRegister(), ShifterOperand(TR));
}
void ArmAssembler::GetCurrentThread(FrameOffset offset,
ManagedRegister /*scratch*/) {
StoreToOffset(kStoreWord, TR, SP, offset.Int32Value(), AL);
}
void ArmAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) {
ArmManagedRegister scratch = mscratch.AsArm();
ArmExceptionSlowPath* slow = new ArmExceptionSlowPath(scratch, stack_adjust);
buffer_.EnqueueSlowPath(slow);
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
TR, Thread::ExceptionOffset<4>().Int32Value());
cmp(scratch.AsCoreRegister(), ShifterOperand(0));
b(slow->Entry(), NE);
}
void ArmExceptionSlowPath::Emit(Assembler* sasm) {
ArmAssembler* sp_asm = down_cast<ArmAssembler*>(sasm);
#define __ sp_asm->
__ Bind(&entry_);
if (stack_adjust_ != 0) { // Fix up the frame.
__ DecreaseFrameSize(stack_adjust_);
}
// Pass exception object as argument.
// Don't care about preserving R0 as this call won't return.
__ mov(R0, ShifterOperand(scratch_.AsCoreRegister()));
// Set up call to Thread::Current()->pDeliverException.
__ LoadFromOffset(kLoadWord, R12, TR, QUICK_ENTRYPOINT_OFFSET(4, pDeliverException).Int32Value());
__ blx(R12);
// Call never returns.
__ bkpt(0);
#undef __
}
static int LeadingZeros(uint32_t val) {
uint32_t alt;
int32_t n;
int32_t count;
count = 16;
n = 32;
do {
alt = val >> count;
if (alt != 0) {
n = n - count;
val = alt;
}
count >>= 1;
} while (count);
return n - val;
}
uint32_t ArmAssembler::ModifiedImmediate(uint32_t value) {
int32_t z_leading;
int32_t z_trailing;
uint32_t b0 = value & 0xff;
/* Note: case of value==0 must use 0:000:0:0000000 encoding */
if (value <= 0xFF)
return b0; // 0:000:a:bcdefgh.
if (value == ((b0 << 16) | b0))
return (0x1 << 12) | b0; /* 0:001:a:bcdefgh */
if (value == ((b0 << 24) | (b0 << 16) | (b0 << 8) | b0))
return (0x3 << 12) | b0; /* 0:011:a:bcdefgh */
b0 = (value >> 8) & 0xff;
if (value == ((b0 << 24) | (b0 << 8)))
return (0x2 << 12) | b0; /* 0:010:a:bcdefgh */
/* Can we do it with rotation? */
z_leading = LeadingZeros(value);
z_trailing = 32 - LeadingZeros(~value & (value - 1));
/* A run of eight or fewer active bits? */
if ((z_leading + z_trailing) < 24)
return kInvalidModifiedImmediate; /* No - bail */
/* left-justify the constant, discarding msb (known to be 1) */
value <<= z_leading + 1;
/* Create bcdefgh */
value >>= 25;
/* Put it all together */
uint32_t v = 8 + z_leading;
uint32_t i = (v & 0b10000) >> 4;
uint32_t imm3 = (v >> 1) & 0b111;
uint32_t a = v & 1;
return value | i << 26 | imm3 << 12 | a << 7;
}
} // namespace arm
} // namespace art