/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "PathOpsTestCommon.h" #include "SkIntersections.h" #include "SkOpSegment.h" #include "SkPathOpsTriangle.h" #include "SkRandom.h" #include "SkTArray.h" #include "SkTSort.h" #include "Test.h" static bool gDisableAngleTests = true; static float next(float f) { int fBits = SkFloatAs2sCompliment(f); ++fBits; float fNext = Sk2sComplimentAsFloat(fBits); return fNext; } static float prev(float f) { int fBits = SkFloatAs2sCompliment(f); --fBits; float fNext = Sk2sComplimentAsFloat(fBits); return fNext; } DEF_TEST(PathOpsAngleFindCrossEpsilon, reporter) { if (gDisableAngleTests) { return; } SkRandom ran; int maxEpsilon = 0; for (int index = 0; index < 10000000; ++index) { SkDLine line = {{{0, 0}, {ran.nextRangeF(0.0001f, 1000), ran.nextRangeF(0.0001f, 1000)}}}; for (int inner = 0; inner < 10; ++inner) { float t = ran.nextRangeF(0.0001f, 1); SkDPoint dPt = line.ptAtT(t); SkPoint pt = dPt.asSkPoint(); float xs[3] = { prev(pt.fX), pt.fX, next(pt.fX) }; float ys[3] = { prev(pt.fY), pt.fY, next(pt.fY) }; for (int xIdx = 0; xIdx < 3; ++xIdx) { for (int yIdx = 0; yIdx < 3; ++yIdx) { SkPoint test = { xs[xIdx], ys[yIdx] }; float p1 = SkDoubleToScalar(line[1].fX * test.fY); float p2 = SkDoubleToScalar(line[1].fY * test.fX); int p1Bits = SkFloatAs2sCompliment(p1); int p2Bits = SkFloatAs2sCompliment(p2); int epsilon = abs(p1Bits - p2Bits); if (maxEpsilon < epsilon) { SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g pt={%1.7g, %1.7g}" " epsilon=%d\n", line[1].fX, line[1].fY, t, test.fX, test.fY, epsilon); maxEpsilon = epsilon; } } } } } } DEF_TEST(PathOpsAngleFindQuadEpsilon, reporter) { if (gDisableAngleTests) { return; } SkRandom ran; int maxEpsilon = 0; double maxAngle = 0; for (int index = 0; index < 100000; ++index) { SkDLine line = {{{0, 0}, {ran.nextRangeF(0.0001f, 1000), ran.nextRangeF(0.0001f, 1000)}}}; float t = ran.nextRangeF(0.0001f, 1); SkDPoint dPt = line.ptAtT(t); float t2 = ran.nextRangeF(0.0001f, 1); SkDPoint qPt = line.ptAtT(t2); float t3 = ran.nextRangeF(0.0001f, 1); SkDPoint qPt2 = line.ptAtT(t3); qPt.fX += qPt2.fY; qPt.fY -= qPt2.fX; SkDQuad quad = {{line[0], dPt, qPt}}; // binary search for maximum movement of quad[1] towards test that still has 1 intersection double moveT = 0.5f; double deltaT = moveT / 2; SkDPoint last; do { last = quad[1]; quad[1].fX = dPt.fX - line[1].fY * moveT; quad[1].fY = dPt.fY + line[1].fX * moveT; SkIntersections i; i.intersect(quad, line); REPORTER_ASSERT(reporter, i.used() > 0); if (i.used() == 1) { moveT += deltaT; } else { moveT -= deltaT; } deltaT /= 2; } while (last.asSkPoint() != quad[1].asSkPoint()); float p1 = SkDoubleToScalar(line[1].fX * last.fY); float p2 = SkDoubleToScalar(line[1].fY * last.fX); int p1Bits = SkFloatAs2sCompliment(p1); int p2Bits = SkFloatAs2sCompliment(p2); int epsilon = abs(p1Bits - p2Bits); if (maxEpsilon < epsilon) { SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g" " pt={%1.7g, %1.7g} epsilon=%d\n", line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, epsilon); maxEpsilon = epsilon; } double a1 = atan2(line[1].fY, line[1].fX); double a2 = atan2(last.fY, last.fX); double angle = fabs(a1 - a2); if (maxAngle < angle) { SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g" " pt={%1.7g, %1.7g} angle=%1.7g\n", line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, angle); maxAngle = angle; } } } static int find_slop(double x, double y, double rx, double ry) { int slopBits = 0; bool less1, less2; double absX = fabs(x); double absY = fabs(y); double length = absX < absY ? absX / 2 + absY : absX + absY / 2; int exponent; (void) frexp(length, &exponent); double epsilon = ldexp(FLT_EPSILON, exponent); do { // get the length as the larger plus half the smaller (both same signs) // find the ulps of the length // compute the offsets from there double xSlop = epsilon * slopBits; double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ? double x1 = x - xSlop; double y1 = y + ySlop; double x_ry1 = x1 * ry; double rx_y1 = rx * y1; less1 = x_ry1 < rx_y1; double x2 = x + xSlop; double y2 = y - ySlop; double x_ry2 = x2 * ry; double rx_y2 = rx * y2; less2 = x_ry2 < rx_y2; } while (less1 == less2 && ++slopBits); return slopBits; } // from http://stackoverflow.com/questions/1427422/cheap-algorithm-to-find-measure-of-angle-between-vectors static double diamond_angle(double y, double x) { if (y >= 0) return (x >= 0 ? y/(x+y) : 1-x/(-x+y)); else return (x < 0 ? 2-y/(-x-y) : 3+x/(x-y)); } static const double slopTests[][4] = { // x y rx ry {-0.058554756452593892, -0.18804585843827226, -0.018568569646021160, -0.059615294434479438}, {-0.0013717412948608398, 0.0041152238845825195, -0.00045837944195925573, 0.0013753175735478074}, {-2.1033774145221198, -1.4046019261273715e-008, -0.70062688352066704, -1.2706324683777995e-008}, }; DEF_TEST(PathOpsAngleFindSlop, reporter) { if (gDisableAngleTests) { return; } for (int index = 0; index < (int) SK_ARRAY_COUNT(slopTests); ++index) { const double* slopTest = slopTests[index]; double x = slopTest[0]; double y = slopTest[1]; double rx = slopTest[2]; double ry = slopTest[3]; SkDebugf("%s xy %d=%d\n", __FUNCTION__, index, find_slop(x, y, rx, ry)); SkDebugf("%s rxy %d=%d\n", __FUNCTION__, index, find_slop(rx, ry, x, y)); double angle = diamond_angle(y, x); double rAngle = diamond_angle(ry, rx); double diff = fabs(angle - rAngle); SkDebugf("%s diamond xy=%1.9g rxy=%1.9g diff=%1.9g factor=%d\n", __FUNCTION__, angle, rAngle, diff, (int) (diff / FLT_EPSILON)); } } class PathOpsAngleTester { public: static int After(const SkOpAngle& lh, const SkOpAngle& rh) { return lh.after(&rh); } static int ConvexHullOverlaps(const SkOpAngle& lh, const SkOpAngle& rh) { return lh.convexHullOverlaps(rh); } static int Orderable(const SkOpAngle& lh, const SkOpAngle& rh) { return lh.orderable(rh); } static int EndsIntersect(const SkOpAngle& lh, const SkOpAngle& rh) { return lh.endsIntersect(rh); } static void SetNext(SkOpAngle& lh, SkOpAngle& rh) { lh.fNext = &rh; } }; class PathOpsSegmentTester { public: static void ConstructCubic(SkOpSegment* segment, SkPoint shortCubic[4]) { segment->debugConstructCubic(shortCubic); } static void ConstructLine(SkOpSegment* segment, SkPoint shortLine[2]) { segment->debugConstructLine(shortLine); } static void ConstructQuad(SkOpSegment* segment, SkPoint shortQuad[3]) { segment->debugConstructQuad(shortQuad); } static void DebugReset(SkOpSegment* segment) { segment->debugReset(); } }; struct CircleData { const SkDCubic fPts; const int fPtCount; SkPoint fShortPts[4]; }; static CircleData circleDataSet[] = { { {{{313.0155029296875, 207.90290832519531}, {320.05078125, 227.58743286132812}}}, 2, {} }, { {{{313.0155029296875, 207.90290832519531}, {313.98246891063195, 219.33615203830394}, {320.05078125, 227.58743286132812}}}, 3, {} }, }; static const int circleDataSetSize = (int) SK_ARRAY_COUNT(circleDataSet); DEF_TEST(PathOpsAngleCircle, reporter) { SkOpSegment segment[2]; for (int index = 0; index < circleDataSetSize; ++index) { CircleData& data = circleDataSet[index]; for (int idx2 = 0; idx2 < data.fPtCount; ++idx2) { data.fShortPts[idx2] = data.fPts.fPts[idx2].asSkPoint(); } switch (data.fPtCount) { case 2: PathOpsSegmentTester::ConstructLine(&segment[index], data.fShortPts); break; case 3: PathOpsSegmentTester::ConstructQuad(&segment[index], data.fShortPts); break; case 4: PathOpsSegmentTester::ConstructCubic(&segment[index], data.fShortPts); break; } } PathOpsAngleTester::Orderable(*segment[0].debugLastAngle(), *segment[1].debugLastAngle()); } struct IntersectData { const SkDCubic fPts; const int fPtCount; double fTStart; double fTEnd; SkPoint fShortPts[4]; }; static IntersectData intersectDataSet1[] = { { {{{322.935669,231.030273}, {312.832214,220.393295}, {312.832214,203.454178}}}, 3, 0.865309956, 0.154740299, {} }, { {{{322.12738,233.397751}, {295.718353,159.505829}}}, 2, 0.345028807, 0.0786326511, {} }, { {{{322.935669,231.030273}, {312.832214,220.393295}, {312.832214,203.454178}}}, 3, 0.865309956, 1, {} }, { {{{322.12738,233.397751}, {295.718353,159.505829}}}, 2, 0.345028807, 1, {} }, }; static IntersectData intersectDataSet2[] = { { {{{364.390686,157.898193}, {375.281769,136.674606}, {396.039917,136.674606}}}, 3, 0.578520747, 1, {} }, { {{{364.390686,157.898193}, {375.281769,136.674606}, {396.039917,136.674606}}}, 3, 0.578520747, 0.536512973, {} }, { {{{366.608826,151.196014}, {378.803101,136.674606}, {398.164948,136.674606}}}, 3, 0.490456543, 1, {} }, }; static IntersectData intersectDataSet3[] = { { {{{2.000000,0.000000}, {1.33333333,0.66666667}}}, 2, 1, 0, {} }, { {{{1.33333333,0.66666667}, {0.000000,2.000000}}}, 2, 0, 0.25, {} }, { {{{2.000000,2.000000}, {1.33333333,0.66666667}}}, 2, 1, 0, {} }, }; static IntersectData intersectDataSet4[] = { { {{{1.3333333,0.6666667}, {0.000,2.000}}}, 2, 0.250000006, 0, {} }, { {{{1.000,0.000}, {1.000,1.000}}}, 2, 1, 0, {} }, { {{{1.000,1.000}, {0.000,0.000}}}, 2, 0, 1, {} }, }; static IntersectData intersectDataSet5[] = { { {{{0.000,0.000}, {1.000,0.000}, {1.000,1.000}}}, 3, 1, 0.666666667, {} }, { {{{0.000,0.000}, {2.000,1.000}, {0.000,2.000}}}, 3, 0.5, 1, {} }, { {{{0.000,0.000}, {2.000,1.000}, {0.000,2.000}}}, 3, 0.5, 0, {} }, }; static IntersectData intersectDataSet6[] = { // pathops_visualizer.htm:3658 { {{{0.000,1.000}, {3.000,4.000}, {1.000,0.000}, {3.000,0.000}}}, 4, 0.0925339054, 0, {} }, // pathops_visualizer.htm:3616 { {{{0.000,1.000}, {0.000,3.000}, {1.000,0.000}, {4.000,3.000}}}, 4, 0.453872386, 0, {} }, // pathops_visualizer.htm:3616 { {{{0.000,1.000}, {3.000,4.000}, {1.000,0.000}, {3.000,0.000}}}, 4, 0.0925339054, 0.417096368, {} }, // pathops_visualizer.htm:3616 }; static IntersectData intersectDataSet7[] = { // pathops_visualizer.htm:3748 { {{{2.000,1.000}, {0.000,1.000}}}, 2, 0.5, 0, {} }, // pathops_visualizer.htm:3706 { {{{2.000,0.000}, {0.000,2.000}}}, 2, 0.5, 1, {} }, // pathops_visualizer.htm:3706 { {{{0.000,1.000}, {0.000,2.000}, {2.000,0.000}, {2.000,1.000}}}, 4, 0.5, 1, {} }, // pathops_visualizer.htm:3706 }; // static IntersectData intersectDataSet8[] = { // pathops_visualizer.htm:4194 { {{{0.000,1.000}, {2.000,3.000}, {5.000,1.000}, {4.000,3.000}}}, 4, 0.311007457, 0.285714286, {} }, // pathops_visualizer.htm:4152 { {{{1.000,5.000}, {3.000,4.000}, {1.000,0.000}, {3.000,2.000}}}, 4, 0.589885081, 0.999982974, {} }, // pathops_visualizer.htm:4152 { {{{1.000,5.000}, {3.000,4.000}, {1.000,0.000}, {3.000,2.000}}}, 4, 0.589885081, 0.576935809, {} }, // pathops_visualizer.htm:4152 }; // static IntersectData intersectDataSet9[] = { // pathops_visualizer.htm:4142 { {{{0.000,1.000}, {2.000,3.000}, {5.000,1.000}, {4.000,3.000}}}, 4, 0.476627072, 0.311007457, {} }, // pathops_visualizer.htm:4100 { {{{1.000,5.000}, {3.000,4.000}, {1.000,0.000}, {3.000,2.000}}}, 4, 0.999982974, 1, {} }, // pathops_visualizer.htm:4100 { {{{0.000,1.000}, {2.000,3.000}, {5.000,1.000}, {4.000,3.000}}}, 4, 0.476627072, 1, {} }, // pathops_visualizer.htm:4100 }; // static IntersectData intersectDataSet10[] = { // pathops_visualizer.htm:4186 { {{{0.000,1.000}, {1.000,6.000}, {1.000,0.000}, {1.000,0.000}}}, 4, 0.788195121, 0.726275769, {} }, // pathops_visualizer.htm:4144 { {{{0.000,1.000}, {0.000,1.000}, {1.000,0.000}, {6.000,1.000}}}, 4, 0.473378977, 1, {} }, // pathops_visualizer.htm:4144 { {{{0.000,1.000}, {1.000,6.000}, {1.000,0.000}, {1.000,0.000}}}, 4, 0.788195121, 1, {} }, // pathops_visualizer.htm:4144 }; // static IntersectData intersectDataSet11[] = { // pathops_visualizer.htm:4704 { {{{979.305,561.000}, {1036.695,291.000}}}, 2, 0.888888874, 0.11111108, {} }, // pathops_visualizer.htm:4662 { {{{1006.695,291.000}, {1023.264,291.000}, {1033.840,304.431}, {1030.318,321.000}}}, 4, 1, 0, {} }, // pathops_visualizer.htm:4662 { {{{979.305,561.000}, {1036.695,291.000}}}, 2, 0.888888874, 1, {} }, // pathops_visualizer.htm:4662 }; // static IntersectData intersectDataSet12[] = { // pathops_visualizer.htm:5481 { {{{67.000,912.000}, {67.000,913.000}}}, 2, 1, 0, {} }, // pathops_visualizer.htm:5439 { {{{67.000,913.000}, {67.000,917.389}, {67.224,921.726}, {67.662,926.000}}}, 4, 0, 1, {} }, // pathops_visualizer.htm:5439 { {{{194.000,1041.000}, {123.860,1041.000}, {67.000,983.692}, {67.000,913.000}}}, 4, 1, 0, {} }, // pathops_visualizer.htm:5439 }; // static IntersectData intersectDataSet13[] = { // pathops_visualizer.htm:5735 { {{{6.000,0.000}, {0.000,4.000}}}, 2, 0.625, 0.25, {} }, // pathops_visualizer.htm:5693 { {{{0.000,1.000}, {0.000,6.000}, {4.000,0.000}, {6.000,1.000}}}, 4, 0.5, 0.833333333, {} }, // pathops_visualizer.htm:5693 { {{{0.000,1.000}, {0.000,6.000}, {4.000,0.000}, {6.000,1.000}}}, 4, 0.5, 0.379043969, {} }, // pathops_visualizer.htm:5693 }; // static IntersectData intersectDataSet14[] = { // pathops_visualizer.htm:5875 { {{{0.000,1.000}, {4.000,6.000}, {2.000,1.000}, {2.000,0.000}}}, 4, 0.0756502183, 0.0594570973, {} }, // pathops_visualizer.htm:5833 { {{{1.000,2.000}, {0.000,2.000}, {1.000,0.000}, {6.000,4.000}}}, 4, 0.0756502184, 0, {} }, // pathops_visualizer.htm:5833 { {{{0.000,1.000}, {4.000,6.000}, {2.000,1.000}, {2.000,0.000}}}, 4, 0.0756502183, 0.531917258, {} }, // pathops_visualizer.htm:5833 }; // static IntersectData intersectDataSet15[] = { // pathops_visualizer.htm:6580 { {{{490.435,879.407}, {405.593,909.436}}}, 2, 0.500554405, 1, {} }, // pathops_visualizer.htm:6538 { {{{447.967,894.438}, {448.007,894.424}, {448.014,894.422}}}, 3, 0, 1, {} }, // pathops_visualizer.htm:6538 { {{{490.435,879.407}, {405.593,909.436}}}, 2, 0.500554405, 0.500000273, {} }, // pathops_visualizer.htm:6538 }; // static IntersectData intersectDataSet16[] = { // pathops_visualizer.htm:7419 { {{{1.000,4.000}, {4.000,5.000}, {3.000,2.000}, {6.000,3.000}}}, 4, 0.5, 0, {} }, // pathops_visualizer.htm:7377 { {{{2.000,3.000}, {3.000,6.000}, {4.000,1.000}, {5.000,4.000}}}, 4, 0.5, 0.112701665, {} }, // pathops_visualizer.htm:7377 { {{{5.000,4.000}, {2.000,3.000}}}, 2, 0.5, 0, {} }, // pathops_visualizer.htm:7377 }; // #define I(x) intersectDataSet##x static IntersectData* intersectDataSets[] = { I(1), I(2), I(3), I(4), I(5), I(6), I(7), I(8), I(9), I(10), I(11), I(12), I(13), I(14), I(15), I(16), }; #undef I #define I(x) (int) SK_ARRAY_COUNT(intersectDataSet##x) static const int intersectDataSetSizes[] = { I(1), I(2), I(3), I(4), I(5), I(6), I(7), I(8), I(9), I(10), I(11), I(12), I(13), I(14), I(15), I(16), }; #undef I static const int intersectDataSetsSize = (int) SK_ARRAY_COUNT(intersectDataSetSizes); DEF_TEST(PathOpsAngleAfter, reporter) { for (int index = intersectDataSetsSize - 1; index >= 0; --index) { IntersectData* dataArray = intersectDataSets[index]; const int dataSize = intersectDataSetSizes[index]; SkOpSegment segment[3]; for (int index2 = 0; index2 < dataSize - 2; ++index2) { for (int temp = 0; temp < (int) SK_ARRAY_COUNT(segment); ++temp) { PathOpsSegmentTester::DebugReset(&segment[temp]); } for (int index3 = 0; index3 < (int) SK_ARRAY_COUNT(segment); ++index3) { IntersectData& data = dataArray[index2 + index3]; SkPoint temp[4]; for (int idx2 = 0; idx2 < data.fPtCount; ++idx2) { temp[idx2] = data.fPts.fPts[idx2].asSkPoint(); } switch (data.fPtCount) { case 2: { SkDLine seg = SkDLine::SubDivide(temp, data.fTStart, data.fTStart < data.fTEnd ? 1 : 0); data.fShortPts[0] = seg[0].asSkPoint(); data.fShortPts[1] = seg[1].asSkPoint(); PathOpsSegmentTester::ConstructLine(&segment[index3], data.fShortPts); } break; case 3: { SkDQuad seg = SkDQuad::SubDivide(temp, data.fTStart, data.fTEnd); data.fShortPts[0] = seg[0].asSkPoint(); data.fShortPts[1] = seg[1].asSkPoint(); data.fShortPts[2] = seg[2].asSkPoint(); PathOpsSegmentTester::ConstructQuad(&segment[index3], data.fShortPts); } break; case 4: { SkDCubic seg = SkDCubic::SubDivide(temp, data.fTStart, data.fTEnd); data.fShortPts[0] = seg[0].asSkPoint(); data.fShortPts[1] = seg[1].asSkPoint(); data.fShortPts[2] = seg[2].asSkPoint(); data.fShortPts[3] = seg[3].asSkPoint(); PathOpsSegmentTester::ConstructCubic(&segment[index3], data.fShortPts); } break; } } SkOpAngle& angle1 = *const_cast<SkOpAngle*>(segment[0].debugLastAngle()); SkOpAngle& angle2 = *const_cast<SkOpAngle*>(segment[1].debugLastAngle()); SkOpAngle& angle3 = *const_cast<SkOpAngle*>(segment[2].debugLastAngle()); PathOpsAngleTester::SetNext(angle1, angle3); // These data sets are seeded when the set itself fails, so likely the dataset does not // match the expected result. The tests above return 1 when first added, but // return 0 after the bug is fixed. SkDEBUGCODE(int result =) PathOpsAngleTester::After(angle2, angle1); SkASSERT(result == 0 || result == 1); } } } void SkOpSegment::debugConstruct() { addStartSpan(1); addEndSpan(1); debugAddAngle(0, 1); } void SkOpSegment::debugAddAngle(int start, int end) { SkASSERT(start != end); SkOpAngle& angle = fAngles.push_back(); angle.set(this, start, end); } void SkOpSegment::debugConstructCubic(SkPoint shortQuad[4]) { addCubic(shortQuad, false, false); addT(NULL, shortQuad[0], 0); addT(NULL, shortQuad[3], 1); debugConstruct(); } void SkOpSegment::debugConstructLine(SkPoint shortQuad[2]) { addLine(shortQuad, false, false); addT(NULL, shortQuad[0], 0); addT(NULL, shortQuad[1], 1); debugConstruct(); } void SkOpSegment::debugConstructQuad(SkPoint shortQuad[3]) { addQuad(shortQuad, false, false); addT(NULL, shortQuad[0], 0); addT(NULL, shortQuad[2], 1); debugConstruct(); }