/* ----------------------------------------------------------------------------- * rubycontainer.swg * * Ruby sequence <-> C++ container wrapper * * This wrapper, and its iterator, allows a general use (and reuse) of * the mapping between C++ and Ruby, thanks to the C++ templates. * * Of course, it needs the C++ compiler to support templates, but * since we will use this wrapper with the STL containers, that should * be the case. * ----------------------------------------------------------------------------- */ %{ #include <iostream> %} #if !defined(SWIG_NO_EXPORT_ITERATOR_METHODS) # if !defined(SWIG_EXPORT_ITERATOR_METHODS) # define SWIG_EXPORT_ITERATOR_METHODS SWIG_EXPORT_ITERATOR_METHODS # endif #endif %include <rubyiterators.swg> /**** The RubySequence C++ Wrap ***/ %insert(header) %{ #include <stdexcept> %} %include <std_except.i> %fragment("RubySequence_Base","header") { %#include <functional> namespace swig { template < class T > struct yield : public std::unary_function< T, bool > { bool operator()( const T& v ) const { return RTEST( rb_yield( swig::from< T >(v) ) ); } }; inline size_t check_index(ptrdiff_t i, size_t size, bool insert = false) { if ( i < 0 ) { if ((size_t) (-i) <= size) return (size_t) (i + size); } else if ( (size_t) i < size ) { return (size_t) i; } else if (insert && ((size_t) i == size)) { return size; } throw std::out_of_range("index out of range"); } inline size_t slice_index(ptrdiff_t i, size_t size) { if ( i < 0 ) { if ((size_t) (-i) <= size) { return (size_t) (i + size); } else { throw std::out_of_range("index out of range"); } } else { return ( (size_t) i < size ) ? ((size_t) i) : size; } } template <class Sequence, class Difference> inline typename Sequence::iterator getpos(Sequence* self, Difference i) { typename Sequence::iterator pos = self->begin(); std::advance(pos, check_index(i,self->size())); return pos; } template <class Sequence, class Difference> inline typename Sequence::const_iterator cgetpos(const Sequence* self, Difference i) { typename Sequence::const_iterator pos = self->begin(); std::advance(pos, check_index(i,self->size())); return pos; } template <class Sequence, class Difference> inline Sequence* getslice(const Sequence* self, Difference i, Difference j) { typename Sequence::size_type size = self->size(); typename Sequence::size_type ii = swig::check_index(i, size); typename Sequence::size_type jj = swig::slice_index(j, size); if (jj > ii) { typename Sequence::const_iterator vb = self->begin(); typename Sequence::const_iterator ve = self->begin(); std::advance(vb,ii); std::advance(ve,jj); return new Sequence(vb, ve); } else { return new Sequence(); } } template <class Sequence, class Difference, class InputSeq> inline void setslice(Sequence* self, Difference i, Difference j, const InputSeq& v) { typename Sequence::size_type size = self->size(); typename Sequence::size_type ii = swig::check_index(i, size, true); typename Sequence::size_type jj = swig::slice_index(j, size); if (jj < ii) jj = ii; size_t ssize = jj - ii; if (ssize <= v.size()) { typename Sequence::iterator sb = self->begin(); typename InputSeq::const_iterator vmid = v.begin(); std::advance(sb,ii); std::advance(vmid, jj - ii); self->insert(std::copy(v.begin(), vmid, sb), vmid, v.end()); } else { typename Sequence::iterator sb = self->begin(); typename Sequence::iterator se = self->begin(); std::advance(sb,ii); std::advance(se,jj); self->erase(sb,se); self->insert(sb, v.begin(), v.end()); } } template <class Sequence, class Difference> inline void delslice(Sequence* self, Difference i, Difference j) { typename Sequence::size_type size = self->size(); typename Sequence::size_type ii = swig::check_index(i, size, true); typename Sequence::size_type jj = swig::slice_index(j, size); if (jj > ii) { typename Sequence::iterator sb = self->begin(); typename Sequence::iterator se = self->begin(); std::advance(sb,ii); std::advance(se,jj); self->erase(sb,se); } } } } %fragment("RubySequence_Cont","header", fragment="<stddef.h>", fragment="StdTraits", fragment="RubySequence_Base", fragment="ConstIterator_T") { namespace swig { /** * This class is a proxy class for references, used to return and set values * of an element of a Ruby Array of stuff. * It can be used by RubySequence_InputIterator to make it work with STL * algorithms. * */ template <class T> struct RubySequence_Ref { RubySequence_Ref(VALUE seq, int index) : _seq(seq), _index(index) { } operator T () const { VALUE item = rb_ary_entry(_seq, _index ); try { return swig::as<T>(item, true); } catch (std::exception& e) { char msg[1024]; sprintf(msg, "in sequence element %d ", _index); VALUE lastErr = rb_gv_get("$!"); if ( lastErr == Qnil ) { %type_error(swig::type_name<T>()); } VALUE str = rb_str_new2(msg); str = rb_str_cat2( str, e.what() ); SWIG_Ruby_ExceptionType( NULL, str ); throw; } } RubySequence_Ref& operator=(const T& v) { rb_ary_set(_seq, _index, swig::from< T >(v)); return *this; } private: VALUE _seq; int _index; }; /** * This class is a proxy to return a pointer to a class, usually * RubySequence_Ref. * It can be used by RubySequence_InputIterator to make it work with STL * algorithms. * */ template <class T> struct RubySequence_ArrowProxy { RubySequence_ArrowProxy(const T& x): m_value(x) {} const T* operator->() const { return &m_value; } operator const T*() const { return &m_value; } T m_value; }; /** * Input Iterator. This adapator class is a random access iterator that * allows you to use STL algorithms with a Ruby class (a Ruby Array by default). * */ template <class T, class Reference = RubySequence_Ref< T > > struct RubySequence_InputIterator { typedef RubySequence_InputIterator<T, Reference > self; typedef std::random_access_iterator_tag iterator_category; typedef Reference reference; typedef T value_type; typedef T* pointer; typedef ptrdiff_t difference_type; RubySequence_InputIterator() { } RubySequence_InputIterator(VALUE seq, int index) : _seq(seq), _index(index) { } reference operator*() const { return reference(_seq, _index); } RubySequence_ArrowProxy<T> operator->() const { return RubySequence_ArrowProxy<T>(operator*()); } bool operator==(const self& ri) const { return (_index == ri._index) && (_seq == ri._seq); } bool operator!=(const self& ri) const { return !(operator==(ri)); } self& operator ++ () { ++_index; return *this; } self& operator -- () { --_index; return *this; } self& operator += (difference_type n) { _index += n; return *this; } self operator +(difference_type n) const { return self(_seq, _index + n); } self& operator -= (difference_type n) { _index -= n; return *this; } self operator -(difference_type n) const { return self(_seq, _index - n); } difference_type operator - (const self& ri) const { return _index - ri._index; } bool operator < (const self& ri) const { return _index < ri._index; } reference operator[](difference_type n) const { return reference(_seq, _index + n); } private: VALUE _seq; difference_type _index; }; /** * This adaptor class allows you to use a Ruby Array as if it was an STL * container, giving it begin(), end(), and iterators. * */ template <class T> struct RubySequence_Cont { typedef RubySequence_Ref<T> reference; typedef const RubySequence_Ref<T> const_reference; typedef T value_type; typedef T* pointer; typedef int difference_type; typedef int size_type; typedef const pointer const_pointer; typedef RubySequence_InputIterator<T, reference> iterator; typedef RubySequence_InputIterator<T, const_reference> const_iterator; RubySequence_Cont(VALUE seq) : _seq(0) { if (!rb_obj_is_kind_of(seq, rb_cArray)) { throw std::invalid_argument("an Array is expected"); } _seq = seq; } ~RubySequence_Cont() { } size_type size() const { return RARRAY_LEN(_seq); } bool empty() const { return size() == 0; } iterator begin() { return iterator(_seq, 0); } const_iterator begin() const { return const_iterator(_seq, 0); } iterator end() { return iterator(_seq, size()); } const_iterator end() const { return const_iterator(_seq, size()); } reference operator[](difference_type n) { return reference(_seq, n); } const_reference operator[](difference_type n) const { return const_reference(_seq, n); } bool check(bool set_err = false) const { int s = (int) size(); for (int i = 0; i < s; ++i) { VALUE item = rb_ary_entry(_seq, i ); if (!swig::check<value_type>(item)) { if (set_err) { char msg[1024]; sprintf(msg, "in sequence element %d", i); SWIG_Error(SWIG_RuntimeError, msg); } return false; } } return true; } private: VALUE _seq; }; } } /** * Macros used to typemap an STL iterator -> SWIGIterator conversion. * */ %define %swig_sequence_iterator(Sequence...) #if defined(SWIG_EXPORT_ITERATOR_METHODS) %typemap(out,noblock=1,fragment="RubySequence_Cont") const_iterator, const_reverse_iterator { $result = SWIG_NewPointerObj(swig::make_const_iterator(%static_cast($1,const $type &), self), swig::ConstIterator::descriptor(),SWIG_POINTER_OWN); } %typemap(out,noblock=1,fragment="RubySequence_Cont") iterator, reverse_iterator { $result = SWIG_NewPointerObj(swig::make_nonconst_iterator(%static_cast($1,const $type &), self), swig::Iterator::descriptor(),SWIG_POINTER_OWN); } %typemap(out,noblock=1,fragment="RubySequence_Cont") std::pair<const_iterator, const_iterator> { $result = rb_ary_new2(2); rb_ary_push($result, SWIG_NewPointerObj(swig::make_const_iterator(%static_cast($1,const $type &).first), swig::ConstIterator::descriptor(),SWIG_POINTER_OWN)); rb_ary_push($result, SWIG_NewPointerObj(swig::make_const_iterator(%static_cast($1,const $type &).second), swig::ConstIterator::descriptor(),SWIG_POINTER_OWN)); } // std::map/multimap/set allow returning std::pair< iterator, iterator > from // equal_range, but we cannot still modify the key, so the iterator is // const. %typemap(out,noblock=1,fragment="RubySequence_Cont") std::pair<iterator, iterator> { $result = rb_ary_new2(2); rb_ary_push($result, SWIG_NewPointerObj(swig::make_const_iterator(%static_cast($1,const $type &).first), swig::ConstIterator::descriptor(),SWIG_POINTER_OWN)); rb_ary_push($result, SWIG_NewPointerObj(swig::make_const_iterator(%static_cast($1,const $type &).second), swig::ConstIterator::descriptor(),SWIG_POINTER_OWN)); } %typemap(in,noblock=1,fragment="RubySequence_Cont") const_iterator(swig::ConstIterator *iter = 0, int res), const_reverse_iterator(swig::ConstIterator *iter = 0, int res) { res = SWIG_ConvertPtr($input, %as_voidptrptr(&iter), swig::ConstIterator::descriptor(), 0); if (!SWIG_IsOK(res) || !iter) { %argument_fail(SWIG_TypeError, "$type", $symname, $argnum); } else { swig::ConstIterator_T<$type > *iter_t = dynamic_cast<swig::ConstIterator_T<$type > *>(iter); if (iter_t) { $1 = iter_t->get_current(); } else { %argument_fail(SWIG_TypeError, "$type", $symname, $argnum); } } } %typemap(in,noblock=1,fragment="RubySequence_Cont") iterator(swig::Iterator *iter = 0, int res), reverse_iterator(swig::Iterator *iter = 0, int res) { res = SWIG_ConvertPtr($input, %as_voidptrptr(&iter), swig::Iterator::descriptor(), 0); if (!SWIG_IsOK(res) || !iter) { %argument_fail(SWIG_TypeError, "$type", $symname, $argnum); } else { swig::Iterator_T<$type > *iter_t = dynamic_cast<swig::Iterator_T<$type > *>(iter); if (iter_t) { $1 = iter_t->get_current(); } else { %argument_fail(SWIG_TypeError, "$type", $symname, $argnum); } } } %typecheck(%checkcode(ITERATOR),noblock=1,fragment="RubySequence_Cont") const_iterator, const_reverse_iterator { swig::ConstIterator *iter = 0; int res = SWIG_ConvertPtr($input, %as_voidptrptr(&iter), swig::ConstIterator::descriptor(), 0); $1 = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::ConstIterator_T<$type > *>(iter) != 0)); } %typecheck(%checkcode(ITERATOR),noblock=1,fragment="RubySequence_Cont") iterator, reverse_iterator { swig::ConstIterator *iter = 0; int res = SWIG_ConvertPtr($input, %as_voidptrptr(&iter), swig::Iterator::descriptor(), 0); $1 = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::Iterator_T<$type > *>(iter) != 0)); } %fragment("RubySequence_Cont"); // %newobject iterator; // %newobject const_iterator; // %extend { // swig::Iterator* iterator(VALUE* RUBY_SELF) { // return swig::make_nonconst_iterator($self->begin(), $self->begin(), // $self->end(), *RUBY_SELF); // } // swig::ConstIterator* const_iterator(VALUE* RUBY_SELF) { // return swig::make_const_iterator($self->begin(), $self->begin(), // $self->end(), *RUBY_SELF); // } // } #endif //SWIG_EXPORT_ITERATOR_METHODS %enddef /**** The Ruby container methods ****/ %define %swig_container_methods(Container...) %extend { %newobject dup; Container* dup() { return new Container(*$self); } } %enddef /** * Macro used to define common Ruby printing methods for STL container * */ %define %swig_sequence_printing_methods(Sequence...) %extend { VALUE inspect() { Sequence::const_iterator i = $self->begin(); Sequence::const_iterator e = $self->end(); const char *type_name = swig::type_name< Sequence >(); VALUE str = rb_str_new2(type_name); str = rb_str_cat2( str, " [" ); bool comma = false; VALUE tmp; for ( ; i != e; ++i, comma = true ) { if (comma) str = rb_str_cat2( str, "," ); tmp = swig::from< Sequence::value_type >( *i ); tmp = rb_inspect( tmp ); str = rb_str_buf_append( str, tmp ); } str = rb_str_cat2( str, "]" ); return str; } VALUE to_a() { Sequence::const_iterator i = $self->begin(); Sequence::const_iterator e = $self->end(); VALUE ary = rb_ary_new2( std::distance( i, e ) ); VALUE tmp; for ( ; i != e; ++i ) { tmp = swig::from< Sequence::value_type >( *i ); rb_ary_push( ary, tmp ); } return ary; } VALUE to_s() { Sequence::iterator i = $self->begin(); Sequence::iterator e = $self->end(); VALUE str = rb_str_new2( "" ); VALUE tmp; for ( ; i != e; ++i ) { tmp = swig::from< Sequence::value_type >( *i ); tmp = rb_obj_as_string( tmp ); str = rb_str_buf_append( str, tmp ); } return str; } } %enddef /** * Macro used to add common methods to all STL sequence-type containers * */ %define %swig_sequence_methods_common(Sequence...) %swig_container_methods(%arg(Sequence)) %swig_sequence_iterator(%arg(Sequence)) %swig_sequence_printing_methods(%arg(Sequence)) %fragment("RubySequence_Base"); %extend { VALUE slice( difference_type i, difference_type j ) { if ( j <= 0 ) return Qnil; std::size_t len = $self->size(); if ( i < 0 ) i = len - i; j += i; if ( static_cast<std::size_t>(j) >= len ) j = len-1; VALUE r = Qnil; try { r = swig::from< const Sequence* >( swig::getslice(self, i, j) ); } catch( std::out_of_range ) { } return r; } Sequence* each() { if ( !rb_block_given_p() ) rb_raise( rb_eArgError, "no block given"); VALUE r; Sequence::const_iterator i = self->begin(); Sequence::const_iterator e = self->end(); for ( ; i != e; ++i ) { r = swig::from< Sequence::value_type >(*i); rb_yield(r); } return self; } %newobject select; Sequence* select() { if ( !rb_block_given_p() ) rb_raise( rb_eArgError, "no block given" ); Sequence* r = new Sequence; Sequence::const_iterator i = $self->begin(); Sequence::const_iterator e = $self->end(); for ( ; i != e; ++i ) { VALUE v = swig::from< Sequence::value_type >(*i); if ( RTEST( rb_yield(v) ) ) $self->insert( r->end(), *i); } return r; } VALUE delete_at(difference_type i) { VALUE r = Qnil; try { Sequence::iterator at = swig::getpos(self, i); r = swig::from< Sequence::value_type >( *(at) ); $self->erase(at); } catch (std::out_of_range) { } return r; } VALUE __delete2__(const value_type& i) { VALUE r = Qnil; return r; } } %enddef /** * Macro used to add functions for back insertion of values in * STL Sequence containers * */ %define %swig_sequence_back_inserters( Sequence... ) %extend { VALUE pop() { if ($self->empty()) return Qnil; Sequence::value_type x = self->back(); $self->pop_back(); return swig::from< Sequence::value_type >( x ); } %alias push "<<"; const value_type push( const value_type& e ) { $self->push_back( e ); return e; } %newobject reject; Sequence* reject() { if ( !rb_block_given_p() ) rb_raise( rb_eArgError, "no block given" ); Sequence* r = new Sequence; std::remove_copy_if( $self->begin(), $self->end(), std::back_inserter(*r), swig::yield< Sequence::value_type >() ); return r; } } %enddef %define %swig_sequence_methods_extra(Sequence...) %extend { %alias reject_bang "delete_if"; Sequence* reject_bang() { if ( !rb_block_given_p() ) rb_raise( rb_eArgError, "no block given" ); $self->erase( std::remove_if( $self->begin(), $self->end(), swig::yield< Sequence::value_type >() ), $self->end() ); return $self; } } %enddef /** * Macro used to add functions for Sequences * */ %define %swig_sequence_methods(Sequence...) %swig_sequence_methods_common(%arg(Sequence)); %swig_sequence_methods_extra(%arg(Sequence)); %swig_sequence_back_inserters(%arg(Sequence)); %extend { VALUE at(difference_type i) const { VALUE r = Qnil; try { r = swig::from< Sequence::value_type >( *(swig::cgetpos(self, i)) ); } catch( std::out_of_range ) { } return r; } VALUE __getitem__(difference_type i, difference_type j) const { if ( j <= 0 ) return Qnil; std::size_t len = $self->size(); if ( i < 0 ) i = len - i; j += i; if ( static_cast<std::size_t>(j) >= len ) j = len-1; VALUE r = Qnil; try { r = swig::from< const Sequence* >( swig::getslice(self, i, j) ); } catch( std::out_of_range ) { } return r; } VALUE __getitem__(difference_type i) const { VALUE r = Qnil; try { r = swig::from< Sequence::value_type >( *(swig::cgetpos(self, i)) ); } catch( std::out_of_range ) { } return r; } VALUE __getitem__(VALUE i) const { if ( rb_obj_is_kind_of( i, rb_cRange ) == Qfalse ) { rb_raise( rb_eTypeError, "not a valid index or range" ); } VALUE r = Qnil; static ID id_end = rb_intern("end"); static ID id_start = rb_intern("begin"); static ID id_noend = rb_intern("exclude_end?"); VALUE start = rb_funcall( i, id_start, 0 ); VALUE end = rb_funcall( i, id_end, 0 ); bool noend = ( rb_funcall( i, id_noend, 0 ) == Qtrue ); int len = $self->size(); int s = NUM2INT( start ); if ( s < 0 ) s = len + s; else if ( s >= len ) return Qnil; int e = NUM2INT( end ); if ( e < 0 ) e = len + e; if ( e < s ) return Qnil; //std::swap( s, e ); if ( noend ) e -= 1; if ( e >= len ) e = len - 1; return swig::from< Sequence* >( swig::getslice(self, s, e+1) ); } VALUE __setitem__(difference_type i, const value_type& x) { std::size_t len = $self->size(); if ( i < 0 ) i = len - i; else if ( static_cast<std::size_t>(i) >= len ) $self->resize( i+1, x ); else *(swig::getpos(self,i)) = x; return swig::from< Sequence::value_type >( x ); } VALUE __setitem__(difference_type i, difference_type j, const Sequence& v) throw (std::invalid_argument) { if ( j <= 0 ) return Qnil; std::size_t len = $self->size(); if ( i < 0 ) i = len - i; j += i; if ( static_cast<std::size_t>(j) >= len ) { $self->resize( j+1, *(v.begin()) ); j = len-1; } VALUE r = Qnil; swig::setslice(self, i, j, v); r = swig::from< const Sequence* >( &v ); return r; } } %enddef %define %swig_sequence_methods_val(Sequence...) %swig_sequence_methods(%arg(Sequence)) %enddef /** * Macro used to add functions for front insertion of * elements in STL sequence containers that support it. * */ %define %swig_sequence_front_inserters( Sequence... ) %extend { VALUE shift() { if ($self->empty()) return Qnil; Sequence::value_type x = self->front(); $self->erase( $self->begin() ); return swig::from< Sequence::value_type >( x ); } %typemap(in) (int argc, VALUE* argv) { $1 = argc - 1; $2 = argv + 1; } Sequence* insert( difference_type pos, int argc, VALUE* argv, ... ) { std::size_t len = $self->size(); std::size_t i = swig::check_index( pos, len, true ); Sequence::iterator start; VALUE elem = argv[0]; int idx = 0; try { Sequence::value_type val = swig::as<Sequence::value_type>( elem, true ); if ( i >= len ) { $self->resize(i-1, val); return $self; } start = $self->begin(); std::advance( start, i ); $self->insert( start++, val ); for ( ++idx; idx < argc; ++idx ) { elem = argv[idx]; val = swig::as<Sequence::value_type>( elem ); $self->insert( start++, val ); } } catch( std::invalid_argument ) { rb_raise( rb_eArgError, "%s", Ruby_Format_TypeError( "", swig::type_name<Sequence::value_type>(), __FUNCTION__, idx+2, elem )); } return $self; } %typemap(in) (int argc, VALUE* argv) { $1 = argc; $2 = argv; } Sequence* unshift( int argc, VALUE* argv, ... ) { for ( int idx = argc-1; idx >= 0; --idx ) { Sequence::iterator start = $self->begin(); VALUE elem = argv[idx]; try { Sequence::value_type val = swig::as<Sequence::value_type>( elem, true ); $self->insert( start, val ); } catch( std::invalid_argument ) { rb_raise( rb_eArgError, "%s", Ruby_Format_TypeError( "", swig::type_name<Sequence::value_type>(), __FUNCTION__, idx+2, elem )); } } return $self; } } %enddef // // Common fragments // %fragment("StdSequenceTraits","header", fragment="StdTraits", fragment="RubySequence_Cont", fragment="GC_VALUE_definition") { namespace swig { template <class RubySeq, class Seq> inline void assign(const RubySeq& rubyseq, Seq* seq) { // seq->assign(rubyseq.begin(), rubyseq.end()); // not used as not always implemented typedef typename RubySeq::value_type value_type; typename RubySeq::const_iterator it = rubyseq.begin(); for (;it != rubyseq.end(); ++it) { seq->insert(seq->end(),(value_type)(*it)); } } template <class Seq, class T = typename Seq::value_type > struct traits_asptr_stdseq { typedef Seq sequence; typedef T value_type; static int asptr(VALUE obj, sequence **seq) { if (rb_obj_is_kind_of(obj, rb_cArray) == Qtrue) { try { RubySequence_Cont<value_type> rubyseq(obj); if (seq) { sequence *pseq = new sequence(); assign(rubyseq, pseq); *seq = pseq; return SWIG_NEWOBJ; } else { return rubyseq.check() ? SWIG_OK : SWIG_ERROR; } } catch (std::exception& e) { if (seq) { VALUE lastErr = rb_gv_get("$!"); if (lastErr == Qnil) { rb_raise(rb_eTypeError, "%s", e.what()); } } return SWIG_ERROR; } } else { sequence *p; if (SWIG_ConvertPtr(obj,(void**)&p, swig::type_info<sequence>(),0) == SWIG_OK) { if (seq) *seq = p; return SWIG_OLDOBJ; } } return SWIG_ERROR; } }; // Partial specialization for GC_VALUE's. No need to typecheck each // element. template< class Seq > struct traits_asptr_stdseq< Seq, swig::GC_VALUE > { typedef Seq sequence; typedef swig::GC_VALUE value_type; static int asptr(VALUE obj, sequence **seq) { if (rb_obj_is_kind_of(obj, rb_cArray) == Qtrue) { try { if (seq) { RubySequence_Cont<value_type> rubyseq(obj); sequence *pseq = new sequence(); assign(rubyseq, pseq); *seq = pseq; return SWIG_NEWOBJ; } else { return true; } } catch (std::exception& e) { if (seq) { VALUE lastErr = rb_gv_get("$!"); if (lastErr == Qnil) { rb_raise(rb_eTypeError, "%s", e.what()); } } return SWIG_ERROR; } } else { sequence *p; if (SWIG_ConvertPtr(obj,(void**)&p, swig::type_info<sequence>(),0) == SWIG_OK) { if (seq) *seq = p; return SWIG_OLDOBJ; } } return SWIG_ERROR; } }; template <class Seq, class T = typename Seq::value_type > struct traits_from_stdseq { typedef Seq sequence; typedef T value_type; typedef typename Seq::size_type size_type; typedef typename sequence::const_iterator const_iterator; static VALUE from(const sequence& seq) { #ifdef SWIG_RUBY_EXTRA_NATIVE_CONTAINERS swig_type_info *desc = swig::type_info<sequence>(); if (desc && desc->clientdata) { return SWIG_NewPointerObj(new sequence(seq), desc, SWIG_POINTER_OWN); } #endif size_type size = seq.size(); if (size <= (size_type)INT_MAX) { VALUE obj = rb_ary_new2((int)size); int i = 0; for (const_iterator it = seq.begin(); it != seq.end(); ++it, ++i) { rb_ary_push(obj, swig::from< value_type >(*it)); } rb_obj_freeze(obj); // treat as immutable result return obj; } else { rb_raise(rb_eRangeError,"sequence size not valid in ruby"); return Qnil; } } }; } } %include <rubycontainer_extended.swg>