/* * Stack-less Just-In-Time compiler * * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void) { return "PowerPC" SLJIT_CPUINFO; } /* Length of an instruction word. Both for ppc-32 and ppc-64. */ typedef sljit_ui sljit_ins; #if ((defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) && (defined _AIX)) \ || (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) #define SLJIT_PPC_STACK_FRAME_V2 1 #endif #ifdef _AIX #include <sys/cache.h> #endif #if (defined SLJIT_LITTLE_ENDIAN && SLJIT_LITTLE_ENDIAN) #define SLJIT_PASS_ENTRY_ADDR_TO_CALL 1 #endif static void ppc_cache_flush(sljit_ins *from, sljit_ins *to) { #ifdef _AIX _sync_cache_range((caddr_t)from, (int)((size_t)to - (size_t)from)); #elif defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM) # if defined(_ARCH_PWR) || defined(_ARCH_PWR2) /* Cache flush for POWER architecture. */ while (from < to) { __asm__ volatile ( "clf 0, %0\n" "dcs\n" : : "r"(from) ); from++; } __asm__ volatile ( "ics" ); # elif defined(_ARCH_COM) && !defined(_ARCH_PPC) # error "Cache flush is not implemented for PowerPC/POWER common mode." # else /* Cache flush for PowerPC architecture. */ while (from < to) { __asm__ volatile ( "dcbf 0, %0\n" "sync\n" "icbi 0, %0\n" : : "r"(from) ); from++; } __asm__ volatile ( "isync" ); # endif # ifdef __xlc__ # warning "This file may fail to compile if -qfuncsect is used" # endif #elif defined(__xlc__) #error "Please enable GCC syntax for inline assembly statements with -qasm=gcc" #else #error "This platform requires a cache flush implementation." #endif /* _AIX */ } #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3) #define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4) #define TMP_ZERO (SLJIT_NUMBER_OF_REGISTERS + 5) #if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) #define TMP_CALL_REG (SLJIT_NUMBER_OF_REGISTERS + 6) #else #define TMP_CALL_REG TMP_REG2 #endif #define TMP_FREG1 (0) #define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1) static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 7] = { 0, 3, 4, 5, 6, 7, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 8, 9, 10, 31, 12 }; /* --------------------------------------------------------------------- */ /* Instrucion forms */ /* --------------------------------------------------------------------- */ #define D(d) (reg_map[d] << 21) #define S(s) (reg_map[s] << 21) #define A(a) (reg_map[a] << 16) #define B(b) (reg_map[b] << 11) #define C(c) (reg_map[c] << 6) #define FD(fd) ((fd) << 21) #define FS(fs) ((fs) << 21) #define FA(fa) ((fa) << 16) #define FB(fb) ((fb) << 11) #define FC(fc) ((fc) << 6) #define IMM(imm) ((imm) & 0xffff) #define CRD(d) ((d) << 21) /* Instruction bit sections. OE and Rc flag (see ALT_SET_FLAGS). */ #define OERC(flags) (((flags & ALT_SET_FLAGS) >> 10) | (flags & ALT_SET_FLAGS)) /* Rc flag (see ALT_SET_FLAGS). */ #define RC(flags) ((flags & ALT_SET_FLAGS) >> 10) #define HI(opcode) ((opcode) << 26) #define LO(opcode) ((opcode) << 1) #define ADD (HI(31) | LO(266)) #define ADDC (HI(31) | LO(10)) #define ADDE (HI(31) | LO(138)) #define ADDI (HI(14)) #define ADDIC (HI(13)) #define ADDIS (HI(15)) #define ADDME (HI(31) | LO(234)) #define AND (HI(31) | LO(28)) #define ANDI (HI(28)) #define ANDIS (HI(29)) #define Bx (HI(18)) #define BCx (HI(16)) #define BCCTR (HI(19) | LO(528) | (3 << 11)) #define BLR (HI(19) | LO(16) | (0x14 << 21)) #define CNTLZD (HI(31) | LO(58)) #define CNTLZW (HI(31) | LO(26)) #define CMP (HI(31) | LO(0)) #define CMPI (HI(11)) #define CMPL (HI(31) | LO(32)) #define CMPLI (HI(10)) #define CROR (HI(19) | LO(449)) #define DIVD (HI(31) | LO(489)) #define DIVDU (HI(31) | LO(457)) #define DIVW (HI(31) | LO(491)) #define DIVWU (HI(31) | LO(459)) #define EXTSB (HI(31) | LO(954)) #define EXTSH (HI(31) | LO(922)) #define EXTSW (HI(31) | LO(986)) #define FABS (HI(63) | LO(264)) #define FADD (HI(63) | LO(21)) #define FADDS (HI(59) | LO(21)) #define FCFID (HI(63) | LO(846)) #define FCMPU (HI(63) | LO(0)) #define FCTIDZ (HI(63) | LO(815)) #define FCTIWZ (HI(63) | LO(15)) #define FDIV (HI(63) | LO(18)) #define FDIVS (HI(59) | LO(18)) #define FMR (HI(63) | LO(72)) #define FMUL (HI(63) | LO(25)) #define FMULS (HI(59) | LO(25)) #define FNEG (HI(63) | LO(40)) #define FRSP (HI(63) | LO(12)) #define FSUB (HI(63) | LO(20)) #define FSUBS (HI(59) | LO(20)) #define LD (HI(58) | 0) #define LWZ (HI(32)) #define MFCR (HI(31) | LO(19)) #define MFLR (HI(31) | LO(339) | 0x80000) #define MFXER (HI(31) | LO(339) | 0x10000) #define MTCTR (HI(31) | LO(467) | 0x90000) #define MTLR (HI(31) | LO(467) | 0x80000) #define MTXER (HI(31) | LO(467) | 0x10000) #define MULHD (HI(31) | LO(73)) #define MULHDU (HI(31) | LO(9)) #define MULHW (HI(31) | LO(75)) #define MULHWU (HI(31) | LO(11)) #define MULLD (HI(31) | LO(233)) #define MULLI (HI(7)) #define MULLW (HI(31) | LO(235)) #define NEG (HI(31) | LO(104)) #define NOP (HI(24)) #define NOR (HI(31) | LO(124)) #define OR (HI(31) | LO(444)) #define ORI (HI(24)) #define ORIS (HI(25)) #define RLDICL (HI(30)) #define RLWINM (HI(21)) #define SLD (HI(31) | LO(27)) #define SLW (HI(31) | LO(24)) #define SRAD (HI(31) | LO(794)) #define SRADI (HI(31) | LO(413 << 1)) #define SRAW (HI(31) | LO(792)) #define SRAWI (HI(31) | LO(824)) #define SRD (HI(31) | LO(539)) #define SRW (HI(31) | LO(536)) #define STD (HI(62) | 0) #define STDU (HI(62) | 1) #define STDUX (HI(31) | LO(181)) #define STFIWX (HI(31) | LO(983)) #define STW (HI(36)) #define STWU (HI(37)) #define STWUX (HI(31) | LO(183)) #define SUBF (HI(31) | LO(40)) #define SUBFC (HI(31) | LO(8)) #define SUBFE (HI(31) | LO(136)) #define SUBFIC (HI(8)) #define XOR (HI(31) | LO(316)) #define XORI (HI(26)) #define XORIS (HI(27)) #define SIMM_MAX (0x7fff) #define SIMM_MIN (-0x8000) #define UIMM_MAX (0xffff) #if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func) { sljit_sw* ptrs; if (func_ptr) *func_ptr = (void*)context; ptrs = (sljit_sw*)func; context->addr = addr ? addr : ptrs[0]; context->r2 = ptrs[1]; context->r11 = ptrs[2]; } #endif static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins) { sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); *ptr = ins; compiler->size++; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_si detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code) { sljit_sw diff; sljit_uw target_addr; sljit_sw extra_jump_flags; #if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) && (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) if (jump->flags & (SLJIT_REWRITABLE_JUMP | IS_CALL)) return 0; #else if (jump->flags & SLJIT_REWRITABLE_JUMP) return 0; #endif if (jump->flags & JUMP_ADDR) target_addr = jump->u.target; else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); target_addr = (sljit_uw)(code + jump->u.label->size); } #if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) && (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) if (jump->flags & IS_CALL) goto keep_address; #endif diff = ((sljit_sw)target_addr - (sljit_sw)(code_ptr)) & ~0x3l; extra_jump_flags = 0; if (jump->flags & IS_COND) { if (diff <= 0x7fff && diff >= -0x8000) { jump->flags |= PATCH_B; return 1; } if (target_addr <= 0xffff) { jump->flags |= PATCH_B | PATCH_ABS_B; return 1; } extra_jump_flags = REMOVE_COND; diff -= sizeof(sljit_ins); } if (diff <= 0x01ffffff && diff >= -0x02000000) { jump->flags |= PATCH_B | extra_jump_flags; return 1; } if (target_addr <= 0x03ffffff) { jump->flags |= PATCH_B | PATCH_ABS_B | extra_jump_flags; return 1; } #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) #if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) keep_address: #endif if (target_addr <= 0x7fffffff) { jump->flags |= PATCH_ABS32; return 1; } if (target_addr <= 0x7fffffffffffl) { jump->flags |= PATCH_ABS48; return 1; } #endif return 0; } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_ins *code; sljit_ins *code_ptr; sljit_ins *buf_ptr; sljit_ins *buf_end; sljit_uw word_count; sljit_uw addr; struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; CHECK_ERROR_PTR(); check_sljit_generate_code(compiler); reverse_buf(compiler); #if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) compiler->size += (compiler->size & 0x1) + (sizeof(struct sljit_function_context) / sizeof(sljit_ins)); #else compiler->size += (sizeof(struct sljit_function_context) / sizeof(sljit_ins)); #endif #endif code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins)); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; code_ptr = code; word_count = 0; label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; do { buf_ptr = (sljit_ins*)buf->memory; buf_end = buf_ptr + (buf->used_size >> 2); do { *code_ptr = *buf_ptr++; SLJIT_ASSERT(!label || label->size >= word_count); SLJIT_ASSERT(!jump || jump->addr >= word_count); SLJIT_ASSERT(!const_ || const_->addr >= word_count); /* These structures are ordered by their address. */ if (label && label->size == word_count) { /* Just recording the address. */ label->addr = (sljit_uw)code_ptr; label->size = code_ptr - code; label = label->next; } if (jump && jump->addr == word_count) { #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) jump->addr = (sljit_uw)(code_ptr - 3); #else jump->addr = (sljit_uw)(code_ptr - 6); #endif if (detect_jump_type(jump, code_ptr, code)) { #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) code_ptr[-3] = code_ptr[0]; code_ptr -= 3; #else if (jump->flags & PATCH_ABS32) { code_ptr -= 3; code_ptr[-1] = code_ptr[2]; code_ptr[0] = code_ptr[3]; } else if (jump->flags & PATCH_ABS48) { code_ptr--; code_ptr[-1] = code_ptr[0]; code_ptr[0] = code_ptr[1]; /* rldicr rX,rX,32,31 -> rX,rX,16,47 */ SLJIT_ASSERT((code_ptr[-3] & 0xfc00ffff) == 0x780007c6); code_ptr[-3] ^= 0x8422; /* oris -> ori */ code_ptr[-2] ^= 0x4000000; } else { code_ptr[-6] = code_ptr[0]; code_ptr -= 6; } #endif if (jump->flags & REMOVE_COND) { code_ptr[0] = BCx | (2 << 2) | ((code_ptr[0] ^ (8 << 21)) & 0x03ff0001); code_ptr++; jump->addr += sizeof(sljit_ins); code_ptr[0] = Bx; jump->flags -= IS_COND; } } jump = jump->next; } if (const_ && const_->addr == word_count) { const_->addr = (sljit_uw)code_ptr; const_ = const_->next; } code_ptr ++; word_count ++; } while (buf_ptr < buf_end); buf = buf->next; } while (buf); if (label && label->size == word_count) { label->addr = (sljit_uw)code_ptr; label->size = code_ptr - code; label = label->next; } SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); #if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size - (sizeof(struct sljit_function_context) / sizeof(sljit_ins))); #else SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size); #endif jump = compiler->jumps; while (jump) { do { addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target; buf_ptr = (sljit_ins*)jump->addr; if (jump->flags & PATCH_B) { if (jump->flags & IS_COND) { if (!(jump->flags & PATCH_ABS_B)) { addr = addr - jump->addr; SLJIT_ASSERT((sljit_sw)addr <= 0x7fff && (sljit_sw)addr >= -0x8000); *buf_ptr = BCx | (addr & 0xfffc) | ((*buf_ptr) & 0x03ff0001); } else { SLJIT_ASSERT(addr <= 0xffff); *buf_ptr = BCx | (addr & 0xfffc) | 0x2 | ((*buf_ptr) & 0x03ff0001); } } else { if (!(jump->flags & PATCH_ABS_B)) { addr = addr - jump->addr; SLJIT_ASSERT((sljit_sw)addr <= 0x01ffffff && (sljit_sw)addr >= -0x02000000); *buf_ptr = Bx | (addr & 0x03fffffc) | ((*buf_ptr) & 0x1); } else { SLJIT_ASSERT(addr <= 0x03ffffff); *buf_ptr = Bx | (addr & 0x03fffffc) | 0x2 | ((*buf_ptr) & 0x1); } } break; } /* Set the fields of immediate loads. */ #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff); buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff); #else if (jump->flags & PATCH_ABS32) { SLJIT_ASSERT(addr <= 0x7fffffff); buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff); buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff); break; } if (jump->flags & PATCH_ABS48) { SLJIT_ASSERT(addr <= 0x7fffffffffff); buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 32) & 0xffff); buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 16) & 0xffff); buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | (addr & 0xffff); break; } buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 48) & 0xffff); buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 32) & 0xffff); buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | ((addr >> 16) & 0xffff); buf_ptr[4] = (buf_ptr[4] & 0xffff0000) | (addr & 0xffff); #endif } while (0); jump = jump->next; } compiler->error = SLJIT_ERR_COMPILED; compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins); SLJIT_CACHE_FLUSH(code, code_ptr); #if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) if (((sljit_sw)code_ptr) & 0x4) code_ptr++; sljit_set_function_context(NULL, (struct sljit_function_context*)code_ptr, (sljit_sw)code, (void*)sljit_generate_code); return code_ptr; #else sljit_set_function_context(NULL, (struct sljit_function_context*)code_ptr, (sljit_sw)code, (void*)sljit_generate_code); return code_ptr; #endif #else return code; #endif } /* --------------------------------------------------------------------- */ /* Entry, exit */ /* --------------------------------------------------------------------- */ /* inp_flags: */ /* Creates an index in data_transfer_insts array. */ #define LOAD_DATA 0x01 #define INDEXED 0x02 #define WRITE_BACK 0x04 #define WORD_DATA 0x00 #define BYTE_DATA 0x08 #define HALF_DATA 0x10 #define INT_DATA 0x18 #define SIGNED_DATA 0x20 /* Separates integer and floating point registers */ #define GPR_REG 0x3f #define DOUBLE_DATA 0x40 #define MEM_MASK 0x7f /* Other inp_flags. */ #define ARG_TEST 0x000100 /* Integer opertion and set flags -> requires exts on 64 bit systems. */ #define ALT_SIGN_EXT 0x000200 /* This flag affects the RC() and OERC() macros. */ #define ALT_SET_FLAGS 0x000400 #define ALT_KEEP_CACHE 0x000800 #define ALT_FORM1 0x010000 #define ALT_FORM2 0x020000 #define ALT_FORM3 0x040000 #define ALT_FORM4 0x080000 #define ALT_FORM5 0x100000 #define ALT_FORM6 0x200000 /* Source and destination is register. */ #define REG_DEST 0x000001 #define REG1_SOURCE 0x000002 #define REG2_SOURCE 0x000004 /* getput_arg_fast returned true. */ #define FAST_DEST 0x000008 /* Multiple instructions are required. */ #define SLOW_DEST 0x000010 /* ALT_SIGN_EXT 0x000200 ALT_SET_FLAGS 0x000400 ALT_FORM1 0x010000 ... ALT_FORM6 0x200000 */ #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) #include "sljitNativePPC_32.c" #else #include "sljitNativePPC_64.c" #endif #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) #define STACK_STORE STW #define STACK_LOAD LWZ #else #define STACK_STORE STD #define STACK_LOAD LD #endif SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler, sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si fscratches, sljit_si fsaveds, sljit_si local_size) { sljit_si i, tmp, offs; CHECK_ERROR(); check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size); compiler->options = options; compiler->scratches = scratches; compiler->saveds = saveds; compiler->fscratches = fscratches; compiler->fsaveds = fsaveds; #if (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->logical_local_size = local_size; #endif FAIL_IF(push_inst(compiler, MFLR | D(0))); offs = -(sljit_si)(sizeof(sljit_sw)); FAIL_IF(push_inst(compiler, STACK_STORE | S(TMP_ZERO) | A(SLJIT_SP) | IMM(offs))); tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) { offs -= (sljit_si)(sizeof(sljit_sw)); FAIL_IF(push_inst(compiler, STACK_STORE | S(i) | A(SLJIT_SP) | IMM(offs))); } for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) { offs -= (sljit_si)(sizeof(sljit_sw)); FAIL_IF(push_inst(compiler, STACK_STORE | S(i) | A(SLJIT_SP) | IMM(offs))); } SLJIT_ASSERT(offs == -(sljit_si)GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 1)); #if (defined SLJIT_PPC_STACK_FRAME_V2 && SLJIT_PPC_STACK_FRAME_V2) FAIL_IF(push_inst(compiler, STACK_STORE | S(0) | A(SLJIT_SP) | IMM(2 * sizeof(sljit_sw)))); #else FAIL_IF(push_inst(compiler, STACK_STORE | S(0) | A(SLJIT_SP) | IMM(sizeof(sljit_sw)))); #endif FAIL_IF(push_inst(compiler, ADDI | D(TMP_ZERO) | A(0) | 0)); if (args >= 1) FAIL_IF(push_inst(compiler, OR | S(SLJIT_R0) | A(SLJIT_S0) | B(SLJIT_R0))); if (args >= 2) FAIL_IF(push_inst(compiler, OR | S(SLJIT_R1) | A(SLJIT_S1) | B(SLJIT_R1))); if (args >= 3) FAIL_IF(push_inst(compiler, OR | S(SLJIT_R2) | A(SLJIT_S2) | B(SLJIT_R2))); local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + FIXED_LOCALS_OFFSET; local_size = (local_size + 15) & ~0xf; compiler->local_size = local_size; #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) if (local_size <= SIMM_MAX) FAIL_IF(push_inst(compiler, STWU | S(SLJIT_SP) | A(SLJIT_SP) | IMM(-local_size))); else { FAIL_IF(load_immediate(compiler, 0, -local_size)); FAIL_IF(push_inst(compiler, STWUX | S(SLJIT_SP) | A(SLJIT_SP) | B(0))); } #else if (local_size <= SIMM_MAX) FAIL_IF(push_inst(compiler, STDU | S(SLJIT_SP) | A(SLJIT_SP) | IMM(-local_size))); else { FAIL_IF(load_immediate(compiler, 0, -local_size)); FAIL_IF(push_inst(compiler, STDUX | S(SLJIT_SP) | A(SLJIT_SP) | B(0))); } #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler, sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si fscratches, sljit_si fsaveds, sljit_si local_size) { CHECK_ERROR_VOID(); check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size); compiler->options = options; compiler->scratches = scratches; compiler->saveds = saveds; compiler->fscratches = fscratches; compiler->fsaveds = fsaveds; #if (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->logical_local_size = local_size; #endif local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + FIXED_LOCALS_OFFSET; compiler->local_size = (local_size + 15) & ~0xf; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw) { sljit_si i, tmp, offs; CHECK_ERROR(); check_sljit_emit_return(compiler, op, src, srcw); FAIL_IF(emit_mov_before_return(compiler, op, src, srcw)); if (compiler->local_size <= SIMM_MAX) FAIL_IF(push_inst(compiler, ADDI | D(SLJIT_SP) | A(SLJIT_SP) | IMM(compiler->local_size))); else { FAIL_IF(load_immediate(compiler, 0, compiler->local_size)); FAIL_IF(push_inst(compiler, ADD | D(SLJIT_SP) | A(SLJIT_SP) | B(0))); } #if (defined SLJIT_PPC_STACK_FRAME_V2 && SLJIT_PPC_STACK_FRAME_V2) FAIL_IF(push_inst(compiler, STACK_LOAD | D(0) | A(SLJIT_SP) | IMM(2 * sizeof(sljit_sw)))); #else FAIL_IF(push_inst(compiler, STACK_LOAD | D(0) | A(SLJIT_SP) | IMM(sizeof(sljit_sw)))); #endif offs = -(sljit_si)GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 1); tmp = compiler->scratches; for (i = SLJIT_FIRST_SAVED_REG; i <= tmp; i++) { FAIL_IF(push_inst(compiler, STACK_LOAD | D(i) | A(SLJIT_SP) | IMM(offs))); offs += (sljit_si)(sizeof(sljit_sw)); } tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG; for (i = tmp; i <= SLJIT_S0; i++) { FAIL_IF(push_inst(compiler, STACK_LOAD | D(i) | A(SLJIT_SP) | IMM(offs))); offs += (sljit_si)(sizeof(sljit_sw)); } FAIL_IF(push_inst(compiler, STACK_LOAD | D(TMP_ZERO) | A(SLJIT_SP) | IMM(offs))); SLJIT_ASSERT(offs == -(sljit_sw)(sizeof(sljit_sw))); FAIL_IF(push_inst(compiler, MTLR | S(0))); FAIL_IF(push_inst(compiler, BLR)); return SLJIT_SUCCESS; } #undef STACK_STORE #undef STACK_LOAD /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ /* i/x - immediate/indexed form n/w - no write-back / write-back (1 bit) s/l - store/load (1 bit) u/s - signed/unsigned (1 bit) w/b/h/i - word/byte/half/int allowed (2 bit) It contans 32 items, but not all are different. */ /* 64 bit only: [reg+imm] must be aligned to 4 bytes. */ #define INT_ALIGNED 0x10000 /* 64-bit only: there is no lwau instruction. */ #define UPDATE_REQ 0x20000 #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) #define ARCH_32_64(a, b) a #define INST_CODE_AND_DST(inst, flags, reg) \ ((inst) | (((flags) & MEM_MASK) <= GPR_REG ? D(reg) : FD(reg))) #else #define ARCH_32_64(a, b) b #define INST_CODE_AND_DST(inst, flags, reg) \ (((inst) & ~(INT_ALIGNED | UPDATE_REQ)) | (((flags) & MEM_MASK) <= GPR_REG ? D(reg) : FD(reg))) #endif static SLJIT_CONST sljit_ins data_transfer_insts[64 + 8] = { /* -------- Unsigned -------- */ /* Word. */ /* u w n i s */ ARCH_32_64(HI(36) /* stw */, HI(62) | INT_ALIGNED | 0x0 /* std */), /* u w n i l */ ARCH_32_64(HI(32) /* lwz */, HI(58) | INT_ALIGNED | 0x0 /* ld */), /* u w n x s */ ARCH_32_64(HI(31) | LO(151) /* stwx */, HI(31) | LO(149) /* stdx */), /* u w n x l */ ARCH_32_64(HI(31) | LO(23) /* lwzx */, HI(31) | LO(21) /* ldx */), /* u w w i s */ ARCH_32_64(HI(37) /* stwu */, HI(62) | INT_ALIGNED | 0x1 /* stdu */), /* u w w i l */ ARCH_32_64(HI(33) /* lwzu */, HI(58) | INT_ALIGNED | 0x1 /* ldu */), /* u w w x s */ ARCH_32_64(HI(31) | LO(183) /* stwux */, HI(31) | LO(181) /* stdux */), /* u w w x l */ ARCH_32_64(HI(31) | LO(55) /* lwzux */, HI(31) | LO(53) /* ldux */), /* Byte. */ /* u b n i s */ HI(38) /* stb */, /* u b n i l */ HI(34) /* lbz */, /* u b n x s */ HI(31) | LO(215) /* stbx */, /* u b n x l */ HI(31) | LO(87) /* lbzx */, /* u b w i s */ HI(39) /* stbu */, /* u b w i l */ HI(35) /* lbzu */, /* u b w x s */ HI(31) | LO(247) /* stbux */, /* u b w x l */ HI(31) | LO(119) /* lbzux */, /* Half. */ /* u h n i s */ HI(44) /* sth */, /* u h n i l */ HI(40) /* lhz */, /* u h n x s */ HI(31) | LO(407) /* sthx */, /* u h n x l */ HI(31) | LO(279) /* lhzx */, /* u h w i s */ HI(45) /* sthu */, /* u h w i l */ HI(41) /* lhzu */, /* u h w x s */ HI(31) | LO(439) /* sthux */, /* u h w x l */ HI(31) | LO(311) /* lhzux */, /* Int. */ /* u i n i s */ HI(36) /* stw */, /* u i n i l */ HI(32) /* lwz */, /* u i n x s */ HI(31) | LO(151) /* stwx */, /* u i n x l */ HI(31) | LO(23) /* lwzx */, /* u i w i s */ HI(37) /* stwu */, /* u i w i l */ HI(33) /* lwzu */, /* u i w x s */ HI(31) | LO(183) /* stwux */, /* u i w x l */ HI(31) | LO(55) /* lwzux */, /* -------- Signed -------- */ /* Word. */ /* s w n i s */ ARCH_32_64(HI(36) /* stw */, HI(62) | INT_ALIGNED | 0x0 /* std */), /* s w n i l */ ARCH_32_64(HI(32) /* lwz */, HI(58) | INT_ALIGNED | 0x0 /* ld */), /* s w n x s */ ARCH_32_64(HI(31) | LO(151) /* stwx */, HI(31) | LO(149) /* stdx */), /* s w n x l */ ARCH_32_64(HI(31) | LO(23) /* lwzx */, HI(31) | LO(21) /* ldx */), /* s w w i s */ ARCH_32_64(HI(37) /* stwu */, HI(62) | INT_ALIGNED | 0x1 /* stdu */), /* s w w i l */ ARCH_32_64(HI(33) /* lwzu */, HI(58) | INT_ALIGNED | 0x1 /* ldu */), /* s w w x s */ ARCH_32_64(HI(31) | LO(183) /* stwux */, HI(31) | LO(181) /* stdux */), /* s w w x l */ ARCH_32_64(HI(31) | LO(55) /* lwzux */, HI(31) | LO(53) /* ldux */), /* Byte. */ /* s b n i s */ HI(38) /* stb */, /* s b n i l */ HI(34) /* lbz */ /* EXTS_REQ */, /* s b n x s */ HI(31) | LO(215) /* stbx */, /* s b n x l */ HI(31) | LO(87) /* lbzx */ /* EXTS_REQ */, /* s b w i s */ HI(39) /* stbu */, /* s b w i l */ HI(35) /* lbzu */ /* EXTS_REQ */, /* s b w x s */ HI(31) | LO(247) /* stbux */, /* s b w x l */ HI(31) | LO(119) /* lbzux */ /* EXTS_REQ */, /* Half. */ /* s h n i s */ HI(44) /* sth */, /* s h n i l */ HI(42) /* lha */, /* s h n x s */ HI(31) | LO(407) /* sthx */, /* s h n x l */ HI(31) | LO(343) /* lhax */, /* s h w i s */ HI(45) /* sthu */, /* s h w i l */ HI(43) /* lhau */, /* s h w x s */ HI(31) | LO(439) /* sthux */, /* s h w x l */ HI(31) | LO(375) /* lhaux */, /* Int. */ /* s i n i s */ HI(36) /* stw */, /* s i n i l */ ARCH_32_64(HI(32) /* lwz */, HI(58) | INT_ALIGNED | 0x2 /* lwa */), /* s i n x s */ HI(31) | LO(151) /* stwx */, /* s i n x l */ ARCH_32_64(HI(31) | LO(23) /* lwzx */, HI(31) | LO(341) /* lwax */), /* s i w i s */ HI(37) /* stwu */, /* s i w i l */ ARCH_32_64(HI(33) /* lwzu */, HI(58) | INT_ALIGNED | UPDATE_REQ | 0x2 /* lwa */), /* s i w x s */ HI(31) | LO(183) /* stwux */, /* s i w x l */ ARCH_32_64(HI(31) | LO(55) /* lwzux */, HI(31) | LO(373) /* lwaux */), /* -------- Double -------- */ /* d n i s */ HI(54) /* stfd */, /* d n i l */ HI(50) /* lfd */, /* d n x s */ HI(31) | LO(727) /* stfdx */, /* d n x l */ HI(31) | LO(599) /* lfdx */, /* s n i s */ HI(52) /* stfs */, /* s n i l */ HI(48) /* lfs */, /* s n x s */ HI(31) | LO(663) /* stfsx */, /* s n x l */ HI(31) | LO(535) /* lfsx */, }; #undef ARCH_32_64 /* Simple cases, (no caching is required). */ static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si inp_flags, sljit_si reg, sljit_si arg, sljit_sw argw) { sljit_ins inst; /* Should work when (arg & REG_MASK) == 0. */ SLJIT_COMPILE_ASSERT(A(0) == 0, a0_must_be_0); SLJIT_ASSERT(arg & SLJIT_MEM); if (arg & OFFS_REG_MASK) { if (argw & 0x3) return 0; if (inp_flags & ARG_TEST) return 1; inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK]; SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ))); FAIL_IF(push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(OFFS_REG(arg)))); return -1; } if (SLJIT_UNLIKELY(!(arg & REG_MASK))) inp_flags &= ~WRITE_BACK; #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) inst = data_transfer_insts[inp_flags & MEM_MASK]; SLJIT_ASSERT((arg & REG_MASK) || !(inst & UPDATE_REQ)); if (argw > SIMM_MAX || argw < SIMM_MIN || ((inst & INT_ALIGNED) && (argw & 0x3)) || (inst & UPDATE_REQ)) return 0; if (inp_flags & ARG_TEST) return 1; #endif #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) if (argw > SIMM_MAX || argw < SIMM_MIN) return 0; if (inp_flags & ARG_TEST) return 1; inst = data_transfer_insts[inp_flags & MEM_MASK]; SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ))); #endif FAIL_IF(push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | IMM(argw))); return -1; } /* See getput_arg below. Note: can_cache is called only for binary operators. Those operator always uses word arguments without write back. */ static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw) { sljit_sw high_short, next_high_short; #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) sljit_sw diff; #endif SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM)); if (arg & OFFS_REG_MASK) return ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && (argw & 0x3) == (next_argw & 0x3)); if (next_arg & OFFS_REG_MASK) return 0; #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) high_short = (argw + ((argw & 0x8000) << 1)) & ~0xffff; next_high_short = (next_argw + ((next_argw & 0x8000) << 1)) & ~0xffff; return high_short == next_high_short; #else if (argw <= 0x7fffffffl && argw >= -0x80000000l) { high_short = (argw + ((argw & 0x8000) << 1)) & ~0xffff; next_high_short = (next_argw + ((next_argw & 0x8000) << 1)) & ~0xffff; if (high_short == next_high_short) return 1; } diff = argw - next_argw; if (!(arg & REG_MASK)) return diff <= SIMM_MAX && diff >= SIMM_MIN; if (arg == next_arg && diff <= SIMM_MAX && diff >= SIMM_MIN) return 1; return 0; #endif } #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) #define ADJUST_CACHED_IMM(imm) \ if ((inst & INT_ALIGNED) && (imm & 0x3)) { \ /* Adjust cached value. Fortunately this is really a rare case */ \ compiler->cache_argw += imm & 0x3; \ FAIL_IF(push_inst(compiler, ADDI | D(TMP_REG3) | A(TMP_REG3) | (imm & 0x3))); \ imm &= ~0x3; \ } #endif /* Emit the necessary instructions. See can_cache above. */ static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si inp_flags, sljit_si reg, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw) { sljit_si tmp_r; sljit_ins inst; sljit_sw high_short, next_high_short; #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) sljit_sw diff; #endif SLJIT_ASSERT(arg & SLJIT_MEM); tmp_r = ((inp_flags & LOAD_DATA) && ((inp_flags) & MEM_MASK) <= GPR_REG) ? reg : TMP_REG1; /* Special case for "mov reg, [reg, ... ]". */ if ((arg & REG_MASK) == tmp_r) tmp_r = TMP_REG1; if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { argw &= 0x3; /* Otherwise getput_arg_fast would capture it. */ SLJIT_ASSERT(argw); if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg && argw == compiler->cache_argw) tmp_r = TMP_REG3; else { if ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && argw == (next_argw & 0x3)) { compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK); compiler->cache_argw = argw; tmp_r = TMP_REG3; } #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) FAIL_IF(push_inst(compiler, RLWINM | S(OFFS_REG(arg)) | A(tmp_r) | (argw << 11) | ((31 - argw) << 1))); #else FAIL_IF(push_inst(compiler, RLDI(tmp_r, OFFS_REG(arg), argw, 63 - argw, 1))); #endif } inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK]; SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ))); return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(tmp_r)); } if (SLJIT_UNLIKELY(!(arg & REG_MASK))) inp_flags &= ~WRITE_BACK; inst = data_transfer_insts[inp_flags & MEM_MASK]; SLJIT_ASSERT((arg & REG_MASK) || !(inst & UPDATE_REQ)); #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) if (argw <= 0x7fff7fffl && argw >= -0x80000000l && (!(inst & INT_ALIGNED) || !(argw & 0x3)) && !(inst & UPDATE_REQ)) { #endif arg &= REG_MASK; high_short = (sljit_si)(argw + ((argw & 0x8000) << 1)) & ~0xffff; /* The getput_arg_fast should handle this otherwise. */ #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) SLJIT_ASSERT(high_short && high_short <= 0x7fffffffl && high_short >= -0x80000000l); #else SLJIT_ASSERT(high_short && !(inst & (INT_ALIGNED | UPDATE_REQ))); #endif if (inp_flags & WRITE_BACK) { if (arg == reg) { FAIL_IF(push_inst(compiler, OR | S(reg) | A(tmp_r) | B(reg))); reg = tmp_r; } tmp_r = arg; FAIL_IF(push_inst(compiler, ADDIS | D(arg) | A(arg) | IMM(high_short >> 16))); } else if (compiler->cache_arg != (SLJIT_MEM | arg) || high_short != compiler->cache_argw) { if ((next_arg & SLJIT_MEM) && !(next_arg & OFFS_REG_MASK)) { next_high_short = (sljit_si)(next_argw + ((next_argw & 0x8000) << 1)) & ~0xffff; if (high_short == next_high_short) { compiler->cache_arg = SLJIT_MEM | arg; compiler->cache_argw = high_short; tmp_r = TMP_REG3; } } FAIL_IF(push_inst(compiler, ADDIS | D(tmp_r) | A(arg & REG_MASK) | IMM(high_short >> 16))); } else tmp_r = TMP_REG3; return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(tmp_r) | IMM(argw)); #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) } /* Everything else is PPC-64 only. */ if (SLJIT_UNLIKELY(!(arg & REG_MASK))) { diff = argw - compiler->cache_argw; if ((compiler->cache_arg & SLJIT_IMM) && diff <= SIMM_MAX && diff >= SIMM_MIN) { ADJUST_CACHED_IMM(diff); return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(TMP_REG3) | IMM(diff)); } diff = argw - next_argw; if ((next_arg & SLJIT_MEM) && diff <= SIMM_MAX && diff >= SIMM_MIN) { SLJIT_ASSERT(inp_flags & LOAD_DATA); compiler->cache_arg = SLJIT_IMM; compiler->cache_argw = argw; tmp_r = TMP_REG3; } FAIL_IF(load_immediate(compiler, tmp_r, argw)); return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(tmp_r)); } diff = argw - compiler->cache_argw; if (compiler->cache_arg == arg && diff <= SIMM_MAX && diff >= SIMM_MIN) { SLJIT_ASSERT(!(inp_flags & WRITE_BACK) && !(inst & UPDATE_REQ)); ADJUST_CACHED_IMM(diff); return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(TMP_REG3) | IMM(diff)); } if ((compiler->cache_arg & SLJIT_IMM) && diff <= SIMM_MAX && diff >= SIMM_MIN) { inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK]; SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ))); if (compiler->cache_argw != argw) { FAIL_IF(push_inst(compiler, ADDI | D(TMP_REG3) | A(TMP_REG3) | IMM(diff))); compiler->cache_argw = argw; } return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(TMP_REG3)); } if (argw == next_argw && (next_arg & SLJIT_MEM)) { SLJIT_ASSERT(inp_flags & LOAD_DATA); FAIL_IF(load_immediate(compiler, TMP_REG3, argw)); compiler->cache_arg = SLJIT_IMM; compiler->cache_argw = argw; inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK]; SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ))); return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(TMP_REG3)); } diff = argw - next_argw; if (arg == next_arg && !(inp_flags & WRITE_BACK) && diff <= SIMM_MAX && diff >= SIMM_MIN) { SLJIT_ASSERT(inp_flags & LOAD_DATA); FAIL_IF(load_immediate(compiler, TMP_REG3, argw)); FAIL_IF(push_inst(compiler, ADD | D(TMP_REG3) | A(TMP_REG3) | B(arg & REG_MASK))); compiler->cache_arg = arg; compiler->cache_argw = argw; return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(TMP_REG3)); } if ((next_arg & SLJIT_MEM) && !(next_arg & OFFS_REG_MASK) && diff <= SIMM_MAX && diff >= SIMM_MIN) { SLJIT_ASSERT(inp_flags & LOAD_DATA); FAIL_IF(load_immediate(compiler, TMP_REG3, argw)); compiler->cache_arg = SLJIT_IMM; compiler->cache_argw = argw; tmp_r = TMP_REG3; } else FAIL_IF(load_immediate(compiler, tmp_r, argw)); /* Get the indexed version instead of the normal one. */ inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK]; SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ))); return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(tmp_r)); #endif } static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w) { if (getput_arg_fast(compiler, flags, reg, arg1, arg1w)) return compiler->error; return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w); } static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si input_flags, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { /* arg1 goes to TMP_REG1 or src reg arg2 goes to TMP_REG2, imm or src reg TMP_REG3 can be used for caching result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */ sljit_si dst_r; sljit_si src1_r; sljit_si src2_r; sljit_si sugg_src2_r = TMP_REG2; sljit_si flags = input_flags & (ALT_FORM1 | ALT_FORM2 | ALT_FORM3 | ALT_FORM4 | ALT_FORM5 | ALT_FORM6 | ALT_SIGN_EXT | ALT_SET_FLAGS); if (!(input_flags & ALT_KEEP_CACHE)) { compiler->cache_arg = 0; compiler->cache_argw = 0; } /* Destination check. */ if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) { if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM)) return SLJIT_SUCCESS; dst_r = TMP_REG2; } else if (FAST_IS_REG(dst)) { dst_r = dst; flags |= REG_DEST; if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) sugg_src2_r = dst_r; } else { SLJIT_ASSERT(dst & SLJIT_MEM); if (getput_arg_fast(compiler, input_flags | ARG_TEST, TMP_REG2, dst, dstw)) { flags |= FAST_DEST; dst_r = TMP_REG2; } else { flags |= SLOW_DEST; dst_r = 0; } } /* Source 1. */ if (FAST_IS_REG(src1)) { src1_r = src1; flags |= REG1_SOURCE; } else if (src1 & SLJIT_IMM) { FAIL_IF(load_immediate(compiler, TMP_REG1, src1w)); src1_r = TMP_REG1; } else if (getput_arg_fast(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w)) { FAIL_IF(compiler->error); src1_r = TMP_REG1; } else src1_r = 0; /* Source 2. */ if (FAST_IS_REG(src2)) { src2_r = src2; flags |= REG2_SOURCE; if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) dst_r = src2_r; } else if (src2 & SLJIT_IMM) { FAIL_IF(load_immediate(compiler, sugg_src2_r, src2w)); src2_r = sugg_src2_r; } else if (getput_arg_fast(compiler, input_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) { FAIL_IF(compiler->error); src2_r = sugg_src2_r; } else src2_r = 0; /* src1_r, src2_r and dst_r can be zero (=unprocessed). All arguments are complex addressing modes, and it is a binary operator. */ if (src1_r == 0 && src2_r == 0 && dst_r == 0) { if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) { FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG2, src2, src2w, src1, src1w)); FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw)); } else { FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w)); FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw)); } src1_r = TMP_REG1; src2_r = TMP_REG2; } else if (src1_r == 0 && src2_r == 0) { FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w)); src1_r = TMP_REG1; } else if (src1_r == 0 && dst_r == 0) { FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw)); src1_r = TMP_REG1; } else if (src2_r == 0 && dst_r == 0) { FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw)); src2_r = sugg_src2_r; } if (dst_r == 0) dst_r = TMP_REG2; if (src1_r == 0) { FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0)); src1_r = TMP_REG1; } if (src2_r == 0) { FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0)); src2_r = sugg_src2_r; } FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r)); if (flags & (FAST_DEST | SLOW_DEST)) { if (flags & FAST_DEST) FAIL_IF(getput_arg_fast(compiler, input_flags, dst_r, dst, dstw)); else FAIL_IF(getput_arg(compiler, input_flags, dst_r, dst, dstw, 0, 0)); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op) { #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) sljit_si int_op = op & SLJIT_INT_OP; #endif CHECK_ERROR(); check_sljit_emit_op0(compiler, op); op = GET_OPCODE(op); switch (op) { case SLJIT_BREAKPOINT: case SLJIT_NOP: return push_inst(compiler, NOP); case SLJIT_UMUL: case SLJIT_SMUL: FAIL_IF(push_inst(compiler, OR | S(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R0))); #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) FAIL_IF(push_inst(compiler, MULLD | D(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R1))); return push_inst(compiler, (op == SLJIT_UMUL ? MULHDU : MULHD) | D(SLJIT_R1) | A(TMP_REG1) | B(SLJIT_R1)); #else FAIL_IF(push_inst(compiler, MULLW | D(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R1))); return push_inst(compiler, (op == SLJIT_UMUL ? MULHWU : MULHW) | D(SLJIT_R1) | A(TMP_REG1) | B(SLJIT_R1)); #endif case SLJIT_UDIV: case SLJIT_SDIV: FAIL_IF(push_inst(compiler, OR | S(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R0))); #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) if (int_op) { FAIL_IF(push_inst(compiler, (op == SLJIT_UDIV ? DIVWU : DIVW) | D(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R1))); FAIL_IF(push_inst(compiler, MULLW | D(SLJIT_R1) | A(SLJIT_R0) | B(SLJIT_R1))); } else { FAIL_IF(push_inst(compiler, (op == SLJIT_UDIV ? DIVDU : DIVD) | D(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R1))); FAIL_IF(push_inst(compiler, MULLD | D(SLJIT_R1) | A(SLJIT_R0) | B(SLJIT_R1))); } return push_inst(compiler, SUBF | D(SLJIT_R1) | A(SLJIT_R1) | B(TMP_REG1)); #else FAIL_IF(push_inst(compiler, (op == SLJIT_UDIV ? DIVWU : DIVW) | D(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R1))); FAIL_IF(push_inst(compiler, MULLW | D(SLJIT_R1) | A(SLJIT_R0) | B(SLJIT_R1))); return push_inst(compiler, SUBF | D(SLJIT_R1) | A(SLJIT_R1) | B(TMP_REG1)); #endif } return SLJIT_SUCCESS; } #define EMIT_MOV(type, type_flags, type_cast) \ emit_op(compiler, (src & SLJIT_IMM) ? SLJIT_MOV : type, flags | (type_flags), dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? type_cast srcw : srcw) SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_si flags = GET_FLAGS(op) ? ALT_SET_FLAGS : 0; sljit_si op_flags = GET_ALL_FLAGS(op); CHECK_ERROR(); check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); op = GET_OPCODE(op); if ((src & SLJIT_IMM) && srcw == 0) src = TMP_ZERO; if (op_flags & SLJIT_SET_O) FAIL_IF(push_inst(compiler, MTXER | S(TMP_ZERO))); if (op_flags & SLJIT_INT_OP) { if (op < SLJIT_NOT) { if (FAST_IS_REG(src) && src == dst) { if (!TYPE_CAST_NEEDED(op)) return SLJIT_SUCCESS; } #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) if (op == SLJIT_MOV_SI && (src & SLJIT_MEM)) op = SLJIT_MOV_UI; if (op == SLJIT_MOVU_SI && (src & SLJIT_MEM)) op = SLJIT_MOVU_UI; if (op == SLJIT_MOV_UI && (src & SLJIT_IMM)) op = SLJIT_MOV_SI; if (op == SLJIT_MOVU_UI && (src & SLJIT_IMM)) op = SLJIT_MOVU_SI; #endif } #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) else { /* Most operations expect sign extended arguments. */ flags |= INT_DATA | SIGNED_DATA; if (src & SLJIT_IMM) srcw = (sljit_si)srcw; } #endif } switch (op) { case SLJIT_MOV: case SLJIT_MOV_P: #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) case SLJIT_MOV_UI: case SLJIT_MOV_SI: #endif return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw); #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) case SLJIT_MOV_UI: return EMIT_MOV(SLJIT_MOV_UI, INT_DATA, (sljit_ui)); case SLJIT_MOV_SI: return EMIT_MOV(SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, (sljit_si)); #endif case SLJIT_MOV_UB: return EMIT_MOV(SLJIT_MOV_UB, BYTE_DATA, (sljit_ub)); case SLJIT_MOV_SB: return EMIT_MOV(SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, (sljit_sb)); case SLJIT_MOV_UH: return EMIT_MOV(SLJIT_MOV_UH, HALF_DATA, (sljit_uh)); case SLJIT_MOV_SH: return EMIT_MOV(SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, (sljit_sh)); case SLJIT_MOVU: case SLJIT_MOVU_P: #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) case SLJIT_MOVU_UI: case SLJIT_MOVU_SI: #endif return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw); #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) case SLJIT_MOVU_UI: return EMIT_MOV(SLJIT_MOV_UI, INT_DATA | WRITE_BACK, (sljit_ui)); case SLJIT_MOVU_SI: return EMIT_MOV(SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, (sljit_si)); #endif case SLJIT_MOVU_UB: return EMIT_MOV(SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, (sljit_ub)); case SLJIT_MOVU_SB: return EMIT_MOV(SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, (sljit_sb)); case SLJIT_MOVU_UH: return EMIT_MOV(SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, (sljit_uh)); case SLJIT_MOVU_SH: return EMIT_MOV(SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, (sljit_sh)); case SLJIT_NOT: return emit_op(compiler, SLJIT_NOT, flags, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_NEG: return emit_op(compiler, SLJIT_NEG, flags, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_CLZ: #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) return emit_op(compiler, SLJIT_CLZ, flags | (!(op_flags & SLJIT_INT_OP) ? 0 : ALT_FORM1), dst, dstw, TMP_REG1, 0, src, srcw); #else return emit_op(compiler, SLJIT_CLZ, flags, dst, dstw, TMP_REG1, 0, src, srcw); #endif } return SLJIT_SUCCESS; } #undef EMIT_MOV #define TEST_SL_IMM(src, srcw) \ (((src) & SLJIT_IMM) && (srcw) <= SIMM_MAX && (srcw) >= SIMM_MIN) #define TEST_UL_IMM(src, srcw) \ (((src) & SLJIT_IMM) && !((srcw) & ~0xffff)) #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) #define TEST_SH_IMM(src, srcw) \ (((src) & SLJIT_IMM) && !((srcw) & 0xffff) && (srcw) <= 0x7fffffffl && (srcw) >= -0x80000000l) #else #define TEST_SH_IMM(src, srcw) \ (((src) & SLJIT_IMM) && !((srcw) & 0xffff)) #endif #define TEST_UH_IMM(src, srcw) \ (((src) & SLJIT_IMM) && !((srcw) & ~0xffff0000)) #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) #define TEST_ADD_IMM(src, srcw) \ (((src) & SLJIT_IMM) && (srcw) <= 0x7fff7fffl && (srcw) >= -0x80000000l) #else #define TEST_ADD_IMM(src, srcw) \ ((src) & SLJIT_IMM) #endif #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) #define TEST_UI_IMM(src, srcw) \ (((src) & SLJIT_IMM) && !((srcw) & ~0xffffffff)) #else #define TEST_UI_IMM(src, srcw) \ ((src) & SLJIT_IMM) #endif SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_si flags = GET_FLAGS(op) ? ALT_SET_FLAGS : 0; CHECK_ERROR(); check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); if ((src1 & SLJIT_IMM) && src1w == 0) src1 = TMP_ZERO; if ((src2 & SLJIT_IMM) && src2w == 0) src2 = TMP_ZERO; #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) if (op & SLJIT_INT_OP) { /* Most operations expect sign extended arguments. */ flags |= INT_DATA | SIGNED_DATA; if (src1 & SLJIT_IMM) src1w = (sljit_si)(src1w); if (src2 & SLJIT_IMM) src2w = (sljit_si)(src2w); if (GET_FLAGS(op)) flags |= ALT_SIGN_EXT; } #endif if (op & SLJIT_SET_O) FAIL_IF(push_inst(compiler, MTXER | S(TMP_ZERO))); if (src2 == TMP_REG2) flags |= ALT_KEEP_CACHE; switch (GET_OPCODE(op)) { case SLJIT_ADD: if (!GET_FLAGS(op) && ((src1 | src2) & SLJIT_IMM)) { if (TEST_SL_IMM(src2, src2w)) { compiler->imm = src2w & 0xffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0); } if (TEST_SL_IMM(src1, src1w)) { compiler->imm = src1w & 0xffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0); } if (TEST_SH_IMM(src2, src2w)) { compiler->imm = (src2w >> 16) & 0xffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0); } if (TEST_SH_IMM(src1, src1w)) { compiler->imm = (src1w >> 16) & 0xffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0); } /* Range between -1 and -32768 is covered above. */ if (TEST_ADD_IMM(src2, src2w)) { compiler->imm = src2w & 0xffffffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM4, dst, dstw, src1, src1w, TMP_REG2, 0); } if (TEST_ADD_IMM(src1, src1w)) { compiler->imm = src1w & 0xffffffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM4, dst, dstw, src2, src2w, TMP_REG2, 0); } } if (!(GET_FLAGS(op) & (SLJIT_SET_E | SLJIT_SET_O))) { if (TEST_SL_IMM(src2, src2w)) { compiler->imm = src2w & 0xffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0); } if (TEST_SL_IMM(src1, src1w)) { compiler->imm = src1w & 0xffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM3, dst, dstw, src2, src2w, TMP_REG2, 0); } } return emit_op(compiler, SLJIT_ADD, flags, dst, dstw, src1, src1w, src2, src2w); case SLJIT_ADDC: return emit_op(compiler, SLJIT_ADDC, flags | (!(op & SLJIT_KEEP_FLAGS) ? 0 : ALT_FORM1), dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUB: if (!GET_FLAGS(op) && ((src1 | src2) & SLJIT_IMM)) { if (TEST_SL_IMM(src2, -src2w)) { compiler->imm = (-src2w) & 0xffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0); } if (TEST_SL_IMM(src1, src1w)) { compiler->imm = src1w & 0xffff; return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0); } if (TEST_SH_IMM(src2, -src2w)) { compiler->imm = ((-src2w) >> 16) & 0xffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0); } /* Range between -1 and -32768 is covered above. */ if (TEST_ADD_IMM(src2, -src2w)) { compiler->imm = -src2w & 0xffffffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM4, dst, dstw, src1, src1w, TMP_REG2, 0); } } if (dst == SLJIT_UNUSED && (op & (SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S)) && !(op & (SLJIT_SET_O | SLJIT_SET_C))) { if (!(op & SLJIT_SET_U)) { /* We know ALT_SIGN_EXT is set if it is an SLJIT_INT_OP on 64 bit systems. */ if (TEST_SL_IMM(src2, src2w)) { compiler->imm = src2w & 0xffff; return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0); } if (GET_FLAGS(op) == SLJIT_SET_E && TEST_SL_IMM(src1, src1w)) { compiler->imm = src1w & 0xffff; return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0); } } if (!(op & (SLJIT_SET_E | SLJIT_SET_S))) { /* We know ALT_SIGN_EXT is set if it is an SLJIT_INT_OP on 64 bit systems. */ if (TEST_UL_IMM(src2, src2w)) { compiler->imm = src2w & 0xffff; return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0); } return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM4, dst, dstw, src1, src1w, src2, src2w); } if ((src2 & SLJIT_IMM) && src2w >= 0 && src2w <= 0x7fff) { compiler->imm = src2w; return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM2 | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0); } return emit_op(compiler, SLJIT_SUB, flags | ((op & SLJIT_SET_U) ? ALT_FORM4 : 0) | ((op & (SLJIT_SET_E | SLJIT_SET_S)) ? ALT_FORM5 : 0), dst, dstw, src1, src1w, src2, src2w); } if (!(op & (SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_O))) { if (TEST_SL_IMM(src2, -src2w)) { compiler->imm = (-src2w) & 0xffff; return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0); } } /* We know ALT_SIGN_EXT is set if it is an SLJIT_INT_OP on 64 bit systems. */ return emit_op(compiler, SLJIT_SUB, flags | (!(op & SLJIT_SET_U) ? 0 : ALT_FORM6), dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUBC: return emit_op(compiler, SLJIT_SUBC, flags | (!(op & SLJIT_KEEP_FLAGS) ? 0 : ALT_FORM1), dst, dstw, src1, src1w, src2, src2w); case SLJIT_MUL: #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) if (op & SLJIT_INT_OP) flags |= ALT_FORM2; #endif if (!GET_FLAGS(op)) { if (TEST_SL_IMM(src2, src2w)) { compiler->imm = src2w & 0xffff; return emit_op(compiler, SLJIT_MUL, flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0); } if (TEST_SL_IMM(src1, src1w)) { compiler->imm = src1w & 0xffff; return emit_op(compiler, SLJIT_MUL, flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0); } } return emit_op(compiler, SLJIT_MUL, flags, dst, dstw, src1, src1w, src2, src2w); case SLJIT_AND: case SLJIT_OR: case SLJIT_XOR: /* Commutative unsigned operations. */ if (!GET_FLAGS(op) || GET_OPCODE(op) == SLJIT_AND) { if (TEST_UL_IMM(src2, src2w)) { compiler->imm = src2w; return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0); } if (TEST_UL_IMM(src1, src1w)) { compiler->imm = src1w; return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0); } if (TEST_UH_IMM(src2, src2w)) { compiler->imm = (src2w >> 16) & 0xffff; return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0); } if (TEST_UH_IMM(src1, src1w)) { compiler->imm = (src1w >> 16) & 0xffff; return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0); } } if (!GET_FLAGS(op) && GET_OPCODE(op) != SLJIT_AND) { if (TEST_UI_IMM(src2, src2w)) { compiler->imm = src2w; return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0); } if (TEST_UI_IMM(src1, src1w)) { compiler->imm = src1w; return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM3, dst, dstw, src2, src2w, TMP_REG2, 0); } } return emit_op(compiler, GET_OPCODE(op), flags, dst, dstw, src1, src1w, src2, src2w); case SLJIT_ASHR: if (op & SLJIT_KEEP_FLAGS) flags |= ALT_FORM3; /* Fall through. */ case SLJIT_SHL: case SLJIT_LSHR: #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) if (op & SLJIT_INT_OP) flags |= ALT_FORM2; #endif if (src2 & SLJIT_IMM) { compiler->imm = src2w; return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0); } return emit_op(compiler, GET_OPCODE(op), flags, dst, dstw, src1, src1w, src2, src2w); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg) { check_sljit_get_register_index(reg); return reg_map[reg]; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg) { check_sljit_get_float_register_index(reg); return reg; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, sljit_si size) { CHECK_ERROR(); check_sljit_emit_op_custom(compiler, instruction, size); SLJIT_ASSERT(size == 4); return push_inst(compiler, *(sljit_ins*)instruction); } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void) { #ifdef SLJIT_IS_FPU_AVAILABLE return SLJIT_IS_FPU_AVAILABLE; #else /* Available by default. */ return 1; #endif } #define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_SINGLE_OP) >> 6)) #define SELECT_FOP(op, single, double) ((op & SLJIT_SINGLE_OP) ? single : double) #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) #define FLOAT_TMP_MEM_OFFSET (6 * sizeof(sljit_sw)) #else #define FLOAT_TMP_MEM_OFFSET (2 * sizeof(sljit_sw)) #if (defined SLJIT_LITTLE_ENDIAN && SLJIT_LITTLE_ENDIAN) #define FLOAT_TMP_MEM_OFFSET_LOW (2 * sizeof(sljit_sw)) #define FLOAT_TMP_MEM_OFFSET_HI (3 * sizeof(sljit_sw)) #else #define FLOAT_TMP_MEM_OFFSET_LOW (3 * sizeof(sljit_sw)) #define FLOAT_TMP_MEM_OFFSET_HI (2 * sizeof(sljit_sw)) #endif #endif /* SLJIT_CONFIG_PPC_64 */ static SLJIT_INLINE sljit_si sljit_emit_fop1_convw_fromd(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { if (src & SLJIT_MEM) { /* We can ignore the temporary data store on the stack from caching point of view. */ FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw)); src = TMP_FREG1; } #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) op = GET_OPCODE(op); FAIL_IF(push_inst(compiler, (op == SLJIT_CONVI_FROMD ? FCTIWZ : FCTIDZ) | FD(TMP_FREG1) | FB(src))); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; if (op == SLJIT_CONVW_FROMD) { if (FAST_IS_REG(dst)) { FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, 0, 0)); return emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, dst, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, 0, 0); } return emit_op_mem2(compiler, DOUBLE_DATA, TMP_FREG1, dst, dstw, 0, 0); } #else FAIL_IF(push_inst(compiler, FCTIWZ | FD(TMP_FREG1) | FB(src))); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; #endif if (FAST_IS_REG(dst)) { FAIL_IF(load_immediate(compiler, TMP_REG1, FLOAT_TMP_MEM_OFFSET)); FAIL_IF(push_inst(compiler, STFIWX | FS(TMP_FREG1) | A(SLJIT_SP) | B(TMP_REG1))); return emit_op_mem2(compiler, INT_DATA | LOAD_DATA, dst, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, 0, 0); } SLJIT_ASSERT(dst & SLJIT_MEM); if (dst & OFFS_REG_MASK) { dstw &= 0x3; if (dstw) { #if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) FAIL_IF(push_inst(compiler, RLWINM | S(OFFS_REG(dst)) | A(TMP_REG1) | (dstw << 11) | ((31 - dstw) << 1))); #else FAIL_IF(push_inst(compiler, RLDI(TMP_REG1, OFFS_REG(dst), dstw, 63 - dstw, 1))); #endif dstw = TMP_REG1; } else dstw = OFFS_REG(dst); } else { if ((dst & REG_MASK) && !dstw) { dstw = dst & REG_MASK; dst = 0; } else { /* This works regardless we have SLJIT_MEM1 or SLJIT_MEM0. */ FAIL_IF(load_immediate(compiler, TMP_REG1, dstw)); dstw = TMP_REG1; } } return push_inst(compiler, STFIWX | FS(TMP_FREG1) | A(dst & REG_MASK) | B(dstw)); } static SLJIT_INLINE sljit_si sljit_emit_fop1_convd_fromw(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) sljit_si dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (src & SLJIT_IMM) { if (GET_OPCODE(op) == SLJIT_CONVD_FROMI) srcw = (sljit_si)srcw; FAIL_IF(load_immediate(compiler, TMP_REG1, srcw)); src = TMP_REG1; } else if (GET_OPCODE(op) == SLJIT_CONVD_FROMI) { if (FAST_IS_REG(src)) FAIL_IF(push_inst(compiler, EXTSW | S(src) | A(TMP_REG1))); else FAIL_IF(emit_op_mem2(compiler, INT_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET)); src = TMP_REG1; } if (FAST_IS_REG(src)) { FAIL_IF(emit_op_mem2(compiler, WORD_DATA, src, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET)); FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, dst, dstw)); } else FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw)); FAIL_IF(push_inst(compiler, FCFID | FD(dst_r) | FB(TMP_FREG1))); if (dst & SLJIT_MEM) return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0); if (op & SLJIT_SINGLE_OP) return push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r)); return SLJIT_SUCCESS; #else sljit_si dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; sljit_si invert_sign = 1; if (src & SLJIT_IMM) { FAIL_IF(load_immediate(compiler, TMP_REG1, srcw ^ 0x80000000)); src = TMP_REG1; invert_sign = 0; } else if (!FAST_IS_REG(src)) { FAIL_IF(emit_op_mem2(compiler, WORD_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW)); src = TMP_REG1; } /* First, a special double floating point value is constructed: (2^53 + (input xor (2^31))) The double precision format has exactly 53 bit precision, so the lower 32 bit represents the lower 32 bit of such value. The result of xor 2^31 is the same as adding 0x80000000 to the input, which shifts it into the 0 - 0xffffffff range. To get the converted floating point value, we need to substract 2^53 + 2^31 from the constructed value. */ FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG2) | A(0) | 0x4330)); if (invert_sign) FAIL_IF(push_inst(compiler, XORIS | S(src) | A(TMP_REG1) | 0x8000)); FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG2, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_HI, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET)); FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_HI)); FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG1) | A(0) | 0x8000)); FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW)); FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET)); FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG2, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW)); FAIL_IF(push_inst(compiler, FSUB | FD(dst_r) | FA(TMP_FREG1) | FB(TMP_FREG2))); if (dst & SLJIT_MEM) return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0); if (op & SLJIT_SINGLE_OP) return push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r)); return SLJIT_SUCCESS; #endif } static SLJIT_INLINE sljit_si sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_si op, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { if (src1 & SLJIT_MEM) { FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w)); src1 = TMP_FREG1; } if (src2 & SLJIT_MEM) { FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0)); src2 = TMP_FREG2; } return push_inst(compiler, FCMPU | CRD(4) | FA(src1) | FB(src2)); } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_si dst_r; CHECK_ERROR(); compiler->cache_arg = 0; compiler->cache_argw = 0; SLJIT_COMPILE_ASSERT((SLJIT_SINGLE_OP == 0x100) && !(DOUBLE_DATA & 0x4), float_transfer_bit_error); SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw); if (GET_OPCODE(op) == SLJIT_CONVD_FROMS) op ^= SLJIT_SINGLE_OP; dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (src & SLJIT_MEM) { FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, dst_r, src, srcw, dst, dstw)); src = dst_r; } switch (GET_OPCODE(op)) { case SLJIT_CONVD_FROMS: op ^= SLJIT_SINGLE_OP; if (op & SLJIT_SINGLE_OP) { FAIL_IF(push_inst(compiler, FRSP | FD(dst_r) | FB(src))); break; } /* Fall through. */ case SLJIT_MOVD: if (src != dst_r) { if (dst_r != TMP_FREG1) FAIL_IF(push_inst(compiler, FMR | FD(dst_r) | FB(src))); else dst_r = src; } break; case SLJIT_NEGD: FAIL_IF(push_inst(compiler, FNEG | FD(dst_r) | FB(src))); break; case SLJIT_ABSD: FAIL_IF(push_inst(compiler, FABS | FD(dst_r) | FB(src))); break; } if (dst & SLJIT_MEM) FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), dst_r, dst, dstw, 0, 0)); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_si dst_r, flags = 0; CHECK_ERROR(); check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); compiler->cache_arg = 0; compiler->cache_argw = 0; dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG2; if (src1 & SLJIT_MEM) { if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w)) { FAIL_IF(compiler->error); src1 = TMP_FREG1; } else flags |= ALT_FORM1; } if (src2 & SLJIT_MEM) { if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w)) { FAIL_IF(compiler->error); src2 = TMP_FREG2; } else flags |= ALT_FORM2; } if ((flags & (ALT_FORM1 | ALT_FORM2)) == (ALT_FORM1 | ALT_FORM2)) { if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) { FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, src1, src1w)); FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw)); } else { FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w)); FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw)); } } else if (flags & ALT_FORM1) FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw)); else if (flags & ALT_FORM2) FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw)); if (flags & ALT_FORM1) src1 = TMP_FREG1; if (flags & ALT_FORM2) src2 = TMP_FREG2; switch (GET_OPCODE(op)) { case SLJIT_ADDD: FAIL_IF(push_inst(compiler, SELECT_FOP(op, FADDS, FADD) | FD(dst_r) | FA(src1) | FB(src2))); break; case SLJIT_SUBD: FAIL_IF(push_inst(compiler, SELECT_FOP(op, FSUBS, FSUB) | FD(dst_r) | FA(src1) | FB(src2))); break; case SLJIT_MULD: FAIL_IF(push_inst(compiler, SELECT_FOP(op, FMULS, FMUL) | FD(dst_r) | FA(src1) | FC(src2) /* FMUL use FC as src2 */)); break; case SLJIT_DIVD: FAIL_IF(push_inst(compiler, SELECT_FOP(op, FDIVS, FDIV) | FD(dst_r) | FA(src1) | FB(src2))); break; } if (dst_r == TMP_FREG2) FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG2, dst, dstw, 0, 0)); return SLJIT_SUCCESS; } #undef FLOAT_DATA #undef SELECT_FOP /* --------------------------------------------------------------------- */ /* Other instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw) { CHECK_ERROR(); check_sljit_emit_fast_enter(compiler, dst, dstw); ADJUST_LOCAL_OFFSET(dst, dstw); /* For UNUSED dst. Uncommon, but possible. */ if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; if (FAST_IS_REG(dst)) return push_inst(compiler, MFLR | D(dst)); /* Memory. */ FAIL_IF(push_inst(compiler, MFLR | D(TMP_REG2))); return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0); } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw) { CHECK_ERROR(); check_sljit_emit_fast_return(compiler, src, srcw); ADJUST_LOCAL_OFFSET(src, srcw); if (FAST_IS_REG(src)) FAIL_IF(push_inst(compiler, MTLR | S(src))); else { if (src & SLJIT_MEM) FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw)); else if (src & SLJIT_IMM) FAIL_IF(load_immediate(compiler, TMP_REG2, srcw)); FAIL_IF(push_inst(compiler, MTLR | S(TMP_REG2))); } return push_inst(compiler, BLR); } /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { struct sljit_label *label; CHECK_ERROR_PTR(); check_sljit_emit_label(compiler); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); return label; } static sljit_ins get_bo_bi_flags(sljit_si type) { switch (type) { case SLJIT_C_EQUAL: return (12 << 21) | (2 << 16); case SLJIT_C_NOT_EQUAL: return (4 << 21) | (2 << 16); case SLJIT_C_LESS: case SLJIT_C_FLOAT_LESS: return (12 << 21) | ((4 + 0) << 16); case SLJIT_C_GREATER_EQUAL: case SLJIT_C_FLOAT_GREATER_EQUAL: return (4 << 21) | ((4 + 0) << 16); case SLJIT_C_GREATER: case SLJIT_C_FLOAT_GREATER: return (12 << 21) | ((4 + 1) << 16); case SLJIT_C_LESS_EQUAL: case SLJIT_C_FLOAT_LESS_EQUAL: return (4 << 21) | ((4 + 1) << 16); case SLJIT_C_SIG_LESS: return (12 << 21) | (0 << 16); case SLJIT_C_SIG_GREATER_EQUAL: return (4 << 21) | (0 << 16); case SLJIT_C_SIG_GREATER: return (12 << 21) | (1 << 16); case SLJIT_C_SIG_LESS_EQUAL: return (4 << 21) | (1 << 16); case SLJIT_C_OVERFLOW: case SLJIT_C_MUL_OVERFLOW: return (12 << 21) | (3 << 16); case SLJIT_C_NOT_OVERFLOW: case SLJIT_C_MUL_NOT_OVERFLOW: return (4 << 21) | (3 << 16); case SLJIT_C_FLOAT_EQUAL: return (12 << 21) | ((4 + 2) << 16); case SLJIT_C_FLOAT_NOT_EQUAL: return (4 << 21) | ((4 + 2) << 16); case SLJIT_C_FLOAT_UNORDERED: return (12 << 21) | ((4 + 3) << 16); case SLJIT_C_FLOAT_ORDERED: return (4 << 21) | ((4 + 3) << 16); default: SLJIT_ASSERT(type >= SLJIT_JUMP && type <= SLJIT_CALL3); return (20 << 21); } } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type) { struct sljit_jump *jump; sljit_ins bo_bi_flags; CHECK_ERROR_PTR(); check_sljit_emit_jump(compiler, type); bo_bi_flags = get_bo_bi_flags(type & 0xff); if (!bo_bi_flags) return NULL; jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF(!jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; /* In PPC, we don't need to touch the arguments. */ if (type < SLJIT_JUMP) jump->flags |= IS_COND; #if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) if (type >= SLJIT_CALL0) jump->flags |= IS_CALL; #endif PTR_FAIL_IF(emit_const(compiler, TMP_CALL_REG, 0)); PTR_FAIL_IF(push_inst(compiler, MTCTR | S(TMP_CALL_REG))); jump->addr = compiler->size; PTR_FAIL_IF(push_inst(compiler, BCCTR | bo_bi_flags | (type >= SLJIT_FAST_CALL ? 1 : 0))); return jump; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw) { struct sljit_jump *jump = NULL; sljit_si src_r; CHECK_ERROR(); check_sljit_emit_ijump(compiler, type, src, srcw); ADJUST_LOCAL_OFFSET(src, srcw); if (FAST_IS_REG(src)) { #if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) if (type >= SLJIT_CALL0) { FAIL_IF(push_inst(compiler, OR | S(src) | A(TMP_CALL_REG) | B(src))); src_r = TMP_CALL_REG; } else src_r = src; #else src_r = src; #endif } else if (src & SLJIT_IMM) { jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF(!jump); set_jump(jump, compiler, JUMP_ADDR); jump->u.target = srcw; #if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) if (type >= SLJIT_CALL0) jump->flags |= IS_CALL; #endif FAIL_IF(emit_const(compiler, TMP_CALL_REG, 0)); src_r = TMP_CALL_REG; } else { FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_CALL_REG, 0, TMP_REG1, 0, src, srcw)); src_r = TMP_CALL_REG; } FAIL_IF(push_inst(compiler, MTCTR | S(src_r))); if (jump) jump->addr = compiler->size; return push_inst(compiler, BCCTR | (20 << 21) | (type >= SLJIT_FAST_CALL ? 1 : 0)); } /* Get a bit from CR, all other bits are zeroed. */ #define GET_CR_BIT(bit, dst) \ FAIL_IF(push_inst(compiler, MFCR | D(dst))); \ FAIL_IF(push_inst(compiler, RLWINM | S(dst) | A(dst) | ((1 + (bit)) << 11) | (31 << 6) | (31 << 1))); #define INVERT_BIT(dst) \ FAIL_IF(push_inst(compiler, XORI | S(dst) | A(dst) | 0x1)); SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw, sljit_si type) { sljit_si reg, input_flags; sljit_si flags = GET_ALL_FLAGS(op); sljit_sw original_dstw = dstw; CHECK_ERROR(); check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type); ADJUST_LOCAL_OFFSET(dst, dstw); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; op = GET_OPCODE(op); reg = (op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2; compiler->cache_arg = 0; compiler->cache_argw = 0; if (op >= SLJIT_ADD && (src & SLJIT_MEM)) { ADJUST_LOCAL_OFFSET(src, srcw); #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) input_flags = (flags & SLJIT_INT_OP) ? INT_DATA : WORD_DATA; #else input_flags = WORD_DATA; #endif FAIL_IF(emit_op_mem2(compiler, input_flags | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw)); src = TMP_REG1; srcw = 0; } switch (type) { case SLJIT_C_EQUAL: GET_CR_BIT(2, reg); break; case SLJIT_C_NOT_EQUAL: GET_CR_BIT(2, reg); INVERT_BIT(reg); break; case SLJIT_C_LESS: case SLJIT_C_FLOAT_LESS: GET_CR_BIT(4 + 0, reg); break; case SLJIT_C_GREATER_EQUAL: case SLJIT_C_FLOAT_GREATER_EQUAL: GET_CR_BIT(4 + 0, reg); INVERT_BIT(reg); break; case SLJIT_C_GREATER: case SLJIT_C_FLOAT_GREATER: GET_CR_BIT(4 + 1, reg); break; case SLJIT_C_LESS_EQUAL: case SLJIT_C_FLOAT_LESS_EQUAL: GET_CR_BIT(4 + 1, reg); INVERT_BIT(reg); break; case SLJIT_C_SIG_LESS: GET_CR_BIT(0, reg); break; case SLJIT_C_SIG_GREATER_EQUAL: GET_CR_BIT(0, reg); INVERT_BIT(reg); break; case SLJIT_C_SIG_GREATER: GET_CR_BIT(1, reg); break; case SLJIT_C_SIG_LESS_EQUAL: GET_CR_BIT(1, reg); INVERT_BIT(reg); break; case SLJIT_C_OVERFLOW: case SLJIT_C_MUL_OVERFLOW: GET_CR_BIT(3, reg); break; case SLJIT_C_NOT_OVERFLOW: case SLJIT_C_MUL_NOT_OVERFLOW: GET_CR_BIT(3, reg); INVERT_BIT(reg); break; case SLJIT_C_FLOAT_EQUAL: GET_CR_BIT(4 + 2, reg); break; case SLJIT_C_FLOAT_NOT_EQUAL: GET_CR_BIT(4 + 2, reg); INVERT_BIT(reg); break; case SLJIT_C_FLOAT_UNORDERED: GET_CR_BIT(4 + 3, reg); break; case SLJIT_C_FLOAT_ORDERED: GET_CR_BIT(4 + 3, reg); INVERT_BIT(reg); break; default: SLJIT_ASSERT_STOP(); break; } if (op < SLJIT_ADD) { #if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64) if (op == SLJIT_MOV) input_flags = WORD_DATA; else { op = SLJIT_MOV_UI; input_flags = INT_DATA; } #else op = SLJIT_MOV; input_flags = WORD_DATA; #endif if (reg != TMP_REG2) return SLJIT_SUCCESS; return emit_op(compiler, op, input_flags, dst, dstw, TMP_REG1, 0, TMP_REG2, 0); } #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, op | flags, dst, original_dstw, src, srcw, TMP_REG2, 0); } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value) { struct sljit_const *const_; sljit_si reg; CHECK_ERROR_PTR(); check_sljit_emit_const(compiler, dst, dstw, init_value); ADJUST_LOCAL_OFFSET(dst, dstw); const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); reg = SLOW_IS_REG(dst) ? dst : TMP_REG2; PTR_FAIL_IF(emit_const(compiler, reg, init_value)); if (dst & SLJIT_MEM) PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0)); return const_; }