//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the machine model for Haswell to support instruction // scheduling and other instruction cost heuristics. // //===----------------------------------------------------------------------===// def HaswellModel : SchedMachineModel { // All x86 instructions are modeled as a single micro-op, and HW can decode 4 // instructions per cycle. let IssueWidth = 4; let MicroOpBufferSize = 192; // Based on the reorder buffer. let LoadLatency = 4; let MispredictPenalty = 16; // Based on the LSD (loop-stream detector) queue size and benchmarking data. let LoopMicroOpBufferSize = 50; // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow // the scheduler to assign a default model to unrecognized opcodes. let CompleteModel = 0; } let SchedModel = HaswellModel in { // Haswell can issue micro-ops to 8 different ports in one cycle. // Ports 0, 1, 5, and 6 handle all computation. // Port 4 gets the data half of stores. Store data can be available later than // the store address, but since we don't model the latency of stores, we can // ignore that. // Ports 2 and 3 are identical. They handle loads and the address half of // stores. Port 7 can handle address calculations. def HWPort0 : ProcResource<1>; def HWPort1 : ProcResource<1>; def HWPort2 : ProcResource<1>; def HWPort3 : ProcResource<1>; def HWPort4 : ProcResource<1>; def HWPort5 : ProcResource<1>; def HWPort6 : ProcResource<1>; def HWPort7 : ProcResource<1>; // Many micro-ops are capable of issuing on multiple ports. def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>; def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>; def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>; def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>; def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>; def HWPort16 : ProcResGroup<[HWPort1, HWPort6]>; def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>; def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>; // 60 Entry Unified Scheduler def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4, HWPort5, HWPort6, HWPort7]> { let BufferSize=60; } // Integer division issued on port 0. def HWDivider : ProcResource<1>; // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4 // cycles after the memory operand. def : ReadAdvance<ReadAfterLd, 4>; // Many SchedWrites are defined in pairs with and without a folded load. // Instructions with folded loads are usually micro-fused, so they only appear // as two micro-ops when queued in the reservation station. // This multiclass defines the resource usage for variants with and without // folded loads. multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW, ProcResourceKind ExePort, int Lat> { // Register variant is using a single cycle on ExePort. def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the // latency. def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> { let Latency = !add(Lat, 4); } } // A folded store needs a cycle on port 4 for the store data, but it does not // need an extra port 2/3 cycle to recompute the address. def : WriteRes<WriteRMW, [HWPort4]>; // Store_addr on 237. // Store_data on 4. def : WriteRes<WriteStore, [HWPort237, HWPort4]>; def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; } def : WriteRes<WriteMove, [HWPort0156]>; def : WriteRes<WriteZero, []>; defm : HWWriteResPair<WriteALU, HWPort0156, 1>; defm : HWWriteResPair<WriteIMul, HWPort1, 3>; def : WriteRes<WriteIMulH, []> { let Latency = 3; } defm : HWWriteResPair<WriteShift, HWPort06, 1>; defm : HWWriteResPair<WriteJump, HWPort06, 1>; // This is for simple LEAs with one or two input operands. // The complex ones can only execute on port 1, and they require two cycles on // the port to read all inputs. We don't model that. def : WriteRes<WriteLEA, [HWPort15]>; // This is quite rough, latency depends on the dividend. def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> { let Latency = 25; let ResourceCycles = [1, 10]; } def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> { let Latency = 29; let ResourceCycles = [1, 1, 10]; } // Scalar and vector floating point. defm : HWWriteResPair<WriteFAdd, HWPort1, 3>; defm : HWWriteResPair<WriteFMul, HWPort0, 5>; defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles. defm : HWWriteResPair<WriteFRcp, HWPort0, 5>; defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>; defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>; defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>; defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>; defm : HWWriteResPair<WriteFShuffle, HWPort5, 1>; defm : HWWriteResPair<WriteFBlend, HWPort015, 1>; defm : HWWriteResPair<WriteFShuffle256, HWPort5, 3>; def : WriteRes<WriteFVarBlend, [HWPort5]> { let Latency = 2; let ResourceCycles = [2]; } def : WriteRes<WriteFVarBlendLd, [HWPort5, HWPort23]> { let Latency = 6; let ResourceCycles = [2, 1]; } // Vector integer operations. defm : HWWriteResPair<WriteVecShift, HWPort0, 1>; defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>; defm : HWWriteResPair<WriteVecALU, HWPort15, 1>; defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>; defm : HWWriteResPair<WriteShuffle, HWPort5, 1>; defm : HWWriteResPair<WriteBlend, HWPort15, 1>; defm : HWWriteResPair<WriteShuffle256, HWPort5, 3>; def : WriteRes<WriteVarBlend, [HWPort5]> { let Latency = 2; let ResourceCycles = [2]; } def : WriteRes<WriteVarBlendLd, [HWPort5, HWPort23]> { let Latency = 6; let ResourceCycles = [2, 1]; } def : WriteRes<WriteVarVecShift, [HWPort0, HWPort5]> { let Latency = 2; let ResourceCycles = [2, 1]; } def : WriteRes<WriteVarVecShiftLd, [HWPort0, HWPort5, HWPort23]> { let Latency = 6; let ResourceCycles = [2, 1, 1]; } def : WriteRes<WriteMPSAD, [HWPort0, HWPort5]> { let Latency = 6; let ResourceCycles = [1, 2]; } def : WriteRes<WriteMPSADLd, [HWPort23, HWPort0, HWPort5]> { let Latency = 6; let ResourceCycles = [1, 1, 2]; } // String instructions. // Packed Compare Implicit Length Strings, Return Mask def : WriteRes<WritePCmpIStrM, [HWPort0]> { let Latency = 10; let ResourceCycles = [3]; } def : WriteRes<WritePCmpIStrMLd, [HWPort0, HWPort23]> { let Latency = 10; let ResourceCycles = [3, 1]; } // Packed Compare Explicit Length Strings, Return Mask def : WriteRes<WritePCmpEStrM, [HWPort0, HWPort16, HWPort5]> { let Latency = 10; let ResourceCycles = [3, 2, 4]; } def : WriteRes<WritePCmpEStrMLd, [HWPort05, HWPort16, HWPort23]> { let Latency = 10; let ResourceCycles = [6, 2, 1]; } // Packed Compare Implicit Length Strings, Return Index def : WriteRes<WritePCmpIStrI, [HWPort0]> { let Latency = 11; let ResourceCycles = [3]; } def : WriteRes<WritePCmpIStrILd, [HWPort0, HWPort23]> { let Latency = 11; let ResourceCycles = [3, 1]; } // Packed Compare Explicit Length Strings, Return Index def : WriteRes<WritePCmpEStrI, [HWPort05, HWPort16]> { let Latency = 11; let ResourceCycles = [6, 2]; } def : WriteRes<WritePCmpEStrILd, [HWPort0, HWPort16, HWPort5, HWPort23]> { let Latency = 11; let ResourceCycles = [3, 2, 2, 1]; } // AES Instructions. def : WriteRes<WriteAESDecEnc, [HWPort5]> { let Latency = 7; let ResourceCycles = [1]; } def : WriteRes<WriteAESDecEncLd, [HWPort5, HWPort23]> { let Latency = 7; let ResourceCycles = [1, 1]; } def : WriteRes<WriteAESIMC, [HWPort5]> { let Latency = 14; let ResourceCycles = [2]; } def : WriteRes<WriteAESIMCLd, [HWPort5, HWPort23]> { let Latency = 14; let ResourceCycles = [2, 1]; } def : WriteRes<WriteAESKeyGen, [HWPort0, HWPort5]> { let Latency = 10; let ResourceCycles = [2, 8]; } def : WriteRes<WriteAESKeyGenLd, [HWPort0, HWPort5, HWPort23]> { let Latency = 10; let ResourceCycles = [2, 7, 1]; } // Carry-less multiplication instructions. def : WriteRes<WriteCLMul, [HWPort0, HWPort5]> { let Latency = 7; let ResourceCycles = [2, 1]; } def : WriteRes<WriteCLMulLd, [HWPort0, HWPort5, HWPort23]> { let Latency = 7; let ResourceCycles = [2, 1, 1]; } def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; } def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; } def : WriteRes<WriteFence, [HWPort23, HWPort4]>; def : WriteRes<WriteNop, []>; } // SchedModel