//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the BitcodeReader class. // //===----------------------------------------------------------------------===// #include "llvm/Bitcode/ReaderWriter.h" #include "BitcodeReader.h" #include "BitReader_3_0.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/AutoUpgrade.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/Operator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" using namespace llvm; using namespace llvm_3_0; #define FUNC_CODE_INST_UNWIND_2_7 14 #define eh_exception_2_7 145 #define eh_selector_2_7 149 #define TYPE_BLOCK_ID_OLD_3_0 10 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0 13 #define TYPE_CODE_STRUCT_OLD_3_0 10 namespace { void FindExnAndSelIntrinsics(BasicBlock *BB, CallInst *&Exn, CallInst *&Sel, SmallPtrSet<BasicBlock*, 8> &Visited) { if (!Visited.insert(BB)) return; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (CallInst *CI = dyn_cast<CallInst>(I)) { switch (CI->getCalledFunction()->getIntrinsicID()) { default: break; case eh_exception_2_7: assert(!Exn && "Found more than one eh.exception call!"); Exn = CI; break; case eh_selector_2_7: assert(!Sel && "Found more than one eh.selector call!"); Sel = CI; break; } if (Exn && Sel) return; } } if (Exn && Sel) return; for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { FindExnAndSelIntrinsics(*I, Exn, Sel, Visited); if (Exn && Sel) return; } } /// TransferClausesToLandingPadInst - Transfer the exception handling clauses /// from the eh_selector call to the new landingpad instruction. void TransferClausesToLandingPadInst(LandingPadInst *LPI, CallInst *EHSel) { LLVMContext &Context = LPI->getContext(); unsigned N = EHSel->getNumArgOperands(); for (unsigned i = N - 1; i > 1; --i) { if (const ConstantInt *CI = dyn_cast<ConstantInt>(EHSel->getArgOperand(i))){ unsigned FilterLength = CI->getZExtValue(); unsigned FirstCatch = i + FilterLength + !FilterLength; assert(FirstCatch <= N && "Invalid filter length"); if (FirstCatch < N) for (unsigned j = FirstCatch; j < N; ++j) { Value *Val = EHSel->getArgOperand(j); if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") { LPI->addClause(cast<Constant>(EHSel->getArgOperand(j))); } else { GlobalVariable *GV = cast<GlobalVariable>(Val); LPI->addClause(GV->getInitializer()); } } if (!FilterLength) { // Cleanup. LPI->setCleanup(true); } else { // Filter. SmallVector<Constant *, 4> TyInfo; TyInfo.reserve(FilterLength - 1); for (unsigned j = i + 1; j < FirstCatch; ++j) TyInfo.push_back(cast<Constant>(EHSel->getArgOperand(j))); ArrayType *AType = ArrayType::get(!TyInfo.empty() ? TyInfo[0]->getType() : PointerType::getUnqual(Type::getInt8Ty(Context)), TyInfo.size()); LPI->addClause(ConstantArray::get(AType, TyInfo)); } N = i; } } if (N > 2) for (unsigned j = 2; j < N; ++j) { Value *Val = EHSel->getArgOperand(j); if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") { LPI->addClause(cast<Constant>(EHSel->getArgOperand(j))); } else { GlobalVariable *GV = cast<GlobalVariable>(Val); LPI->addClause(GV->getInitializer()); } } } /// This function upgrades the old pre-3.0 exception handling system to the new /// one. N.B. This will be removed in 3.1. void UpgradeExceptionHandling(Module *M) { Function *EHException = M->getFunction("llvm.eh.exception"); Function *EHSelector = M->getFunction("llvm.eh.selector"); if (!EHException || !EHSelector) return; LLVMContext &Context = M->getContext(); Type *ExnTy = PointerType::getUnqual(Type::getInt8Ty(Context)); Type *SelTy = Type::getInt32Ty(Context); Type *LPadSlotTy = StructType::get(ExnTy, SelTy, NULL); // This map links the invoke instruction with the eh.exception and eh.selector // calls associated with it. DenseMap<InvokeInst*, std::pair<Value*, Value*> > InvokeToIntrinsicsMap; for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) { Function &F = *I; for (Function::iterator II = F.begin(), IE = F.end(); II != IE; ++II) { BasicBlock *BB = &*II; InvokeInst *Inst = dyn_cast<InvokeInst>(BB->getTerminator()); if (!Inst) continue; BasicBlock *UnwindDest = Inst->getUnwindDest(); if (UnwindDest->isLandingPad()) continue; // Already converted. SmallPtrSet<BasicBlock*, 8> Visited; CallInst *Exn = 0; CallInst *Sel = 0; FindExnAndSelIntrinsics(UnwindDest, Exn, Sel, Visited); assert(Exn && Sel && "Cannot find eh.exception and eh.selector calls!"); InvokeToIntrinsicsMap[Inst] = std::make_pair(Exn, Sel); } } // This map stores the slots where the exception object and selector value are // stored within a function. DenseMap<Function*, std::pair<Value*, Value*> > FnToLPadSlotMap; SmallPtrSet<Instruction*, 32> DeadInsts; for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end(); I != E; ++I) { InvokeInst *Invoke = I->first; BasicBlock *UnwindDest = Invoke->getUnwindDest(); Function *F = UnwindDest->getParent(); std::pair<Value*, Value*> EHIntrinsics = I->second; CallInst *Exn = cast<CallInst>(EHIntrinsics.first); CallInst *Sel = cast<CallInst>(EHIntrinsics.second); // Store the exception object and selector value in the entry block. Value *ExnSlot = 0; Value *SelSlot = 0; if (!FnToLPadSlotMap[F].first) { BasicBlock *Entry = &F->front(); ExnSlot = new AllocaInst(ExnTy, "exn", Entry->getTerminator()); SelSlot = new AllocaInst(SelTy, "sel", Entry->getTerminator()); FnToLPadSlotMap[F] = std::make_pair(ExnSlot, SelSlot); } else { ExnSlot = FnToLPadSlotMap[F].first; SelSlot = FnToLPadSlotMap[F].second; } if (!UnwindDest->getSinglePredecessor()) { // The unwind destination doesn't have a single predecessor. Create an // unwind destination which has only one predecessor. BasicBlock *NewBB = BasicBlock::Create(Context, "new.lpad", UnwindDest->getParent()); BranchInst::Create(UnwindDest, NewBB); Invoke->setUnwindDest(NewBB); // Fix up any PHIs in the original unwind destination block. for (BasicBlock::iterator II = UnwindDest->begin(); isa<PHINode>(II); ++II) { PHINode *PN = cast<PHINode>(II); int Idx = PN->getBasicBlockIndex(Invoke->getParent()); if (Idx == -1) continue; PN->setIncomingBlock(Idx, NewBB); } UnwindDest = NewBB; } IRBuilder<> Builder(Context); Builder.SetInsertPoint(UnwindDest, UnwindDest->getFirstInsertionPt()); Value *PersFn = Sel->getArgOperand(1); LandingPadInst *LPI = Builder.CreateLandingPad(LPadSlotTy, PersFn, 0); Value *LPExn = Builder.CreateExtractValue(LPI, 0); Value *LPSel = Builder.CreateExtractValue(LPI, 1); Builder.CreateStore(LPExn, ExnSlot); Builder.CreateStore(LPSel, SelSlot); TransferClausesToLandingPadInst(LPI, Sel); DeadInsts.insert(Exn); DeadInsts.insert(Sel); } // Replace the old intrinsic calls with the values from the landingpad // instruction(s). These values were stored in allocas for us to use here. for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end(); I != E; ++I) { std::pair<Value*, Value*> EHIntrinsics = I->second; CallInst *Exn = cast<CallInst>(EHIntrinsics.first); CallInst *Sel = cast<CallInst>(EHIntrinsics.second); BasicBlock *Parent = Exn->getParent(); std::pair<Value*,Value*> ExnSelSlots = FnToLPadSlotMap[Parent->getParent()]; IRBuilder<> Builder(Context); Builder.SetInsertPoint(Parent, Exn); LoadInst *LPExn = Builder.CreateLoad(ExnSelSlots.first, "exn.load"); LoadInst *LPSel = Builder.CreateLoad(ExnSelSlots.second, "sel.load"); Exn->replaceAllUsesWith(LPExn); Sel->replaceAllUsesWith(LPSel); } // Remove the dead instructions. for (SmallPtrSet<Instruction*, 32>::iterator I = DeadInsts.begin(), E = DeadInsts.end(); I != E; ++I) { Instruction *Inst = *I; Inst->eraseFromParent(); } // Replace calls to "llvm.eh.resume" with the 'resume' instruction. Load the // exception and selector values from the stored place. Function *EHResume = M->getFunction("llvm.eh.resume"); if (!EHResume) return; while (!EHResume->use_empty()) { CallInst *Resume = cast<CallInst>(*EHResume->use_begin()); BasicBlock *BB = Resume->getParent(); IRBuilder<> Builder(Context); Builder.SetInsertPoint(BB, Resume); Value *LPadVal = Builder.CreateInsertValue(UndefValue::get(LPadSlotTy), Resume->getArgOperand(0), 0, "lpad.val"); LPadVal = Builder.CreateInsertValue(LPadVal, Resume->getArgOperand(1), 1, "lpad.val"); Builder.CreateResume(LPadVal); // Remove all instructions after the 'resume.' BasicBlock::iterator I = Resume; while (I != BB->end()) { Instruction *Inst = &*I++; Inst->eraseFromParent(); } } } void StripDebugInfoOfFunction(Module* M, const char* name) { if (Function* FuncStart = M->getFunction(name)) { while (!FuncStart->use_empty()) { cast<CallInst>(*FuncStart->use_begin())->eraseFromParent(); } FuncStart->eraseFromParent(); } } /// This function strips all debug info intrinsics, except for llvm.dbg.declare. /// If an llvm.dbg.declare intrinsic is invalid, then this function simply /// strips that use. void CheckDebugInfoIntrinsics(Module *M) { StripDebugInfoOfFunction(M, "llvm.dbg.func.start"); StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint"); StripDebugInfoOfFunction(M, "llvm.dbg.region.start"); StripDebugInfoOfFunction(M, "llvm.dbg.region.end"); if (Function *Declare = M->getFunction("llvm.dbg.declare")) { if (!Declare->use_empty()) { DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin()); if (!isa<MDNode>(DDI->getArgOperand(0)) || !isa<MDNode>(DDI->getArgOperand(1))) { while (!Declare->use_empty()) { CallInst *CI = cast<CallInst>(*Declare->use_begin()); CI->eraseFromParent(); } Declare->eraseFromParent(); } } } } } // end anonymous namespace void BitcodeReader::FreeState() { if (BufferOwned) delete Buffer; Buffer = 0; std::vector<Type*>().swap(TypeList); ValueList.clear(); MDValueList.clear(); std::vector<AttributeSet>().swap(MAttributes); std::vector<BasicBlock*>().swap(FunctionBBs); std::vector<Function*>().swap(FunctionsWithBodies); DeferredFunctionInfo.clear(); MDKindMap.clear(); } //===----------------------------------------------------------------------===// // Helper functions to implement forward reference resolution, etc. //===----------------------------------------------------------------------===// /// ConvertToString - Convert a string from a record into an std::string, return /// true on failure. template<typename StrTy> static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, StrTy &Result) { if (Idx > Record.size()) return true; for (unsigned i = Idx, e = Record.size(); i != e; ++i) Result += (char)Record[i]; return false; } static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { switch (Val) { default: // Map unknown/new linkages to external case 0: return GlobalValue::ExternalLinkage; case 1: return GlobalValue::WeakAnyLinkage; case 2: return GlobalValue::AppendingLinkage; case 3: return GlobalValue::InternalLinkage; case 4: return GlobalValue::LinkOnceAnyLinkage; case 5: return GlobalValue::ExternalLinkage; // Was DLLImportLinkage; case 6: return GlobalValue::ExternalLinkage; // Was DLLExportLinkage; case 7: return GlobalValue::ExternalWeakLinkage; case 8: return GlobalValue::CommonLinkage; case 9: return GlobalValue::PrivateLinkage; case 10: return GlobalValue::WeakODRLinkage; case 11: return GlobalValue::LinkOnceODRLinkage; case 12: return GlobalValue::AvailableExternallyLinkage; case 13: return GlobalValue::PrivateLinkage; // Was LinkerPrivateLinkage; case 14: return GlobalValue::ExternalWeakLinkage; // Was LinkerPrivateWeakLinkage; //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage case 15: return GlobalValue::LinkOnceODRLinkage; } } static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { switch (Val) { default: // Map unknown visibilities to default. case 0: return GlobalValue::DefaultVisibility; case 1: return GlobalValue::HiddenVisibility; case 2: return GlobalValue::ProtectedVisibility; } } static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { switch (Val) { case 0: return GlobalVariable::NotThreadLocal; default: // Map unknown non-zero value to general dynamic. case 1: return GlobalVariable::GeneralDynamicTLSModel; case 2: return GlobalVariable::LocalDynamicTLSModel; case 3: return GlobalVariable::InitialExecTLSModel; case 4: return GlobalVariable::LocalExecTLSModel; } } static int GetDecodedCastOpcode(unsigned Val) { switch (Val) { default: return -1; case bitc::CAST_TRUNC : return Instruction::Trunc; case bitc::CAST_ZEXT : return Instruction::ZExt; case bitc::CAST_SEXT : return Instruction::SExt; case bitc::CAST_FPTOUI : return Instruction::FPToUI; case bitc::CAST_FPTOSI : return Instruction::FPToSI; case bitc::CAST_UITOFP : return Instruction::UIToFP; case bitc::CAST_SITOFP : return Instruction::SIToFP; case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; case bitc::CAST_FPEXT : return Instruction::FPExt; case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; case bitc::CAST_BITCAST : return Instruction::BitCast; } } static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { switch (Val) { default: return -1; case bitc::BINOP_ADD: return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; case bitc::BINOP_SUB: return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; case bitc::BINOP_MUL: return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; case bitc::BINOP_UDIV: return Instruction::UDiv; case bitc::BINOP_SDIV: return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; case bitc::BINOP_UREM: return Instruction::URem; case bitc::BINOP_SREM: return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; case bitc::BINOP_SHL: return Instruction::Shl; case bitc::BINOP_LSHR: return Instruction::LShr; case bitc::BINOP_ASHR: return Instruction::AShr; case bitc::BINOP_AND: return Instruction::And; case bitc::BINOP_OR: return Instruction::Or; case bitc::BINOP_XOR: return Instruction::Xor; } } static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { switch (Val) { default: return AtomicRMWInst::BAD_BINOP; case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; case bitc::RMW_ADD: return AtomicRMWInst::Add; case bitc::RMW_SUB: return AtomicRMWInst::Sub; case bitc::RMW_AND: return AtomicRMWInst::And; case bitc::RMW_NAND: return AtomicRMWInst::Nand; case bitc::RMW_OR: return AtomicRMWInst::Or; case bitc::RMW_XOR: return AtomicRMWInst::Xor; case bitc::RMW_MAX: return AtomicRMWInst::Max; case bitc::RMW_MIN: return AtomicRMWInst::Min; case bitc::RMW_UMAX: return AtomicRMWInst::UMax; case bitc::RMW_UMIN: return AtomicRMWInst::UMin; } } static AtomicOrdering GetDecodedOrdering(unsigned Val) { switch (Val) { case bitc::ORDERING_NOTATOMIC: return NotAtomic; case bitc::ORDERING_UNORDERED: return Unordered; case bitc::ORDERING_MONOTONIC: return Monotonic; case bitc::ORDERING_ACQUIRE: return Acquire; case bitc::ORDERING_RELEASE: return Release; case bitc::ORDERING_ACQREL: return AcquireRelease; default: // Map unknown orderings to sequentially-consistent. case bitc::ORDERING_SEQCST: return SequentiallyConsistent; } } static SynchronizationScope GetDecodedSynchScope(unsigned Val) { switch (Val) { case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; default: // Map unknown scopes to cross-thread. case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; } } namespace llvm { namespace { /// @brief A class for maintaining the slot number definition /// as a placeholder for the actual definition for forward constants defs. class ConstantPlaceHolder : public ConstantExpr { void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT public: // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); } /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. //static inline bool classof(const ConstantPlaceHolder *) { return true; } static bool classof(const Value *V) { return isa<ConstantExpr>(V) && cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; } /// Provide fast operand accessors //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; } // FIXME: can we inherit this from ConstantExpr? template <> struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<ConstantPlaceHolder, 1> { }; } void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { if (Idx == size()) { push_back(V); return; } if (Idx >= size()) resize(Idx+1); WeakVH &OldV = ValuePtrs[Idx]; if (OldV == 0) { OldV = V; return; } // Handle constants and non-constants (e.g. instrs) differently for // efficiency. if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { ResolveConstants.push_back(std::make_pair(PHC, Idx)); OldV = V; } else { // If there was a forward reference to this value, replace it. Value *PrevVal = OldV; OldV->replaceAllUsesWith(V); delete PrevVal; } } Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, Type *Ty) { if (Idx >= size()) resize(Idx + 1); if (Value *V = ValuePtrs[Idx]) { assert(Ty == V->getType() && "Type mismatch in constant table!"); return cast<Constant>(V); } // Create and return a placeholder, which will later be RAUW'd. Constant *C = new ConstantPlaceHolder(Ty, Context); ValuePtrs[Idx] = C; return C; } Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { if (Idx >= size()) resize(Idx + 1); if (Value *V = ValuePtrs[Idx]) { assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); return V; } // No type specified, must be invalid reference. if (Ty == 0) return 0; // Create and return a placeholder, which will later be RAUW'd. Value *V = new Argument(Ty); ValuePtrs[Idx] = V; return V; } /// ResolveConstantForwardRefs - Once all constants are read, this method bulk /// resolves any forward references. The idea behind this is that we sometimes /// get constants (such as large arrays) which reference *many* forward ref /// constants. Replacing each of these causes a lot of thrashing when /// building/reuniquing the constant. Instead of doing this, we look at all the /// uses and rewrite all the place holders at once for any constant that uses /// a placeholder. void BitcodeReaderValueList::ResolveConstantForwardRefs() { // Sort the values by-pointer so that they are efficient to look up with a // binary search. std::sort(ResolveConstants.begin(), ResolveConstants.end()); SmallVector<Constant*, 64> NewOps; while (!ResolveConstants.empty()) { Value *RealVal = operator[](ResolveConstants.back().second); Constant *Placeholder = ResolveConstants.back().first; ResolveConstants.pop_back(); // Loop over all users of the placeholder, updating them to reference the // new value. If they reference more than one placeholder, update them all // at once. while (!Placeholder->use_empty()) { Value::use_iterator UI = Placeholder->use_begin(); Use &use = *UI; User *U = use.getUser(); // If the using object isn't uniqued, just update the operands. This // handles instructions and initializers for global variables. if (!isa<Constant>(U) || isa<GlobalValue>(U)) { use.set(RealVal); continue; } // Otherwise, we have a constant that uses the placeholder. Replace that // constant with a new constant that has *all* placeholder uses updated. Constant *UserC = cast<Constant>(U); for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); I != E; ++I) { Value *NewOp; if (!isa<ConstantPlaceHolder>(*I)) { // Not a placeholder reference. NewOp = *I; } else if (*I == Placeholder) { // Common case is that it just references this one placeholder. NewOp = RealVal; } else { // Otherwise, look up the placeholder in ResolveConstants. ResolveConstantsTy::iterator It = std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), std::pair<Constant*, unsigned>(cast<Constant>(*I), 0)); assert(It != ResolveConstants.end() && It->first == *I); NewOp = operator[](It->second); } NewOps.push_back(cast<Constant>(NewOp)); } // Make the new constant. Constant *NewC; if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { NewC = ConstantArray::get(UserCA->getType(), NewOps); } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { NewC = ConstantStruct::get(UserCS->getType(), NewOps); } else if (isa<ConstantVector>(UserC)) { NewC = ConstantVector::get(NewOps); } else { assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); } UserC->replaceAllUsesWith(NewC); UserC->destroyConstant(); NewOps.clear(); } // Update all ValueHandles, they should be the only users at this point. Placeholder->replaceAllUsesWith(RealVal); delete Placeholder; } } void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { if (Idx == size()) { push_back(V); return; } if (Idx >= size()) resize(Idx+1); WeakVH &OldV = MDValuePtrs[Idx]; if (OldV == 0) { OldV = V; return; } // If there was a forward reference to this value, replace it. MDNode *PrevVal = cast<MDNode>(OldV); OldV->replaceAllUsesWith(V); MDNode::deleteTemporary(PrevVal); // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new // value for Idx. MDValuePtrs[Idx] = V; } Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { if (Idx >= size()) resize(Idx + 1); if (Value *V = MDValuePtrs[Idx]) { assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); return V; } // Create and return a placeholder, which will later be RAUW'd. Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>()); MDValuePtrs[Idx] = V; return V; } Type *BitcodeReader::getTypeByID(unsigned ID) { // The type table size is always specified correctly. if (ID >= TypeList.size()) return 0; if (Type *Ty = TypeList[ID]) return Ty; // If we have a forward reference, the only possible case is when it is to a // named struct. Just create a placeholder for now. return TypeList[ID] = StructType::create(Context); } /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable. Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) { if (ID >= TypeList.size()) TypeList.resize(ID+1); return TypeList[ID]; } //===----------------------------------------------------------------------===// // Functions for parsing blocks from the bitcode file //===----------------------------------------------------------------------===// /// \brief This fills an AttrBuilder object with the LLVM attributes that have /// been decoded from the given integer. This function must stay in sync with /// 'encodeLLVMAttributesForBitcode'. static void decodeLLVMAttributesForBitcode(AttrBuilder &B, uint64_t EncodedAttrs) { // FIXME: Remove in 4.0. // The alignment is stored as a 16-bit raw value from bits 31--16. We shift // the bits above 31 down by 11 bits. unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; assert((!Alignment || isPowerOf2_32(Alignment)) && "Alignment must be a power of two."); if (Alignment) B.addAlignmentAttr(Alignment); B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | (EncodedAttrs & 0xffff)); } std::error_code BitcodeReader::ParseAttributeBlock() { if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) return Error(InvalidRecord); if (!MAttributes.empty()) return Error(InvalidMultipleBlocks); SmallVector<uint64_t, 64> Record; SmallVector<AttributeSet, 8> Attrs; // Read all the records. while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return Error(MalformedBlock); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: ignore. break; case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] // FIXME: Remove in 4.0. if (Record.size() & 1) return Error(InvalidRecord); for (unsigned i = 0, e = Record.size(); i != e; i += 2) { AttrBuilder B; decodeLLVMAttributesForBitcode(B, Record[i+1]); Attrs.push_back(AttributeSet::get(Context, Record[i], B)); } MAttributes.push_back(AttributeSet::get(Context, Attrs)); Attrs.clear(); break; } case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] for (unsigned i = 0, e = Record.size(); i != e; ++i) Attrs.push_back(MAttributeGroups[Record[i]]); MAttributes.push_back(AttributeSet::get(Context, Attrs)); Attrs.clear(); break; } } } } std::error_code BitcodeReader::ParseTypeTable() { if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) return Error(InvalidRecord); return ParseTypeTableBody(); } std::error_code BitcodeReader::ParseTypeTableBody() { if (!TypeList.empty()) return Error(InvalidMultipleBlocks); SmallVector<uint64_t, 64> Record; unsigned NumRecords = 0; SmallString<64> TypeName; // Read all the records for this type table. while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return Error(MalformedBlock); case BitstreamEntry::EndBlock: if (NumRecords != TypeList.size()) return Error(MalformedBlock); return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); Type *ResultTy = 0; switch (Stream.readRecord(Entry.ID, Record)) { default: return Error(InvalidValue); case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] // TYPE_CODE_NUMENTRY contains a count of the number of types in the // type list. This allows us to reserve space. if (Record.size() < 1) return Error(InvalidRecord); TypeList.resize(Record[0]); continue; case bitc::TYPE_CODE_VOID: // VOID ResultTy = Type::getVoidTy(Context); break; case bitc::TYPE_CODE_HALF: // HALF ResultTy = Type::getHalfTy(Context); break; case bitc::TYPE_CODE_FLOAT: // FLOAT ResultTy = Type::getFloatTy(Context); break; case bitc::TYPE_CODE_DOUBLE: // DOUBLE ResultTy = Type::getDoubleTy(Context); break; case bitc::TYPE_CODE_X86_FP80: // X86_FP80 ResultTy = Type::getX86_FP80Ty(Context); break; case bitc::TYPE_CODE_FP128: // FP128 ResultTy = Type::getFP128Ty(Context); break; case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 ResultTy = Type::getPPC_FP128Ty(Context); break; case bitc::TYPE_CODE_LABEL: // LABEL ResultTy = Type::getLabelTy(Context); break; case bitc::TYPE_CODE_METADATA: // METADATA ResultTy = Type::getMetadataTy(Context); break; case bitc::TYPE_CODE_X86_MMX: // X86_MMX ResultTy = Type::getX86_MMXTy(Context); break; case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] if (Record.size() < 1) return Error(InvalidRecord); ResultTy = IntegerType::get(Context, Record[0]); break; case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or // [pointee type, address space] if (Record.size() < 1) return Error(InvalidRecord); unsigned AddressSpace = 0; if (Record.size() == 2) AddressSpace = Record[1]; ResultTy = getTypeByID(Record[0]); if (ResultTy == 0) return Error(InvalidType); ResultTy = PointerType::get(ResultTy, AddressSpace); break; } case bitc::TYPE_CODE_FUNCTION_OLD: { // FIXME: attrid is dead, remove it in LLVM 4.0 // FUNCTION: [vararg, attrid, retty, paramty x N] if (Record.size() < 3) return Error(InvalidRecord); SmallVector<Type*, 8> ArgTys; for (unsigned i = 3, e = Record.size(); i != e; ++i) { if (Type *T = getTypeByID(Record[i])) ArgTys.push_back(T); else break; } ResultTy = getTypeByID(Record[2]); if (ResultTy == 0 || ArgTys.size() < Record.size()-3) return Error(InvalidType); ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); break; } case bitc::TYPE_CODE_FUNCTION: { // FUNCTION: [vararg, retty, paramty x N] if (Record.size() < 2) return Error(InvalidRecord); SmallVector<Type*, 8> ArgTys; for (unsigned i = 2, e = Record.size(); i != e; ++i) { if (Type *T = getTypeByID(Record[i])) ArgTys.push_back(T); else break; } ResultTy = getTypeByID(Record[1]); if (ResultTy == 0 || ArgTys.size() < Record.size()-2) return Error(InvalidType); ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); break; } case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] if (Record.size() < 1) return Error(InvalidRecord); SmallVector<Type*, 8> EltTys; for (unsigned i = 1, e = Record.size(); i != e; ++i) { if (Type *T = getTypeByID(Record[i])) EltTys.push_back(T); else break; } if (EltTys.size() != Record.size()-1) return Error(InvalidType); ResultTy = StructType::get(Context, EltTys, Record[0]); break; } case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] if (ConvertToString(Record, 0, TypeName)) return Error(InvalidRecord); continue; case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] if (Record.size() < 1) return Error(InvalidRecord); if (NumRecords >= TypeList.size()) return Error(InvalidTYPETable); // Check to see if this was forward referenced, if so fill in the temp. StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); if (Res) { Res->setName(TypeName); TypeList[NumRecords] = 0; } else // Otherwise, create a new struct. Res = StructType::create(Context, TypeName); TypeName.clear(); SmallVector<Type*, 8> EltTys; for (unsigned i = 1, e = Record.size(); i != e; ++i) { if (Type *T = getTypeByID(Record[i])) EltTys.push_back(T); else break; } if (EltTys.size() != Record.size()-1) return Error(InvalidRecord); Res->setBody(EltTys, Record[0]); ResultTy = Res; break; } case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] if (Record.size() != 1) return Error(InvalidRecord); if (NumRecords >= TypeList.size()) return Error(InvalidTYPETable); // Check to see if this was forward referenced, if so fill in the temp. StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); if (Res) { Res->setName(TypeName); TypeList[NumRecords] = 0; } else // Otherwise, create a new struct with no body. Res = StructType::create(Context, TypeName); TypeName.clear(); ResultTy = Res; break; } case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] if (Record.size() < 2) return Error(InvalidRecord); if ((ResultTy = getTypeByID(Record[1]))) ResultTy = ArrayType::get(ResultTy, Record[0]); else return Error(InvalidType); break; case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] if (Record.size() < 2) return Error(InvalidRecord); if ((ResultTy = getTypeByID(Record[1]))) ResultTy = VectorType::get(ResultTy, Record[0]); else return Error(InvalidType); break; } if (NumRecords >= TypeList.size()) return Error(InvalidTYPETable); assert(ResultTy && "Didn't read a type?"); assert(TypeList[NumRecords] == 0 && "Already read type?"); TypeList[NumRecords++] = ResultTy; } } // FIXME: Remove in LLVM 3.1 std::error_code BitcodeReader::ParseOldTypeTable() { if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0)) return Error(MalformedBlock); if (!TypeList.empty()) return Error(InvalidTYPETable); // While horrible, we have no good ordering of types in the bc file. Just // iteratively parse types out of the bc file in multiple passes until we get // them all. Do this by saving a cursor for the start of the type block. BitstreamCursor StartOfTypeBlockCursor(Stream); unsigned NumTypesRead = 0; SmallVector<uint64_t, 64> Record; RestartScan: unsigned NextTypeID = 0; bool ReadAnyTypes = false; // Read all the records for this type table. while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (NextTypeID != TypeList.size()) return Error(InvalidTYPETable); // If we haven't read all of the types yet, iterate again. if (NumTypesRead != TypeList.size()) { // If we didn't successfully read any types in this pass, then we must // have an unhandled forward reference. if (!ReadAnyTypes) return Error(InvalidTYPETable); Stream = StartOfTypeBlockCursor; goto RestartScan; } if (Stream.ReadBlockEnd()) return Error(InvalidTYPETable); return std::error_code(); } if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error(MalformedBlock); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); Type *ResultTy = 0; switch (Stream.readRecord(Code, Record)) { default: return Error(InvalidTYPETable); case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] // TYPE_CODE_NUMENTRY contains a count of the number of types in the // type list. This allows us to reserve space. if (Record.size() < 1) return Error(InvalidTYPETable); TypeList.resize(Record[0]); continue; case bitc::TYPE_CODE_VOID: // VOID ResultTy = Type::getVoidTy(Context); break; case bitc::TYPE_CODE_FLOAT: // FLOAT ResultTy = Type::getFloatTy(Context); break; case bitc::TYPE_CODE_DOUBLE: // DOUBLE ResultTy = Type::getDoubleTy(Context); break; case bitc::TYPE_CODE_X86_FP80: // X86_FP80 ResultTy = Type::getX86_FP80Ty(Context); break; case bitc::TYPE_CODE_FP128: // FP128 ResultTy = Type::getFP128Ty(Context); break; case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 ResultTy = Type::getPPC_FP128Ty(Context); break; case bitc::TYPE_CODE_LABEL: // LABEL ResultTy = Type::getLabelTy(Context); break; case bitc::TYPE_CODE_METADATA: // METADATA ResultTy = Type::getMetadataTy(Context); break; case bitc::TYPE_CODE_X86_MMX: // X86_MMX ResultTy = Type::getX86_MMXTy(Context); break; case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] if (Record.size() < 1) return Error(InvalidTYPETable); ResultTy = IntegerType::get(Context, Record[0]); break; case bitc::TYPE_CODE_OPAQUE: // OPAQUE if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0) ResultTy = StructType::create(Context, ""); break; case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD if (NextTypeID >= TypeList.size()) break; // If we already read it, don't reprocess. if (TypeList[NextTypeID] && !cast<StructType>(TypeList[NextTypeID])->isOpaque()) break; // Set a type. if (TypeList[NextTypeID] == 0) TypeList[NextTypeID] = StructType::create(Context, ""); std::vector<Type*> EltTys; for (unsigned i = 1, e = Record.size(); i != e; ++i) { if (Type *Elt = getTypeByIDOrNull(Record[i])) EltTys.push_back(Elt); else break; } if (EltTys.size() != Record.size()-1) break; // Not all elements are ready. cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]); ResultTy = TypeList[NextTypeID]; TypeList[NextTypeID] = 0; break; } case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or // [pointee type, address space] if (Record.size() < 1) return Error(InvalidTYPETable); unsigned AddressSpace = 0; if (Record.size() == 2) AddressSpace = Record[1]; if ((ResultTy = getTypeByIDOrNull(Record[0]))) ResultTy = PointerType::get(ResultTy, AddressSpace); break; } case bitc::TYPE_CODE_FUNCTION_OLD: { // FIXME: attrid is dead, remove it in LLVM 3.0 // FUNCTION: [vararg, attrid, retty, paramty x N] if (Record.size() < 3) return Error(InvalidTYPETable); std::vector<Type*> ArgTys; for (unsigned i = 3, e = Record.size(); i != e; ++i) { if (Type *Elt = getTypeByIDOrNull(Record[i])) ArgTys.push_back(Elt); else break; } if (ArgTys.size()+3 != Record.size()) break; // Something was null. if ((ResultTy = getTypeByIDOrNull(Record[2]))) ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); break; } case bitc::TYPE_CODE_FUNCTION: { // FUNCTION: [vararg, retty, paramty x N] if (Record.size() < 2) return Error(InvalidTYPETable); std::vector<Type*> ArgTys; for (unsigned i = 2, e = Record.size(); i != e; ++i) { if (Type *Elt = getTypeByIDOrNull(Record[i])) ArgTys.push_back(Elt); else break; } if (ArgTys.size()+2 != Record.size()) break; // Something was null. if ((ResultTy = getTypeByIDOrNull(Record[1]))) ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); break; } case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] if (Record.size() < 2) return Error(InvalidTYPETable); if ((ResultTy = getTypeByIDOrNull(Record[1]))) ResultTy = ArrayType::get(ResultTy, Record[0]); break; case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] if (Record.size() < 2) return Error(InvalidTYPETable); if ((ResultTy = getTypeByIDOrNull(Record[1]))) ResultTy = VectorType::get(ResultTy, Record[0]); break; } if (NextTypeID >= TypeList.size()) return Error(InvalidTYPETable); if (ResultTy && TypeList[NextTypeID] == 0) { ++NumTypesRead; ReadAnyTypes = true; TypeList[NextTypeID] = ResultTy; } ++NextTypeID; } } std::error_code BitcodeReader::ParseOldTypeSymbolTable() { if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0)) return Error(MalformedBlock); SmallVector<uint64_t, 64> Record; // Read all the records for this type table. std::string TypeName; while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error(MalformedBlock); return std::error_code(); } if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error(MalformedBlock); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); switch (Stream.readRecord(Code, Record)) { default: // Default behavior: unknown type. break; case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] if (ConvertToString(Record, 1, TypeName)) return Error(InvalidRecord); unsigned TypeID = Record[0]; if (TypeID >= TypeList.size()) return Error(InvalidRecord); // Only apply the type name to a struct type with no name. if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID])) if (!STy->isLiteral() && !STy->hasName()) STy->setName(TypeName); TypeName.clear(); break; } } } std::error_code BitcodeReader::ParseValueSymbolTable() { if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) return Error(InvalidRecord); SmallVector<uint64_t, 64> Record; // Read all the records for this value table. SmallString<128> ValueName; while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error(MalformedBlock); return std::error_code(); } if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error(MalformedBlock); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); switch (Stream.readRecord(Code, Record)) { default: // Default behavior: unknown type. break; case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] if (ConvertToString(Record, 1, ValueName)) return Error(InvalidRecord); unsigned ValueID = Record[0]; if (ValueID >= ValueList.size()) return Error(InvalidRecord); Value *V = ValueList[ValueID]; V->setName(StringRef(ValueName.data(), ValueName.size())); ValueName.clear(); break; } case bitc::VST_CODE_BBENTRY: { if (ConvertToString(Record, 1, ValueName)) return Error(InvalidRecord); BasicBlock *BB = getBasicBlock(Record[0]); if (BB == 0) return Error(InvalidRecord); BB->setName(StringRef(ValueName.data(), ValueName.size())); ValueName.clear(); break; } } } } std::error_code BitcodeReader::ParseMetadata() { unsigned NextMDValueNo = MDValueList.size(); if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) return Error(InvalidRecord); SmallVector<uint64_t, 64> Record; // Read all the records. while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error(MalformedBlock); return std::error_code(); } if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error(MalformedBlock); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } bool IsFunctionLocal = false; // Read a record. Record.clear(); Code = Stream.readRecord(Code, Record); switch (Code) { default: // Default behavior: ignore. break; case bitc::METADATA_NAME: { // Read named of the named metadata. unsigned NameLength = Record.size(); SmallString<8> Name; Name.resize(NameLength); for (unsigned i = 0; i != NameLength; ++i) Name[i] = Record[i]; Record.clear(); Code = Stream.ReadCode(); // METADATA_NAME is always followed by METADATA_NAMED_NODE. unsigned NextBitCode = Stream.readRecord(Code, Record); assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; // Read named metadata elements. unsigned Size = Record.size(); NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); for (unsigned i = 0; i != Size; ++i) { MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); if (MD == 0) return Error(InvalidRecord); NMD->addOperand(MD); } break; } case bitc::METADATA_FN_NODE: IsFunctionLocal = true; // fall-through case bitc::METADATA_NODE: { if (Record.size() % 2 == 1) return Error(InvalidRecord); unsigned Size = Record.size(); SmallVector<Value*, 8> Elts; for (unsigned i = 0; i != Size; i += 2) { Type *Ty = getTypeByID(Record[i]); if (!Ty) return Error(InvalidRecord); if (Ty->isMetadataTy()) Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); else if (!Ty->isVoidTy()) Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); else Elts.push_back(NULL); } Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); IsFunctionLocal = false; MDValueList.AssignValue(V, NextMDValueNo++); break; } case bitc::METADATA_STRING: { unsigned MDStringLength = Record.size(); SmallString<8> String; String.resize(MDStringLength); for (unsigned i = 0; i != MDStringLength; ++i) String[i] = Record[i]; Value *V = MDString::get(Context, StringRef(String.data(), String.size())); MDValueList.AssignValue(V, NextMDValueNo++); break; } case bitc::METADATA_KIND: { unsigned RecordLength = Record.size(); if (Record.empty() || RecordLength < 2) return Error(InvalidRecord); SmallString<8> Name; Name.resize(RecordLength-1); unsigned Kind = Record[0]; for (unsigned i = 1; i != RecordLength; ++i) Name[i-1] = Record[i]; unsigned NewKind = TheModule->getMDKindID(Name.str()); if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) return Error(ConflictingMETADATA_KINDRecords); break; } } } } /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in /// the LSB for dense VBR encoding. uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { if ((V & 1) == 0) return V >> 1; if (V != 1) return -(V >> 1); // There is no such thing as -0 with integers. "-0" really means MININT. return 1ULL << 63; } // FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a // GlobalObject. static GlobalObject & getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map, Constant &C) { auto *GO = dyn_cast<GlobalObject>(&C); if (GO) return *GO; auto *GA = dyn_cast<GlobalAlias>(&C); if (GA) return getGlobalObjectInExpr(Map, *Map.find(GA)->second); auto &CE = cast<ConstantExpr>(C); assert(CE.getOpcode() == Instruction::BitCast || CE.getOpcode() == Instruction::GetElementPtr || CE.getOpcode() == Instruction::AddrSpaceCast); if (CE.getOpcode() == Instruction::GetElementPtr) assert(cast<GEPOperator>(CE).hasAllZeroIndices()); return getGlobalObjectInExpr(Map, *CE.getOperand(0)); } /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global /// values and aliases that we can. std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; GlobalInitWorklist.swap(GlobalInits); AliasInitWorklist.swap(AliasInits); while (!GlobalInitWorklist.empty()) { unsigned ValID = GlobalInitWorklist.back().second; if (ValID >= ValueList.size()) { // Not ready to resolve this yet, it requires something later in the file. GlobalInits.push_back(GlobalInitWorklist.back()); } else { if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) GlobalInitWorklist.back().first->setInitializer(C); else return Error(ExpectedConstant); } GlobalInitWorklist.pop_back(); } // FIXME: Delete this in LLVM 4.0 // Older versions of llvm could write an alias pointing to another. We cannot // construct those aliases, so we first collect an alias to aliasee expression // and then compute the actual aliasee. DenseMap<GlobalAlias *, Constant *> AliasInit; while (!AliasInitWorklist.empty()) { unsigned ValID = AliasInitWorklist.back().second; if (ValID >= ValueList.size()) { AliasInits.push_back(AliasInitWorklist.back()); } else { if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C)); else return Error(ExpectedConstant); } AliasInitWorklist.pop_back(); } for (auto &Pair : AliasInit) { auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second); Pair.first->setAliasee(&GO); } return std::error_code(); } static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { SmallVector<uint64_t, 8> Words(Vals.size()); std::transform(Vals.begin(), Vals.end(), Words.begin(), BitcodeReader::decodeSignRotatedValue); return APInt(TypeBits, Words); } std::error_code BitcodeReader::ParseConstants() { if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) return Error(InvalidRecord); SmallVector<uint64_t, 64> Record; // Read all the records for this value table. Type *CurTy = Type::getInt32Ty(Context); unsigned NextCstNo = ValueList.size(); while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return Error(MalformedBlock); case BitstreamEntry::EndBlock: if (NextCstNo != ValueList.size()) return Error(InvalidConstantReference); // Once all the constants have been read, go through and resolve forward // references. ValueList.ResolveConstantForwardRefs(); return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); Value *V = 0; unsigned BitCode = Stream.readRecord(Entry.ID, Record); switch (BitCode) { default: // Default behavior: unknown constant case bitc::CST_CODE_UNDEF: // UNDEF V = UndefValue::get(CurTy); break; case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] if (Record.empty()) return Error(InvalidRecord); if (Record[0] >= TypeList.size()) return Error(InvalidRecord); CurTy = TypeList[Record[0]]; continue; // Skip the ValueList manipulation. case bitc::CST_CODE_NULL: // NULL V = Constant::getNullValue(CurTy); break; case bitc::CST_CODE_INTEGER: // INTEGER: [intval] if (!CurTy->isIntegerTy() || Record.empty()) return Error(InvalidRecord); V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); break; case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] if (!CurTy->isIntegerTy() || Record.empty()) return Error(InvalidRecord); APInt VInt = ReadWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); V = ConstantInt::get(Context, VInt); break; } case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] if (Record.empty()) return Error(InvalidRecord); if (CurTy->isHalfTy()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, APInt(16, (uint16_t)Record[0]))); else if (CurTy->isFloatTy()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, APInt(32, (uint32_t)Record[0]))); else if (CurTy->isDoubleTy()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, APInt(64, Record[0]))); else if (CurTy->isX86_FP80Ty()) { // Bits are not stored the same way as a normal i80 APInt, compensate. uint64_t Rearrange[2]; Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); Rearrange[1] = Record[0] >> 48; V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, APInt(80, Rearrange))); } else if (CurTy->isFP128Ty()) V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, APInt(128, Record))); else if (CurTy->isPPC_FP128Ty()) V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, APInt(128, Record))); else V = UndefValue::get(CurTy); break; } case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] if (Record.empty()) return Error(InvalidRecord); unsigned Size = Record.size(); SmallVector<Constant*, 16> Elts; if (StructType *STy = dyn_cast<StructType>(CurTy)) { for (unsigned i = 0; i != Size; ++i) Elts.push_back(ValueList.getConstantFwdRef(Record[i], STy->getElementType(i))); V = ConstantStruct::get(STy, Elts); } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { Type *EltTy = ATy->getElementType(); for (unsigned i = 0; i != Size; ++i) Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); V = ConstantArray::get(ATy, Elts); } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { Type *EltTy = VTy->getElementType(); for (unsigned i = 0; i != Size; ++i) Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); V = ConstantVector::get(Elts); } else { V = UndefValue::get(CurTy); } break; } case bitc::CST_CODE_STRING: { // STRING: [values] if (Record.empty()) return Error(InvalidRecord); ArrayType *ATy = cast<ArrayType>(CurTy); Type *EltTy = ATy->getElementType(); unsigned Size = Record.size(); std::vector<Constant*> Elts; for (unsigned i = 0; i != Size; ++i) Elts.push_back(ConstantInt::get(EltTy, Record[i])); V = ConstantArray::get(ATy, Elts); break; } case bitc::CST_CODE_CSTRING: { // CSTRING: [values] if (Record.empty()) return Error(InvalidRecord); ArrayType *ATy = cast<ArrayType>(CurTy); Type *EltTy = ATy->getElementType(); unsigned Size = Record.size(); std::vector<Constant*> Elts; for (unsigned i = 0; i != Size; ++i) Elts.push_back(ConstantInt::get(EltTy, Record[i])); Elts.push_back(Constant::getNullValue(EltTy)); V = ConstantArray::get(ATy, Elts); break; } case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] if (Record.size() < 3) return Error(InvalidRecord); int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); if (Opc < 0) { V = UndefValue::get(CurTy); // Unknown binop. } else { Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); unsigned Flags = 0; if (Record.size() >= 4) { if (Opc == Instruction::Add || Opc == Instruction::Sub || Opc == Instruction::Mul || Opc == Instruction::Shl) { if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) Flags |= OverflowingBinaryOperator::NoSignedWrap; if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || Opc == Instruction::LShr || Opc == Instruction::AShr) { if (Record[3] & (1 << bitc::PEO_EXACT)) Flags |= SDivOperator::IsExact; } } V = ConstantExpr::get(Opc, LHS, RHS, Flags); } break; } case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] if (Record.size() < 3) return Error(InvalidRecord); int Opc = GetDecodedCastOpcode(Record[0]); if (Opc < 0) { V = UndefValue::get(CurTy); // Unknown cast. } else { Type *OpTy = getTypeByID(Record[1]); if (!OpTy) return Error(InvalidRecord); Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); V = ConstantExpr::getCast(Opc, Op, CurTy); } break; } case bitc::CST_CODE_CE_INBOUNDS_GEP: case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] if (Record.size() & 1) return Error(InvalidRecord); SmallVector<Constant*, 16> Elts; for (unsigned i = 0, e = Record.size(); i != e; i += 2) { Type *ElTy = getTypeByID(Record[i]); if (!ElTy) return Error(InvalidRecord); Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); } ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); V = ConstantExpr::getGetElementPtr(Elts[0], Indices, BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP); break; } case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] if (Record.size() < 3) return Error(InvalidRecord); V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], Type::getInt1Ty(Context)), ValueList.getConstantFwdRef(Record[1],CurTy), ValueList.getConstantFwdRef(Record[2],CurTy)); break; case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] if (Record.size() < 3) return Error(InvalidRecord); VectorType *OpTy = dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); if (OpTy == 0) return Error(InvalidRecord); Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); V = ConstantExpr::getExtractElement(Op0, Op1); break; } case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] VectorType *OpTy = dyn_cast<VectorType>(CurTy); if (Record.size() < 3 || OpTy == 0) return Error(InvalidRecord); Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy->getElementType()); Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); V = ConstantExpr::getInsertElement(Op0, Op1, Op2); break; } case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] VectorType *OpTy = dyn_cast<VectorType>(CurTy); if (Record.size() < 3 || OpTy == 0) return Error(InvalidRecord); Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), OpTy->getNumElements()); Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); break; } case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] VectorType *RTy = dyn_cast<VectorType>(CurTy); VectorType *OpTy = dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); if (Record.size() < 4 || RTy == 0 || OpTy == 0) return Error(InvalidRecord); Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), RTy->getNumElements()); Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); break; } case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] if (Record.size() < 4) return Error(InvalidRecord); Type *OpTy = getTypeByID(Record[0]); if (OpTy == 0) return Error(InvalidRecord); Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); if (OpTy->isFPOrFPVectorTy()) V = ConstantExpr::getFCmp(Record[3], Op0, Op1); else V = ConstantExpr::getICmp(Record[3], Op0, Op1); break; } case bitc::CST_CODE_INLINEASM: { if (Record.size() < 2) return Error(InvalidRecord); std::string AsmStr, ConstrStr; bool HasSideEffects = Record[0] & 1; bool IsAlignStack = Record[0] >> 1; unsigned AsmStrSize = Record[1]; if (2+AsmStrSize >= Record.size()) return Error(InvalidRecord); unsigned ConstStrSize = Record[2+AsmStrSize]; if (3+AsmStrSize+ConstStrSize > Record.size()) return Error(InvalidRecord); for (unsigned i = 0; i != AsmStrSize; ++i) AsmStr += (char)Record[2+i]; for (unsigned i = 0; i != ConstStrSize; ++i) ConstrStr += (char)Record[3+AsmStrSize+i]; PointerType *PTy = cast<PointerType>(CurTy); V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), AsmStr, ConstrStr, HasSideEffects, IsAlignStack); break; } case bitc::CST_CODE_BLOCKADDRESS:{ if (Record.size() < 3) return Error(InvalidRecord); Type *FnTy = getTypeByID(Record[0]); if (FnTy == 0) return Error(InvalidRecord); Function *Fn = dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); if (Fn == 0) return Error(InvalidRecord); GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 0, ""); BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); V = FwdRef; break; } } ValueList.AssignValue(V, NextCstNo); ++NextCstNo; } if (NextCstNo != ValueList.size()) return Error(InvalidConstantReference); if (Stream.ReadBlockEnd()) return Error(ExpectedConstant); // Once all the constants have been read, go through and resolve forward // references. ValueList.ResolveConstantForwardRefs(); return std::error_code(); } /// RememberAndSkipFunctionBody - When we see the block for a function body, /// remember where it is and then skip it. This lets us lazily deserialize the /// functions. std::error_code BitcodeReader::RememberAndSkipFunctionBody() { // Get the function we are talking about. if (FunctionsWithBodies.empty()) return Error(InsufficientFunctionProtos); Function *Fn = FunctionsWithBodies.back(); FunctionsWithBodies.pop_back(); // Save the current stream state. uint64_t CurBit = Stream.GetCurrentBitNo(); DeferredFunctionInfo[Fn] = CurBit; // Skip over the function block for now. if (Stream.SkipBlock()) return Error(InvalidRecord); return std::error_code(); } std::error_code BitcodeReader::GlobalCleanup() { // Patch the initializers for globals and aliases up. ResolveGlobalAndAliasInits(); if (!GlobalInits.empty() || !AliasInits.empty()) return Error(MalformedGlobalInitializerSet); // Look for intrinsic functions which need to be upgraded at some point for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); FI != FE; ++FI) { Function *NewFn; if (UpgradeIntrinsicFunction(FI, NewFn)) UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); } // Look for global variables which need to be renamed. for (Module::global_iterator GI = TheModule->global_begin(), GE = TheModule->global_end(); GI != GE; ++GI) UpgradeGlobalVariable(GI); // Force deallocation of memory for these vectors to favor the client that // want lazy deserialization. std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); return std::error_code(); } std::error_code BitcodeReader::ParseModule(bool Resume) { if (Resume) Stream.JumpToBit(NextUnreadBit); else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) return Error(InvalidRecord); SmallVector<uint64_t, 64> Record; std::vector<std::string> SectionTable; std::vector<std::string> GCTable; // Read all the records for this module. while (1) { BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case BitstreamEntry::Error: return Error(MalformedBlock); case BitstreamEntry::EndBlock: return GlobalCleanup(); case BitstreamEntry::SubBlock: switch (Entry.ID) { default: // Skip unknown content. if (Stream.SkipBlock()) return Error(InvalidRecord); break; case bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) return Error(MalformedBlock); break; case bitc::PARAMATTR_BLOCK_ID: if (std::error_code EC = ParseAttributeBlock()) return EC; break; case bitc::TYPE_BLOCK_ID_NEW: if (std::error_code EC = ParseTypeTable()) return EC; break; case TYPE_BLOCK_ID_OLD_3_0: if (std::error_code EC = ParseOldTypeTable()) return EC; break; case TYPE_SYMTAB_BLOCK_ID_OLD_3_0: if (std::error_code EC = ParseOldTypeSymbolTable()) return EC; break; case bitc::VALUE_SYMTAB_BLOCK_ID: if (std::error_code EC = ParseValueSymbolTable()) return EC; SeenValueSymbolTable = true; break; case bitc::CONSTANTS_BLOCK_ID: if (std::error_code EC = ParseConstants()) return EC; if (std::error_code EC = ResolveGlobalAndAliasInits()) return EC; break; case bitc::METADATA_BLOCK_ID: if (std::error_code EC = ParseMetadata()) return EC; break; case bitc::FUNCTION_BLOCK_ID: // If this is the first function body we've seen, reverse the // FunctionsWithBodies list. if (!SeenFirstFunctionBody) { std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); if (std::error_code EC = GlobalCleanup()) return EC; SeenFirstFunctionBody = true; } if (std::error_code EC = RememberAndSkipFunctionBody()) return EC; // For streaming bitcode, suspend parsing when we reach the function // bodies. Subsequent materialization calls will resume it when // necessary. For streaming, the function bodies must be at the end of // the bitcode. If the bitcode file is old, the symbol table will be // at the end instead and will not have been seen yet. In this case, // just finish the parse now. if (LazyStreamer && SeenValueSymbolTable) { NextUnreadBit = Stream.GetCurrentBitNo(); return std::error_code(); } break; break; } continue; case BitstreamEntry::Record: // The interesting case. break; } // Read a record. switch (Stream.readRecord(Entry.ID, Record)) { default: break; // Default behavior, ignore unknown content. case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] if (Record.size() < 1) return Error(InvalidRecord); // Only version #0 is supported so far. if (Record[0] != 0) return Error(InvalidValue); break; } case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error(InvalidRecord); TheModule->setTargetTriple(S); break; } case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error(InvalidRecord); TheModule->setDataLayout(S); break; } case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error(InvalidRecord); TheModule->setModuleInlineAsm(S); break; } case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error(InvalidRecord); // ANDROID: Ignore value, since we never used it anyways. // TheModule->addLibrary(S); break; } case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error(InvalidRecord); SectionTable.push_back(S); break; } case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error(InvalidRecord); GCTable.push_back(S); break; } // GLOBALVAR: [pointer type, isconst, initid, // linkage, alignment, section, visibility, threadlocal, // unnamed_addr] case bitc::MODULE_CODE_GLOBALVAR: { if (Record.size() < 6) return Error(InvalidRecord); Type *Ty = getTypeByID(Record[0]); if (!Ty) return Error(InvalidRecord); if (!Ty->isPointerTy()) return Error(InvalidTypeForValue); unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); Ty = cast<PointerType>(Ty)->getElementType(); bool isConstant = Record[1]; GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); unsigned Alignment = (1 << Record[4]) >> 1; std::string Section; if (Record[5]) { if (Record[5]-1 >= SectionTable.size()) return Error(InvalidID); Section = SectionTable[Record[5]-1]; } GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; if (Record.size() > 6) Visibility = GetDecodedVisibility(Record[6]); GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; if (Record.size() > 7) TLM = GetDecodedThreadLocalMode(Record[7]); bool UnnamedAddr = false; if (Record.size() > 8) UnnamedAddr = Record[8]; GlobalVariable *NewGV = new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, TLM, AddressSpace); NewGV->setAlignment(Alignment); if (!Section.empty()) NewGV->setSection(Section); NewGV->setVisibility(Visibility); NewGV->setUnnamedAddr(UnnamedAddr); ValueList.push_back(NewGV); // Remember which value to use for the global initializer. if (unsigned InitID = Record[2]) GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); break; } // FUNCTION: [type, callingconv, isproto, linkage, paramattr, // alignment, section, visibility, gc, unnamed_addr] case bitc::MODULE_CODE_FUNCTION: { if (Record.size() < 8) return Error(InvalidRecord); Type *Ty = getTypeByID(Record[0]); if (!Ty) return Error(InvalidRecord); if (!Ty->isPointerTy()) return Error(InvalidTypeForValue); FunctionType *FTy = dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); if (!FTy) return Error(InvalidTypeForValue); Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, "", TheModule); Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); bool isProto = Record[2]; Func->setLinkage(GetDecodedLinkage(Record[3])); Func->setAttributes(getAttributes(Record[4])); Func->setAlignment((1 << Record[5]) >> 1); if (Record[6]) { if (Record[6]-1 >= SectionTable.size()) return Error(InvalidID); Func->setSection(SectionTable[Record[6]-1]); } Func->setVisibility(GetDecodedVisibility(Record[7])); if (Record.size() > 8 && Record[8]) { if (Record[8]-1 > GCTable.size()) return Error(InvalidID); Func->setGC(GCTable[Record[8]-1].c_str()); } bool UnnamedAddr = false; if (Record.size() > 9) UnnamedAddr = Record[9]; Func->setUnnamedAddr(UnnamedAddr); ValueList.push_back(Func); // If this is a function with a body, remember the prototype we are // creating now, so that we can match up the body with them later. if (!isProto) { FunctionsWithBodies.push_back(Func); if (LazyStreamer) DeferredFunctionInfo[Func] = 0; } break; } // ALIAS: [alias type, aliasee val#, linkage] // ALIAS: [alias type, aliasee val#, linkage, visibility] case bitc::MODULE_CODE_ALIAS: { if (Record.size() < 3) return Error(InvalidRecord); Type *Ty = getTypeByID(Record[0]); if (!Ty) return Error(InvalidRecord); auto *PTy = dyn_cast<PointerType>(Ty); if (!PTy) return Error(InvalidTypeForValue); GlobalAlias *NewGA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), GetDecodedLinkage(Record[2]), "", 0, TheModule); // Old bitcode files didn't have visibility field. if (Record.size() > 3) NewGA->setVisibility(GetDecodedVisibility(Record[3])); ValueList.push_back(NewGA); AliasInits.push_back(std::make_pair(NewGA, Record[1])); break; } /// MODULE_CODE_PURGEVALS: [numvals] case bitc::MODULE_CODE_PURGEVALS: // Trim down the value list to the specified size. if (Record.size() < 1 || Record[0] > ValueList.size()) return Error(InvalidRecord); ValueList.shrinkTo(Record[0]); break; } Record.clear(); } } std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { TheModule = 0; if (std::error_code EC = InitStream()) return EC; // Sniff for the signature. if (Stream.Read(8) != 'B' || Stream.Read(8) != 'C' || Stream.Read(4) != 0x0 || Stream.Read(4) != 0xC || Stream.Read(4) != 0xE || Stream.Read(4) != 0xD) return Error(InvalidBitcodeSignature); // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (1) { if (Stream.AtEndOfStream()) return std::error_code(); BitstreamEntry Entry = Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); switch (Entry.Kind) { case BitstreamEntry::Error: return Error(MalformedBlock); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::SubBlock: switch (Entry.ID) { case bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) return Error(MalformedBlock); break; case bitc::MODULE_BLOCK_ID: // Reject multiple MODULE_BLOCK's in a single bitstream. if (TheModule) return Error(InvalidMultipleBlocks); TheModule = M; if (std::error_code EC = ParseModule(false)) return EC; if (LazyStreamer) return std::error_code(); break; default: if (Stream.SkipBlock()) return Error(InvalidRecord); break; } continue; case BitstreamEntry::Record: // There should be no records in the top-level of blocks. // The ranlib in Xcode 4 will align archive members by appending newlines // to the end of them. If this file size is a multiple of 4 but not 8, we // have to read and ignore these final 4 bytes :-( if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && Stream.AtEndOfStream()) return std::error_code(); return Error(InvalidRecord); } } } std::error_code BitcodeReader::ParseModuleTriple(std::string &Triple) { if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) return Error(InvalidRecord); SmallVector<uint64_t, 64> Record; // Read all the records for this module. while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return Error(MalformedBlock); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. switch (Stream.readRecord(Entry.ID, Record)) { default: break; // Default behavior, ignore unknown content. case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error(InvalidRecord); Triple = S; break; } } Record.clear(); } } std::error_code BitcodeReader::ParseTriple(std::string &Triple) { if (std::error_code EC = InitStream()) return EC; // Sniff for the signature. if (Stream.Read(8) != 'B' || Stream.Read(8) != 'C' || Stream.Read(4) != 0x0 || Stream.Read(4) != 0xC || Stream.Read(4) != 0xE || Stream.Read(4) != 0xD) return Error(InvalidBitcodeSignature); // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (1) { BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case BitstreamEntry::Error: return Error(MalformedBlock); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::SubBlock: if (Entry.ID == bitc::MODULE_BLOCK_ID) return ParseModuleTriple(Triple); // Ignore other sub-blocks. if (Stream.SkipBlock()) return Error(MalformedBlock); continue; case BitstreamEntry::Record: Stream.skipRecord(Entry.ID); continue; } } } /// ParseMetadataAttachment - Parse metadata attachments. std::error_code BitcodeReader::ParseMetadataAttachment() { if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) return Error(InvalidRecord); SmallVector<uint64_t, 64> Record; while (1) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return Error(MalformedBlock); case BitstreamEntry::EndBlock: return std::error_code(); case BitstreamEntry::Record: // The interesting case. break; } // Read a metadata attachment record. Record.clear(); switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: ignore. break; case bitc::METADATA_ATTACHMENT: { unsigned RecordLength = Record.size(); if (Record.empty() || (RecordLength - 1) % 2 == 1) return Error(InvalidRecord); Instruction *Inst = InstructionList[Record[0]]; for (unsigned i = 1; i != RecordLength; i = i+2) { unsigned Kind = Record[i]; DenseMap<unsigned, unsigned>::iterator I = MDKindMap.find(Kind); if (I == MDKindMap.end()) return Error(InvalidID); Value *Node = MDValueList.getValueFwdRef(Record[i+1]); Inst->setMetadata(I->second, cast<MDNode>(Node)); } break; } } } } /// ParseFunctionBody - Lazily parse the specified function body block. std::error_code BitcodeReader::ParseFunctionBody(Function *F) { if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) return Error(InvalidRecord); InstructionList.clear(); unsigned ModuleValueListSize = ValueList.size(); unsigned ModuleMDValueListSize = MDValueList.size(); // Add all the function arguments to the value table. for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) ValueList.push_back(I); unsigned NextValueNo = ValueList.size(); BasicBlock *CurBB = 0; unsigned CurBBNo = 0; DebugLoc LastLoc; // Read all the records. SmallVector<uint64_t, 64> Record; while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error(MalformedBlock); break; } if (Code == bitc::ENTER_SUBBLOCK) { switch (Stream.ReadSubBlockID()) { default: // Skip unknown content. if (Stream.SkipBlock()) return Error(InvalidRecord); break; case bitc::CONSTANTS_BLOCK_ID: if (std::error_code EC = ParseConstants()) return EC; NextValueNo = ValueList.size(); break; case bitc::VALUE_SYMTAB_BLOCK_ID: if (std::error_code EC = ParseValueSymbolTable()) return EC; break; case bitc::METADATA_ATTACHMENT_ID: if (std::error_code EC = ParseMetadataAttachment()) return EC; break; case bitc::METADATA_BLOCK_ID: if (std::error_code EC = ParseMetadata()) return EC; break; } continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); Instruction *I = 0; unsigned BitCode = Stream.readRecord(Code, Record); switch (BitCode) { default: // Default behavior: reject return Error(InvalidValue); case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] if (Record.size() < 1 || Record[0] == 0) return Error(InvalidRecord); // Create all the basic blocks for the function. FunctionBBs.resize(Record[0]); for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) FunctionBBs[i] = BasicBlock::Create(Context, "", F); CurBB = FunctionBBs[0]; continue; case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN // This record indicates that the last instruction is at the same // location as the previous instruction with a location. I = 0; // Get the last instruction emitted. if (CurBB && !CurBB->empty()) I = &CurBB->back(); else if (CurBBNo && FunctionBBs[CurBBNo-1] && !FunctionBBs[CurBBNo-1]->empty()) I = &FunctionBBs[CurBBNo-1]->back(); if (I == 0) return Error(InvalidRecord); I->setDebugLoc(LastLoc); I = 0; continue; case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] I = 0; // Get the last instruction emitted. if (CurBB && !CurBB->empty()) I = &CurBB->back(); else if (CurBBNo && FunctionBBs[CurBBNo-1] && !FunctionBBs[CurBBNo-1]->empty()) I = &FunctionBBs[CurBBNo-1]->back(); if (I == 0 || Record.size() < 4) return Error(InvalidRecord); unsigned Line = Record[0], Col = Record[1]; unsigned ScopeID = Record[2], IAID = Record[3]; MDNode *Scope = 0, *IA = 0; if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); LastLoc = DebugLoc::get(Line, Col, Scope, IA); I->setDebugLoc(LastLoc); I = 0; continue; } case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] unsigned OpNum = 0; Value *LHS, *RHS; if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || getValue(Record, OpNum, LHS->getType(), RHS) || OpNum+1 > Record.size()) return Error(InvalidRecord); int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); if (Opc == -1) return Error(InvalidRecord); I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); InstructionList.push_back(I); if (OpNum < Record.size()) { if (Opc == Instruction::Add || Opc == Instruction::Sub || Opc == Instruction::Mul || Opc == Instruction::Shl) { if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) cast<BinaryOperator>(I)->setHasNoSignedWrap(true); if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || Opc == Instruction::LShr || Opc == Instruction::AShr) { if (Record[OpNum] & (1 << bitc::PEO_EXACT)) cast<BinaryOperator>(I)->setIsExact(true); } } break; } case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] unsigned OpNum = 0; Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op) || OpNum+2 != Record.size()) return Error(InvalidRecord); Type *ResTy = getTypeByID(Record[OpNum]); int Opc = GetDecodedCastOpcode(Record[OpNum+1]); if (Opc == -1 || ResTy == 0) return Error(InvalidRecord); I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_INBOUNDS_GEP: case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] unsigned OpNum = 0; Value *BasePtr; if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) return Error(InvalidRecord); SmallVector<Value*, 16> GEPIdx; while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return Error(InvalidRecord); GEPIdx.push_back(Op); } I = GetElementPtrInst::Create(BasePtr, GEPIdx); InstructionList.push_back(I); if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) cast<GetElementPtrInst>(I)->setIsInBounds(true); break; } case bitc::FUNC_CODE_INST_EXTRACTVAL: { // EXTRACTVAL: [opty, opval, n x indices] unsigned OpNum = 0; Value *Agg; if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) return Error(InvalidRecord); SmallVector<unsigned, 4> EXTRACTVALIdx; for (unsigned RecSize = Record.size(); OpNum != RecSize; ++OpNum) { uint64_t Index = Record[OpNum]; if ((unsigned)Index != Index) return Error(InvalidValue); EXTRACTVALIdx.push_back((unsigned)Index); } I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_INSERTVAL: { // INSERTVAL: [opty, opval, opty, opval, n x indices] unsigned OpNum = 0; Value *Agg; if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) return Error(InvalidRecord); Value *Val; if (getValueTypePair(Record, OpNum, NextValueNo, Val)) return Error(InvalidRecord); SmallVector<unsigned, 4> INSERTVALIdx; for (unsigned RecSize = Record.size(); OpNum != RecSize; ++OpNum) { uint64_t Index = Record[OpNum]; if ((unsigned)Index != Index) return Error(InvalidValue); INSERTVALIdx.push_back((unsigned)Index); } I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] // obsolete form of select // handles select i1 ... in old bitcode unsigned OpNum = 0; Value *TrueVal, *FalseVal, *Cond; if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || getValue(Record, OpNum, TrueVal->getType(), FalseVal) || getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) return Error(InvalidRecord); I = SelectInst::Create(Cond, TrueVal, FalseVal); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] // new form of select // handles select i1 or select [N x i1] unsigned OpNum = 0; Value *TrueVal, *FalseVal, *Cond; if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || getValue(Record, OpNum, TrueVal->getType(), FalseVal) || getValueTypePair(Record, OpNum, NextValueNo, Cond)) return Error(InvalidRecord); // select condition can be either i1 or [N x i1] if (VectorType* vector_type = dyn_cast<VectorType>(Cond->getType())) { // expect <n x i1> if (vector_type->getElementType() != Type::getInt1Ty(Context)) return Error(InvalidTypeForValue); } else { // expect i1 if (Cond->getType() != Type::getInt1Ty(Context)) return Error(InvalidTypeForValue); } I = SelectInst::Create(Cond, TrueVal, FalseVal); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] unsigned OpNum = 0; Value *Vec, *Idx; if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) return Error(InvalidRecord); I = ExtractElementInst::Create(Vec, Idx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] unsigned OpNum = 0; Value *Vec, *Elt, *Idx; if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || getValue(Record, OpNum, cast<VectorType>(Vec->getType())->getElementType(), Elt) || getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) return Error(InvalidRecord); I = InsertElementInst::Create(Vec, Elt, Idx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] unsigned OpNum = 0; Value *Vec1, *Vec2, *Mask; if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || getValue(Record, OpNum, Vec1->getType(), Vec2)) return Error(InvalidRecord); if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) return Error(InvalidRecord); I = new ShuffleVectorInst(Vec1, Vec2, Mask); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] // Old form of ICmp/FCmp returning bool // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were // both legal on vectors but had different behaviour. case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] // FCmp/ICmp returning bool or vector of bool unsigned OpNum = 0; Value *LHS, *RHS; if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || getValue(Record, OpNum, LHS->getType(), RHS) || OpNum+1 != Record.size()) return Error(InvalidRecord); if (LHS->getType()->isFPOrFPVectorTy()) I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); else I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] { unsigned Size = Record.size(); if (Size == 0) { I = ReturnInst::Create(Context); InstructionList.push_back(I); break; } unsigned OpNum = 0; Value *Op = NULL; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return Error(InvalidRecord); if (OpNum != Record.size()) return Error(InvalidRecord); I = ReturnInst::Create(Context, Op); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] if (Record.size() != 1 && Record.size() != 3) return Error(InvalidRecord); BasicBlock *TrueDest = getBasicBlock(Record[0]); if (TrueDest == 0) return Error(InvalidRecord); if (Record.size() == 1) { I = BranchInst::Create(TrueDest); InstructionList.push_back(I); } else { BasicBlock *FalseDest = getBasicBlock(Record[1]); Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); if (FalseDest == 0 || Cond == 0) return Error(InvalidRecord); I = BranchInst::Create(TrueDest, FalseDest, Cond); InstructionList.push_back(I); } break; } case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] if (Record.size() < 3 || (Record.size() & 1) == 0) return Error(InvalidRecord); Type *OpTy = getTypeByID(Record[0]); Value *Cond = getFnValueByID(Record[1], OpTy); BasicBlock *Default = getBasicBlock(Record[2]); if (OpTy == 0 || Cond == 0 || Default == 0) return Error(InvalidRecord); unsigned NumCases = (Record.size()-3)/2; SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); InstructionList.push_back(SI); for (unsigned i = 0, e = NumCases; i != e; ++i) { ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); if (CaseVal == 0 || DestBB == 0) { delete SI; return Error(InvalidRecord); } SI->addCase(CaseVal, DestBB); } I = SI; break; } case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] if (Record.size() < 2) return Error(InvalidRecord); Type *OpTy = getTypeByID(Record[0]); Value *Address = getFnValueByID(Record[1], OpTy); if (OpTy == 0 || Address == 0) return Error(InvalidRecord); unsigned NumDests = Record.size()-2; IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); InstructionList.push_back(IBI); for (unsigned i = 0, e = NumDests; i != e; ++i) { if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { IBI->addDestination(DestBB); } else { delete IBI; return Error(InvalidRecord); } } I = IBI; break; } case bitc::FUNC_CODE_INST_INVOKE: { // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] if (Record.size() < 4) return Error(InvalidRecord); AttributeSet PAL = getAttributes(Record[0]); unsigned CCInfo = Record[1]; BasicBlock *NormalBB = getBasicBlock(Record[2]); BasicBlock *UnwindBB = getBasicBlock(Record[3]); unsigned OpNum = 4; Value *Callee; if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) return Error(InvalidRecord); PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); FunctionType *FTy = !CalleeTy ? 0 : dyn_cast<FunctionType>(CalleeTy->getElementType()); // Check that the right number of fixed parameters are here. if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || Record.size() < OpNum+FTy->getNumParams()) return Error(InvalidRecord); SmallVector<Value*, 16> Ops; for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); if (Ops.back() == 0) return Error(InvalidRecord); } if (!FTy->isVarArg()) { if (Record.size() != OpNum) return Error(InvalidRecord); } else { // Read type/value pairs for varargs params. while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return Error(InvalidRecord); Ops.push_back(Op); } } I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); InstructionList.push_back(I); cast<InvokeInst>(I)->setCallingConv( static_cast<CallingConv::ID>(CCInfo)); cast<InvokeInst>(I)->setAttributes(PAL); break; } case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] unsigned Idx = 0; Value *Val = 0; if (getValueTypePair(Record, Idx, NextValueNo, Val)) return Error(InvalidRecord); I = ResumeInst::Create(Val); InstructionList.push_back(I); break; } case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD // 'unwind' instruction has been removed in LLVM 3.1 // Replace 'unwind' with 'landingpad' and 'resume'. Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context), Type::getInt32Ty(Context), NULL); Constant *PersFn = F->getParent()-> getOrInsertFunction("__gcc_personality_v0", FunctionType::get(Type::getInt32Ty(Context), true)); LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1); LP->setCleanup(true); CurBB->getInstList().push_back(LP); I = ResumeInst::Create(LP); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE I = new UnreachableInst(Context); InstructionList.push_back(I); break; case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] if (Record.size() < 1 || ((Record.size()-1)&1)) return Error(InvalidRecord); Type *Ty = getTypeByID(Record[0]); if (!Ty) return Error(InvalidRecord); PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); InstructionList.push_back(PN); for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { Value *V = getFnValueByID(Record[1+i], Ty); BasicBlock *BB = getBasicBlock(Record[2+i]); if (!V || !BB) return Error(InvalidRecord); PN->addIncoming(V, BB); } I = PN; break; } case bitc::FUNC_CODE_INST_LANDINGPAD: { // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] unsigned Idx = 0; if (Record.size() < 4) return Error(InvalidRecord); Type *Ty = getTypeByID(Record[Idx++]); if (!Ty) return Error(InvalidRecord); Value *PersFn = 0; if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) return Error(InvalidRecord); bool IsCleanup = !!Record[Idx++]; unsigned NumClauses = Record[Idx++]; LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); LP->setCleanup(IsCleanup); for (unsigned J = 0; J != NumClauses; ++J) { LandingPadInst::ClauseType CT = LandingPadInst::ClauseType(Record[Idx++]); (void)CT; Value *Val; if (getValueTypePair(Record, Idx, NextValueNo, Val)) { delete LP; return Error(InvalidRecord); } assert((CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"); assert((CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && "Filter clause has invalid type!"); LP->addClause(cast<Constant>(Val)); } I = LP; InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] if (Record.size() != 4) return Error(InvalidRecord); PointerType *Ty = dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); Type *OpTy = getTypeByID(Record[1]); Value *Size = getFnValueByID(Record[2], OpTy); unsigned Align = Record[3]; if (!Ty || !Size) return Error(InvalidRecord); I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] unsigned OpNum = 0; Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op) || OpNum+2 != Record.size()) return Error(InvalidRecord); I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_LOADATOMIC: { // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] unsigned OpNum = 0; Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op) || OpNum+4 != Record.size()) return Error(InvalidRecord); AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); if (Ordering == NotAtomic || Ordering == Release || Ordering == AcquireRelease) return Error(InvalidRecord); if (Ordering != NotAtomic && Record[OpNum] == 0) return Error(InvalidRecord); SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, Ordering, SynchScope); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] unsigned OpNum = 0; Value *Val, *Ptr; if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || getValue(Record, OpNum, cast<PointerType>(Ptr->getType())->getElementType(), Val) || OpNum+2 != Record.size()) return Error(InvalidRecord); I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_STOREATOMIC: { // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] unsigned OpNum = 0; Value *Val, *Ptr; if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || getValue(Record, OpNum, cast<PointerType>(Ptr->getType())->getElementType(), Val) || OpNum+4 != Record.size()) return Error(InvalidRecord); AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); if (Ordering == NotAtomic || Ordering == Acquire || Ordering == AcquireRelease) return Error(InvalidRecord); SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); if (Ordering != NotAtomic && Record[OpNum] == 0) return Error(InvalidRecord); I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, Ordering, SynchScope); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CMPXCHG: { // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope] unsigned OpNum = 0; Value *Ptr, *Cmp, *New; if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || getValue(Record, OpNum, cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || getValue(Record, OpNum, cast<PointerType>(Ptr->getType())->getElementType(), New) || OpNum+3 != Record.size()) return Error(InvalidRecord); AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]); if (Ordering == NotAtomic || Ordering == Unordered) return Error(InvalidRecord); SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Ordering, SynchScope); cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_ATOMICRMW: { // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] unsigned OpNum = 0; Value *Ptr, *Val; if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || getValue(Record, OpNum, cast<PointerType>(Ptr->getType())->getElementType(), Val) || OpNum+4 != Record.size()) return Error(InvalidRecord); AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); if (Operation < AtomicRMWInst::FIRST_BINOP || Operation > AtomicRMWInst::LAST_BINOP) return Error(InvalidRecord); AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); if (Ordering == NotAtomic || Ordering == Unordered) return Error(InvalidRecord); SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] if (2 != Record.size()) return Error(InvalidRecord); AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); if (Ordering == NotAtomic || Ordering == Unordered || Ordering == Monotonic) return Error(InvalidRecord); SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); I = new FenceInst(Context, Ordering, SynchScope); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CALL: { // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] if (Record.size() < 3) return Error(InvalidRecord); AttributeSet PAL = getAttributes(Record[0]); unsigned CCInfo = Record[1]; unsigned OpNum = 2; Value *Callee; if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) return Error(InvalidRecord); PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); FunctionType *FTy = 0; if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); if (!FTy || Record.size() < FTy->getNumParams()+OpNum) return Error(InvalidRecord); SmallVector<Value*, 16> Args; // Read the fixed params. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { if (FTy->getParamType(i)->isLabelTy()) Args.push_back(getBasicBlock(Record[OpNum])); else Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); if (Args.back() == 0) return Error(InvalidRecord); } // Read type/value pairs for varargs params. if (!FTy->isVarArg()) { if (OpNum != Record.size()) return Error(InvalidRecord); } else { while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return Error(InvalidRecord); Args.push_back(Op); } } I = CallInst::Create(Callee, Args); InstructionList.push_back(I); cast<CallInst>(I)->setCallingConv( static_cast<CallingConv::ID>(CCInfo>>1)); cast<CallInst>(I)->setTailCall(CCInfo & 1); cast<CallInst>(I)->setAttributes(PAL); break; } case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] if (Record.size() < 3) return Error(InvalidRecord); Type *OpTy = getTypeByID(Record[0]); Value *Op = getFnValueByID(Record[1], OpTy); Type *ResTy = getTypeByID(Record[2]); if (!OpTy || !Op || !ResTy) return Error(InvalidRecord); I = new VAArgInst(Op, ResTy); InstructionList.push_back(I); break; } } // Add instruction to end of current BB. If there is no current BB, reject // this file. if (CurBB == 0) { delete I; return Error(InvalidInstructionWithNoBB); } CurBB->getInstList().push_back(I); // If this was a terminator instruction, move to the next block. if (isa<TerminatorInst>(I)) { ++CurBBNo; CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; } // Non-void values get registered in the value table for future use. if (I && !I->getType()->isVoidTy()) ValueList.AssignValue(I, NextValueNo++); } // Check the function list for unresolved values. if (Argument *A = dyn_cast<Argument>(ValueList.back())) { if (A->getParent() == 0) { // We found at least one unresolved value. Nuke them all to avoid leaks. for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { A->replaceAllUsesWith(UndefValue::get(A->getType())); delete A; } } return Error(NeverResolvedValueFoundInFunction); } } // FIXME: Check for unresolved forward-declared metadata references // and clean up leaks. // See if anything took the address of blocks in this function. If so, // resolve them now. DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = BlockAddrFwdRefs.find(F); if (BAFRI != BlockAddrFwdRefs.end()) { std::vector<BlockAddrRefTy> &RefList = BAFRI->second; for (unsigned i = 0, e = RefList.size(); i != e; ++i) { unsigned BlockIdx = RefList[i].first; if (BlockIdx >= FunctionBBs.size()) return Error(InvalidID); GlobalVariable *FwdRef = RefList[i].second; FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); FwdRef->eraseFromParent(); } BlockAddrFwdRefs.erase(BAFRI); } // Trim the value list down to the size it was before we parsed this function. ValueList.shrinkTo(ModuleValueListSize); MDValueList.shrinkTo(ModuleMDValueListSize); std::vector<BasicBlock*>().swap(FunctionBBs); return std::error_code(); } //===----------------------------------------------------------------------===// // GVMaterializer implementation //===----------------------------------------------------------------------===// bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { if (const Function *F = dyn_cast<Function>(GV)) { return F->isDeclaration() && DeferredFunctionInfo.count(const_cast<Function*>(F)); } return false; } std::error_code BitcodeReader::Materialize(GlobalValue *GV) { Function *F = dyn_cast<Function>(GV); // If it's not a function or is already material, ignore the request. if (!F || !F->isMaterializable()) return std::error_code(); DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); // Move the bit stream to the saved position of the deferred function body. Stream.JumpToBit(DFII->second); if (std::error_code EC = ParseFunctionBody(F)) return EC; // Upgrade any old intrinsic calls in the function. for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { if (I->first != I->second) { for (Value::use_iterator UI = I->first->use_begin(), UE = I->first->use_end(); UI != UE; ) { if (CallInst* CI = dyn_cast<CallInst>(*UI++)) UpgradeIntrinsicCall(CI, I->second); } } } return std::error_code(); } bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { const Function *F = dyn_cast<Function>(GV); if (!F || F->isDeclaration()) return false; return DeferredFunctionInfo.count(const_cast<Function*>(F)); } void BitcodeReader::Dematerialize(GlobalValue *GV) { Function *F = dyn_cast<Function>(GV); // If this function isn't dematerializable, this is a noop. if (!F || !isDematerializable(F)) return; assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); // Just forget the function body, we can remat it later. F->deleteBody(); } std::error_code BitcodeReader::MaterializeModule(Module *M) { assert(M == TheModule && "Can only Materialize the Module this BitcodeReader is attached to."); // Iterate over the module, deserializing any functions that are still on // disk. for (Module::iterator F = TheModule->begin(), E = TheModule->end(); F != E; ++F) { if (F->isMaterializable()) { if (std::error_code EC = Materialize(F)) return EC; } } // Upgrade any intrinsic calls that slipped through (should not happen!) and // delete the old functions to clean up. We can't do this unless the entire // module is materialized because there could always be another function body // with calls to the old function. for (std::vector<std::pair<Function*, Function*> >::iterator I = UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { if (I->first != I->second) { for (Value::use_iterator UI = I->first->use_begin(), UE = I->first->use_end(); UI != UE; ) { if (CallInst* CI = dyn_cast<CallInst>(*UI++)) UpgradeIntrinsicCall(CI, I->second); } if (!I->first->use_empty()) I->first->replaceAllUsesWith(I->second); I->first->eraseFromParent(); } } std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); // Upgrade to new EH scheme. N.B. This will go away in 3.1. UpgradeExceptionHandling(M); // Check debug info intrinsics. CheckDebugInfoIntrinsics(TheModule); return std::error_code(); } std::error_code BitcodeReader::InitStream() { if (LazyStreamer) return InitLazyStream(); return InitStreamFromBuffer(); } std::error_code BitcodeReader::InitStreamFromBuffer() { const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); if (Buffer->getBufferSize() & 3) { if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) return Error(InvalidBitcodeSignature); else return Error(BitcodeStreamInvalidSize); } // If we have a wrapper header, parse it and ignore the non-bc file contents. // The magic number is 0x0B17C0DE stored in little endian. if (isBitcodeWrapper(BufPtr, BufEnd)) if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) return Error(InvalidBitcodeWrapperHeader); StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); Stream.init(*StreamFile); return std::error_code(); } std::error_code BitcodeReader::InitLazyStream() { // Check and strip off the bitcode wrapper; BitstreamReader expects never to // see it. StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); StreamFile.reset(new BitstreamReader(Bytes)); Stream.init(*StreamFile); unsigned char buf[16]; if (Bytes->readBytes(0, 16, buf) == -1) return Error(BitcodeStreamInvalidSize); if (!isBitcode(buf, buf + 16)) return Error(InvalidBitcodeSignature); if (isBitcodeWrapper(buf, buf + 4)) { const unsigned char *bitcodeStart = buf; const unsigned char *bitcodeEnd = buf + 16; SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); Bytes->dropLeadingBytes(bitcodeStart - buf); Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); } return std::error_code(); } namespace { class BitcodeErrorCategoryType : public std::error_category { const char *name() const LLVM_NOEXCEPT override { return "llvm.bitcode"; } std::string message(int IE) const override { BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE); switch (E) { case BitcodeReader::BitcodeStreamInvalidSize: return "Bitcode stream length should be >= 16 bytes and a multiple of 4"; case BitcodeReader::ConflictingMETADATA_KINDRecords: return "Conflicting METADATA_KIND records"; case BitcodeReader::CouldNotFindFunctionInStream: return "Could not find function in stream"; case BitcodeReader::ExpectedConstant: return "Expected a constant"; case BitcodeReader::InsufficientFunctionProtos: return "Insufficient function protos"; case BitcodeReader::InvalidBitcodeSignature: return "Invalid bitcode signature"; case BitcodeReader::InvalidBitcodeWrapperHeader: return "Invalid bitcode wrapper header"; case BitcodeReader::InvalidConstantReference: return "Invalid ronstant reference"; case BitcodeReader::InvalidID: return "Invalid ID"; case BitcodeReader::InvalidInstructionWithNoBB: return "Invalid instruction with no BB"; case BitcodeReader::InvalidRecord: return "Invalid record"; case BitcodeReader::InvalidTypeForValue: return "Invalid type for value"; case BitcodeReader::InvalidTYPETable: return "Invalid TYPE table"; case BitcodeReader::InvalidType: return "Invalid type"; case BitcodeReader::MalformedBlock: return "Malformed block"; case BitcodeReader::MalformedGlobalInitializerSet: return "Malformed global initializer set"; case BitcodeReader::InvalidMultipleBlocks: return "Invalid multiple blocks"; case BitcodeReader::NeverResolvedValueFoundInFunction: return "Never resolved value found in function"; case BitcodeReader::InvalidValue: return "Invalid value"; } llvm_unreachable("Unknown error type!"); } }; } const std::error_category &BitcodeReader::BitcodeErrorCategory() { static BitcodeErrorCategoryType O; return O; } //===----------------------------------------------------------------------===// // External interface //===----------------------------------------------------------------------===// /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. /// Module *llvm_3_0::getLazyBitcodeModule(MemoryBuffer *Buffer, LLVMContext& Context, std::string *ErrMsg) { Module *M = new Module(Buffer->getBufferIdentifier(), Context); BitcodeReader *R = new BitcodeReader(Buffer, Context); M->setMaterializer(R); if (std::error_code EC = R->ParseBitcodeInto(M)) { if (ErrMsg) *ErrMsg = EC.message(); delete M; // Also deletes R. return 0; } // Have the BitcodeReader dtor delete 'Buffer'. R->setBufferOwned(true); return M; } /// ParseBitcodeFile - Read the specified bitcode file, returning the module. /// If an error occurs, return null and fill in *ErrMsg if non-null. Module *llvm_3_0::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, std::string *ErrMsg){ Module *M = llvm_3_0::getLazyBitcodeModule(Buffer, Context, ErrMsg); if (!M) return 0; // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether // there was an error. static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); // Read in the entire module, and destroy the BitcodeReader. if (std::error_code ec = M->materializeAllPermanently()) { *ErrMsg = ec.message(); delete M; return 0; } return M; } std::string llvm_3_0::getBitcodeTargetTriple(MemoryBuffer *Buffer, LLVMContext& Context, std::string *ErrMsg) { BitcodeReader *R = new BitcodeReader(Buffer, Context); // Don't let the BitcodeReader dtor delete 'Buffer'. R->setBufferOwned(false); std::string Triple(""); if (std::error_code EC = R->ParseTriple(Triple)) if (ErrMsg) *ErrMsg = EC.message(); delete R; return Triple; }