//===-- ThreadPlanStepRange.cpp ---------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Target/ThreadPlanStepRange.h" // C Includes // C++ Includes // Other libraries and framework includes // Project includes #include "lldb/lldb-private-log.h" #include "lldb/Breakpoint/BreakpointLocation.h" #include "lldb/Breakpoint/BreakpointSite.h" #include "lldb/Core/Disassembler.h" #include "lldb/Core/Log.h" #include "lldb/Core/Stream.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StopInfo.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadPlanRunToAddress.h" using namespace lldb; using namespace lldb_private; //---------------------------------------------------------------------- // ThreadPlanStepRange: Step through a stack range, either stepping over or into // based on the value of \a type. //---------------------------------------------------------------------- ThreadPlanStepRange::ThreadPlanStepRange (ThreadPlanKind kind, const char *name, Thread &thread, const AddressRange &range, const SymbolContext &addr_context, lldb::RunMode stop_others) : ThreadPlan (kind, name, thread, eVoteNoOpinion, eVoteNoOpinion), m_addr_context (addr_context), m_address_ranges (), m_stop_others (stop_others), m_stack_id (), m_no_more_plans (false), m_first_run_event (true), m_use_fast_step(false) { m_use_fast_step = GetTarget().GetUseFastStepping(); AddRange(range); m_stack_id = m_thread.GetStackFrameAtIndex(0)->GetStackID(); } ThreadPlanStepRange::~ThreadPlanStepRange () { ClearNextBranchBreakpoint(); size_t num_instruction_ranges = m_instruction_ranges.size(); // FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions. // I'll fix that but for now, just clear the list and it will go away nicely. for (size_t i = 0; i < num_instruction_ranges; i++) { if (m_instruction_ranges[i]) m_instruction_ranges[i]->GetInstructionList().Clear(); } } void ThreadPlanStepRange::DidPush () { // See if we can find a "next range" breakpoint: SetNextBranchBreakpoint(); } bool ThreadPlanStepRange::ValidatePlan (Stream *error) { return true; } Vote ThreadPlanStepRange::ShouldReportStop (Event *event_ptr) { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP)); const Vote vote = IsPlanComplete() ? eVoteYes : eVoteNo; if (log) log->Printf ("ThreadPlanStepRange::ShouldReportStop() returning vote %i\n", vote); return vote; } void ThreadPlanStepRange::AddRange(const AddressRange &new_range) { // For now I'm just adding the ranges. At some point we may want to // condense the ranges if they overlap, though I don't think it is likely // to be very important. m_address_ranges.push_back (new_range); // Fill the slot for this address range with an empty DisassemblerSP in the instruction ranges. I want the // indices to match, but I don't want to do the work to disassemble this range if I don't step into it. m_instruction_ranges.push_back (DisassemblerSP()); } void ThreadPlanStepRange::DumpRanges(Stream *s) { size_t num_ranges = m_address_ranges.size(); if (num_ranges == 1) { m_address_ranges[0].Dump (s, m_thread.CalculateTarget().get(), Address::DumpStyleLoadAddress); } else { for (size_t i = 0; i < num_ranges; i++) { s->PutCString("%d: "); m_address_ranges[i].Dump (s, m_thread.CalculateTarget().get(), Address::DumpStyleLoadAddress); } } } bool ThreadPlanStepRange::InRange () { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP)); bool ret_value = false; lldb::addr_t pc_load_addr = m_thread.GetRegisterContext()->GetPC(); size_t num_ranges = m_address_ranges.size(); for (size_t i = 0; i < num_ranges; i++) { ret_value = m_address_ranges[i].ContainsLoadAddress(pc_load_addr, m_thread.CalculateTarget().get()); if (ret_value) break; } if (!ret_value) { // See if we've just stepped to another part of the same line number... StackFrame *frame = m_thread.GetStackFrameAtIndex(0).get(); SymbolContext new_context(frame->GetSymbolContext(eSymbolContextEverything)); if (m_addr_context.line_entry.IsValid() && new_context.line_entry.IsValid()) { if (m_addr_context.line_entry.file == new_context.line_entry.file) { if (m_addr_context.line_entry.line == new_context.line_entry.line) { m_addr_context = new_context; AddRange(m_addr_context.line_entry.range); ret_value = true; if (log) { StreamString s; m_addr_context.line_entry.Dump (&s, m_thread.CalculateTarget().get(), true, Address::DumpStyleLoadAddress, Address::DumpStyleLoadAddress, true); log->Printf ("Step range plan stepped to another range of same line: %s", s.GetData()); } } else if (new_context.line_entry.range.GetBaseAddress().GetLoadAddress(m_thread.CalculateTarget().get()) != pc_load_addr) { // Another thing that sometimes happens here is that we step out of one line into the MIDDLE of another // line. So far I mostly see this due to bugs in the debug information. // But we probably don't want to be in the middle of a line range, so in that case reset the stepping // range to the line we've stepped into the middle of and continue. m_addr_context = new_context; m_address_ranges.clear(); AddRange(m_addr_context.line_entry.range); ret_value = true; if (log) { StreamString s; m_addr_context.line_entry.Dump (&s, m_thread.CalculateTarget().get(), true, Address::DumpStyleLoadAddress, Address::DumpStyleLoadAddress, true); log->Printf ("Step range plan stepped to the middle of new line(%d): %s, continuing to clear this line.", new_context.line_entry.line, s.GetData()); } } } } } if (!ret_value && log) log->Printf ("Step range plan out of range to 0x%" PRIx64, pc_load_addr); return ret_value; } bool ThreadPlanStepRange::InSymbol() { lldb::addr_t cur_pc = m_thread.GetRegisterContext()->GetPC(); if (m_addr_context.function != NULL) { return m_addr_context.function->GetAddressRange().ContainsLoadAddress (cur_pc, m_thread.CalculateTarget().get()); } else if (m_addr_context.symbol) { AddressRange range(m_addr_context.symbol->GetAddress(), m_addr_context.symbol->GetByteSize()); return range.ContainsLoadAddress (cur_pc, m_thread.CalculateTarget().get()); } return false; } // FIXME: This should also handle inlining if we aren't going to do inlining in the // main stack. // // Ideally we should remember the whole stack frame list, and then compare that // to the current list. lldb::FrameComparison ThreadPlanStepRange::CompareCurrentFrameToStartFrame() { FrameComparison frame_order; StackID cur_frame_id = m_thread.GetStackFrameAtIndex(0)->GetStackID(); if (cur_frame_id == m_stack_id) { frame_order = eFrameCompareEqual; } else if (cur_frame_id < m_stack_id) { frame_order = eFrameCompareYounger; } else { frame_order = eFrameCompareOlder; } return frame_order; } bool ThreadPlanStepRange::StopOthers () { if (m_stop_others == lldb::eOnlyThisThread || m_stop_others == lldb::eOnlyDuringStepping) return true; else return false; } InstructionList * ThreadPlanStepRange::GetInstructionsForAddress(lldb::addr_t addr, size_t &range_index, size_t &insn_offset) { size_t num_ranges = m_address_ranges.size(); for (size_t i = 0; i < num_ranges; i++) { if (m_address_ranges[i].ContainsLoadAddress(addr, &GetTarget())) { // Some joker added a zero size range to the stepping range... if (m_address_ranges[i].GetByteSize() == 0) return NULL; if (!m_instruction_ranges[i]) { //Disassemble the address range given: ExecutionContext exe_ctx (m_thread.GetProcess()); const char *plugin_name = NULL; const char *flavor = NULL; m_instruction_ranges[i] = Disassembler::DisassembleRange(GetTarget().GetArchitecture(), plugin_name, flavor, exe_ctx, m_address_ranges[i]); } if (!m_instruction_ranges[i]) return NULL; else { // Find where we are in the instruction list as well. If we aren't at an instruction, // return NULL. In this case, we're probably lost, and shouldn't try to do anything fancy. insn_offset = m_instruction_ranges[i]->GetInstructionList().GetIndexOfInstructionAtLoadAddress(addr, GetTarget()); if (insn_offset == UINT32_MAX) return NULL; else { range_index = i; return &m_instruction_ranges[i]->GetInstructionList(); } } } } return NULL; } void ThreadPlanStepRange::ClearNextBranchBreakpoint() { if (m_next_branch_bp_sp) { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP)); if (log) log->Printf ("Removing next branch breakpoint: %d.", m_next_branch_bp_sp->GetID()); GetTarget().RemoveBreakpointByID (m_next_branch_bp_sp->GetID()); m_next_branch_bp_sp.reset(); } } bool ThreadPlanStepRange::SetNextBranchBreakpoint () { if (m_next_branch_bp_sp) return true; Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP)); // Stepping through ranges using breakpoints doesn't work yet, but with this off we fall back to instruction // single stepping. if (!m_use_fast_step) return false; lldb::addr_t cur_addr = GetThread().GetRegisterContext()->GetPC(); // Find the current address in our address ranges, and fetch the disassembly if we haven't already: size_t pc_index; size_t range_index; InstructionList *instructions = GetInstructionsForAddress (cur_addr, range_index, pc_index); if (instructions == NULL) return false; else { uint32_t branch_index; branch_index = instructions->GetIndexOfNextBranchInstruction (pc_index); Address run_to_address; // If we didn't find a branch, run to the end of the range. if (branch_index == UINT32_MAX) { branch_index = instructions->GetSize() - 1; } if (branch_index - pc_index > 1) { const bool is_internal = true; run_to_address = instructions->GetInstructionAtIndex(branch_index)->GetAddress(); m_next_branch_bp_sp = GetTarget().CreateBreakpoint(run_to_address, is_internal); if (m_next_branch_bp_sp) { if (log) { lldb::break_id_t bp_site_id = LLDB_INVALID_BREAK_ID; BreakpointLocationSP bp_loc = m_next_branch_bp_sp->GetLocationAtIndex(0); if (bp_loc) { BreakpointSiteSP bp_site = bp_loc->GetBreakpointSite(); if (bp_site) { bp_site_id = bp_site->GetID(); } } log->Printf ("ThreadPlanStepRange::SetNextBranchBreakpoint - Setting breakpoint %d (site %d) to run to address 0x%" PRIx64, m_next_branch_bp_sp->GetID(), bp_site_id, run_to_address.GetLoadAddress(&m_thread.GetProcess()->GetTarget())); } m_next_branch_bp_sp->SetThreadID(m_thread.GetID()); m_next_branch_bp_sp->SetBreakpointKind ("next-branch-location"); return true; } else return false; } } return false; } bool ThreadPlanStepRange::NextRangeBreakpointExplainsStop (lldb::StopInfoSP stop_info_sp) { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP)); if (!m_next_branch_bp_sp) return false; break_id_t bp_site_id = stop_info_sp->GetValue(); BreakpointSiteSP bp_site_sp = m_thread.GetProcess()->GetBreakpointSiteList().FindByID(bp_site_id); if (!bp_site_sp) return false; else if (!bp_site_sp->IsBreakpointAtThisSite (m_next_branch_bp_sp->GetID())) return false; else { // If we've hit the next branch breakpoint, then clear it. size_t num_owners = bp_site_sp->GetNumberOfOwners(); bool explains_stop = true; // If all the owners are internal, then we are probably just stepping over this range from multiple threads, // or multiple frames, so we want to continue. If one is not internal, then we should not explain the stop, // and let the user breakpoint handle the stop. for (size_t i = 0; i < num_owners; i++) { if (!bp_site_sp->GetOwnerAtIndex(i)->GetBreakpoint().IsInternal()) { explains_stop = false; break; } } if (log) log->Printf ("ThreadPlanStepRange::NextRangeBreakpointExplainsStop - Hit next range breakpoint which has %zu owners - explains stop: %u.", num_owners, explains_stop); ClearNextBranchBreakpoint(); return explains_stop; } } bool ThreadPlanStepRange::WillStop () { return true; } StateType ThreadPlanStepRange::GetPlanRunState () { if (m_next_branch_bp_sp) return eStateRunning; else return eStateStepping; } bool ThreadPlanStepRange::MischiefManaged () { // If we have pushed some plans between ShouldStop & MischiefManaged, then we're not done... // I do this check first because we might have stepped somewhere that will fool InRange into // thinking it needs to step past the end of that line. This happens, for instance, when stepping // over inlined code that is in the middle of the current line. if (!m_no_more_plans) return false; bool done = true; if (!IsPlanComplete()) { if (InRange()) { done = false; } else { FrameComparison frame_order = CompareCurrentFrameToStartFrame(); if (frame_order != eFrameCompareOlder) { if (m_no_more_plans) done = true; else done = false; } else done = true; } } if (done) { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP)); if (log) log->Printf("Completed step through range plan."); ClearNextBranchBreakpoint(); ThreadPlan::MischiefManaged (); return true; } else { return false; } } bool ThreadPlanStepRange::IsPlanStale () { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP)); FrameComparison frame_order = CompareCurrentFrameToStartFrame(); if (frame_order == eFrameCompareOlder) { if (log) { log->Printf("ThreadPlanStepRange::IsPlanStale returning true, we've stepped out."); } return true; } else if (frame_order == eFrameCompareEqual && InSymbol()) { // If we are not in a place we should step through, we've gotten stale. // One tricky bit here is that some stubs don't push a frame, so we should. // check that we are in the same symbol. if (!InRange()) { return true; } } return false; }