//===-- Stream.cpp ----------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Core/Stream.h" #include "lldb/Host/Endian.h" #include <stddef.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include <inttypes.h> using namespace lldb; using namespace lldb_private; Stream::Stream (uint32_t flags, uint32_t addr_size, ByteOrder byte_order) : m_flags (flags), m_addr_size (addr_size), m_byte_order (byte_order), m_indent_level(0) { } Stream::Stream () : m_flags (0), m_addr_size (4), m_byte_order (lldb::endian::InlHostByteOrder()), m_indent_level(0) { } //------------------------------------------------------------------ // Destructor //------------------------------------------------------------------ Stream::~Stream () { } ByteOrder Stream::SetByteOrder (ByteOrder byte_order) { ByteOrder old_byte_order = m_byte_order; m_byte_order = byte_order; return old_byte_order; } //------------------------------------------------------------------ // Put an offset "uval" out to the stream using the printf format // in "format". //------------------------------------------------------------------ void Stream::Offset (uint32_t uval, const char *format) { Printf (format, uval); } //------------------------------------------------------------------ // Put an SLEB128 "uval" out to the stream using the printf format // in "format". //------------------------------------------------------------------ size_t Stream::PutSLEB128 (int64_t sval) { size_t bytes_written = 0; if (m_flags.Test(eBinary)) { bool more = true; while (more) { uint8_t byte = sval & 0x7fu; sval >>= 7; /* sign bit of byte is 2nd high order bit (0x40) */ if ((sval == 0 && !(byte & 0x40)) || (sval == -1 && (byte & 0x40)) ) more = false; else // more bytes to come byte |= 0x80u; bytes_written += Write(&byte, 1); } } else { bytes_written = Printf ("0x%" PRIi64, sval); } return bytes_written; } //------------------------------------------------------------------ // Put an ULEB128 "uval" out to the stream using the printf format // in "format". //------------------------------------------------------------------ size_t Stream::PutULEB128 (uint64_t uval) { size_t bytes_written = 0; if (m_flags.Test(eBinary)) { do { uint8_t byte = uval & 0x7fu; uval >>= 7; if (uval != 0) { // more bytes to come byte |= 0x80u; } bytes_written += Write(&byte, 1); } while (uval != 0); } else { bytes_written = Printf ("0x%" PRIx64, uval); } return bytes_written; } //------------------------------------------------------------------ // Print a raw NULL terminated C string to the stream. //------------------------------------------------------------------ size_t Stream::PutCString (const char *cstr) { size_t cstr_len = strlen(cstr); // when in binary mode, emit the NULL terminator if (m_flags.Test(eBinary)) ++cstr_len; return Write (cstr, cstr_len); } //------------------------------------------------------------------ // Print a double quoted NULL terminated C string to the stream // using the printf format in "format". //------------------------------------------------------------------ void Stream::QuotedCString (const char *cstr, const char *format) { Printf (format, cstr); } //------------------------------------------------------------------ // Put an address "addr" out to the stream with optional prefix // and suffix strings. //------------------------------------------------------------------ void Stream::Address (uint64_t addr, uint32_t addr_size, const char *prefix, const char *suffix) { if (prefix == NULL) prefix = ""; if (suffix == NULL) suffix = ""; // int addr_width = m_addr_size << 1; // Printf ("%s0x%0*" PRIx64 "%s", prefix, addr_width, addr, suffix); Printf ("%s0x%0*" PRIx64 "%s", prefix, addr_size * 2, (uint64_t)addr, suffix); } //------------------------------------------------------------------ // Put an address range out to the stream with optional prefix // and suffix strings. //------------------------------------------------------------------ void Stream::AddressRange(uint64_t lo_addr, uint64_t hi_addr, uint32_t addr_size, const char *prefix, const char *suffix) { if (prefix && prefix[0]) PutCString (prefix); Address (lo_addr, addr_size, "["); Address (hi_addr, addr_size, "-", ")"); if (suffix && suffix[0]) PutCString (suffix); } size_t Stream::PutChar (char ch) { return Write (&ch, 1); } //------------------------------------------------------------------ // Print some formatted output to the stream. //------------------------------------------------------------------ size_t Stream::Printf (const char *format, ...) { va_list args; va_start (args, format); size_t result = PrintfVarArg(format, args); va_end (args); return result; } //------------------------------------------------------------------ // Print some formatted output to the stream. //------------------------------------------------------------------ size_t Stream::PrintfVarArg (const char *format, va_list args) { char str[1024]; va_list args_copy; va_copy (args_copy, args); size_t bytes_written = 0; // Try and format our string into a fixed buffer first and see if it fits size_t length = ::vsnprintf (str, sizeof(str), format, args); if (length < sizeof(str)) { // Include the NULL termination byte for binary output if (m_flags.Test(eBinary)) length += 1; // The formatted string fit into our stack based buffer, so we can just // append that to our packet bytes_written = Write (str, length); } else { // Our stack buffer wasn't big enough to contain the entire formatted // string, so lets let vasprintf create the string for us! char *str_ptr = NULL; length = ::vasprintf (&str_ptr, format, args_copy); if (str_ptr) { // Include the NULL termination byte for binary output if (m_flags.Test(eBinary)) length += 1; bytes_written = Write (str_ptr, length); ::free (str_ptr); } } va_end (args_copy); return bytes_written; } //------------------------------------------------------------------ // Print and End of Line character to the stream //------------------------------------------------------------------ size_t Stream::EOL() { return PutChar ('\n'); } //------------------------------------------------------------------ // Indent the current line using the current indentation level and // print an optional string following the idenatation spaces. //------------------------------------------------------------------ size_t Stream::Indent(const char *s) { return Printf ("%*.*s%s", m_indent_level, m_indent_level, "", s ? s : ""); } //------------------------------------------------------------------ // Stream a character "ch" out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (char ch) { PutChar (ch); return *this; } //------------------------------------------------------------------ // Stream the NULL terminated C string out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (const char *s) { Printf ("%s", s); return *this; } //------------------------------------------------------------------ // Stream the pointer value out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (void *p) { Printf ("0x%.*tx", (int)sizeof(void*) * 2, (ptrdiff_t)p); return *this; } //------------------------------------------------------------------ // Stream a uint8_t "uval" out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (uint8_t uval) { PutHex8(uval); return *this; } //------------------------------------------------------------------ // Stream a uint16_t "uval" out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (uint16_t uval) { PutHex16(uval, m_byte_order); return *this; } //------------------------------------------------------------------ // Stream a uint32_t "uval" out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (uint32_t uval) { PutHex32(uval, m_byte_order); return *this; } //------------------------------------------------------------------ // Stream a uint64_t "uval" out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (uint64_t uval) { PutHex64(uval, m_byte_order); return *this; } //------------------------------------------------------------------ // Stream a int8_t "sval" out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (int8_t sval) { Printf ("%i", (int)sval); return *this; } //------------------------------------------------------------------ // Stream a int16_t "sval" out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (int16_t sval) { Printf ("%i", (int)sval); return *this; } //------------------------------------------------------------------ // Stream a int32_t "sval" out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (int32_t sval) { Printf ("%i", (int)sval); return *this; } //------------------------------------------------------------------ // Stream a int64_t "sval" out to this stream. //------------------------------------------------------------------ Stream& Stream::operator<< (int64_t sval) { Printf ("%" PRIi64, sval); return *this; } //------------------------------------------------------------------ // Get the current indentation level //------------------------------------------------------------------ int Stream::GetIndentLevel() const { return m_indent_level; } //------------------------------------------------------------------ // Set the current indentation level //------------------------------------------------------------------ void Stream::SetIndentLevel(int indent_level) { m_indent_level = indent_level; } //------------------------------------------------------------------ // Increment the current indentation level //------------------------------------------------------------------ void Stream::IndentMore(int amount) { m_indent_level += amount; } //------------------------------------------------------------------ // Decrement the current indentation level //------------------------------------------------------------------ void Stream::IndentLess (int amount) { if (m_indent_level >= amount) m_indent_level -= amount; else m_indent_level = 0; } //------------------------------------------------------------------ // Get the address size in bytes //------------------------------------------------------------------ uint32_t Stream::GetAddressByteSize() const { return m_addr_size; } //------------------------------------------------------------------ // Set the address size in bytes //------------------------------------------------------------------ void Stream::SetAddressByteSize(uint32_t addr_size) { m_addr_size = addr_size; } //------------------------------------------------------------------ // Returns true if the verbose flag bit is set in this stream. //------------------------------------------------------------------ bool Stream::GetVerbose() const { return m_flags.Test(eVerbose); } //------------------------------------------------------------------ // Returns true if the debug flag bit is set in this stream. //------------------------------------------------------------------ bool Stream::GetDebug() const { return m_flags.Test(eDebug); } //------------------------------------------------------------------ // The flags get accessor //------------------------------------------------------------------ Flags& Stream::GetFlags() { return m_flags; } //------------------------------------------------------------------ // The flags const get accessor //------------------------------------------------------------------ const Flags& Stream::GetFlags() const { return m_flags; } //------------------------------------------------------------------ // The byte order get accessor //------------------------------------------------------------------ lldb::ByteOrder Stream::GetByteOrder() const { return m_byte_order; } size_t Stream::PrintfAsRawHex8 (const char *format, ...) { va_list args; va_list args_copy; va_start (args, format); va_copy (args, args_copy); // Copy this so we char str[1024]; size_t bytes_written = 0; // Try and format our string into a fixed buffer first and see if it fits size_t length = ::vsnprintf (str, sizeof(str), format, args); if (length < sizeof(str)) { // The formatted string fit into our stack based buffer, so we can just // append that to our packet for (size_t i=0; i<length; ++i) bytes_written += _PutHex8 (str[i], false); } else { // Our stack buffer wasn't big enough to contain the entire formatted // string, so lets let vasprintf create the string for us! char *str_ptr = NULL; length = ::vasprintf (&str_ptr, format, args_copy); if (str_ptr) { for (size_t i=0; i<length; ++i) bytes_written += _PutHex8 (str_ptr[i], false); ::free (str_ptr); } } va_end (args); va_end (args_copy); return bytes_written; } size_t Stream::PutNHex8 (size_t n, uint8_t uvalue) { size_t bytes_written = 0; for (size_t i=0; i<n; ++i) bytes_written += _PutHex8 (uvalue, m_flags.Test(eAddPrefix)); return bytes_written; } size_t Stream::_PutHex8 (uint8_t uvalue, bool add_prefix) { size_t bytes_written = 0; if (m_flags.Test(eBinary)) { bytes_written = Write (&uvalue, 1); } else { if (add_prefix) PutCString("0x"); static char g_hex_to_ascii_hex_char[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; char nibble_chars[2]; nibble_chars[0] = g_hex_to_ascii_hex_char[(uvalue >> 4) & 0xf]; nibble_chars[1] = g_hex_to_ascii_hex_char[(uvalue >> 0) & 0xf]; bytes_written = Write (nibble_chars, sizeof(nibble_chars)); } return bytes_written; } size_t Stream::PutHex8 (uint8_t uvalue) { return _PutHex8 (uvalue, m_flags.Test(eAddPrefix)); } size_t Stream::PutHex16 (uint16_t uvalue, ByteOrder byte_order) { if (byte_order == eByteOrderInvalid) byte_order = m_byte_order; bool add_prefix = m_flags.Test(eAddPrefix); size_t bytes_written = 0; if (byte_order == eByteOrderLittle) { for (size_t byte = 0; byte < sizeof(uvalue); ++byte, add_prefix = false) bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix); } else { for (size_t byte = sizeof(uvalue)-1; byte < sizeof(uvalue); --byte, add_prefix = false) bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix); } return bytes_written; } size_t Stream::PutHex32(uint32_t uvalue, ByteOrder byte_order) { if (byte_order == eByteOrderInvalid) byte_order = m_byte_order; bool add_prefix = m_flags.Test(eAddPrefix); size_t bytes_written = 0; if (byte_order == eByteOrderLittle) { for (size_t byte = 0; byte < sizeof(uvalue); ++byte, add_prefix = false) bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix); } else { for (size_t byte = sizeof(uvalue)-1; byte < sizeof(uvalue); --byte, add_prefix = false) bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix); } return bytes_written; } size_t Stream::PutHex64(uint64_t uvalue, ByteOrder byte_order) { if (byte_order == eByteOrderInvalid) byte_order = m_byte_order; bool add_prefix = m_flags.Test(eAddPrefix); size_t bytes_written = 0; if (byte_order == eByteOrderLittle) { for (size_t byte = 0; byte < sizeof(uvalue); ++byte, add_prefix = false) bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix); } else { for (size_t byte = sizeof(uvalue)-1; byte < sizeof(uvalue); --byte, add_prefix = false) bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix); } return bytes_written; } size_t Stream::PutMaxHex64 ( uint64_t uvalue, size_t byte_size, lldb::ByteOrder byte_order ) { switch (byte_size) { case 1: return PutHex8 ((uint8_t)uvalue); case 2: return PutHex16 ((uint16_t)uvalue); case 4: return PutHex32 ((uint32_t)uvalue); case 8: return PutHex64 (uvalue); } return 0; } size_t Stream::PutPointer (void *ptr) { return PutRawBytes (&ptr, sizeof(ptr), lldb::endian::InlHostByteOrder(), lldb::endian::InlHostByteOrder()); } size_t Stream::PutFloat(float f, ByteOrder byte_order) { if (byte_order == eByteOrderInvalid) byte_order = m_byte_order; return PutRawBytes (&f, sizeof(f), lldb::endian::InlHostByteOrder(), byte_order); } size_t Stream::PutDouble(double d, ByteOrder byte_order) { if (byte_order == eByteOrderInvalid) byte_order = m_byte_order; return PutRawBytes (&d, sizeof(d), lldb::endian::InlHostByteOrder(), byte_order); } size_t Stream::PutLongDouble(long double ld, ByteOrder byte_order) { if (byte_order == eByteOrderInvalid) byte_order = m_byte_order; return PutRawBytes (&ld, sizeof(ld), lldb::endian::InlHostByteOrder(), byte_order); } size_t Stream::PutRawBytes (const void *s, size_t src_len, ByteOrder src_byte_order, ByteOrder dst_byte_order) { if (src_byte_order == eByteOrderInvalid) src_byte_order = m_byte_order; if (dst_byte_order == eByteOrderInvalid) dst_byte_order = m_byte_order; size_t bytes_written = 0; const uint8_t *src = (const uint8_t *)s; bool binary_was_set = m_flags.Test (eBinary); if (!binary_was_set) m_flags.Set (eBinary); if (src_byte_order == dst_byte_order) { for (size_t i = 0; i < src_len; ++i) bytes_written += _PutHex8 (src[i], false); } else { for (size_t i = src_len-1; i < src_len; --i) bytes_written += _PutHex8 (src[i], false); } if (!binary_was_set) m_flags.Clear (eBinary); return bytes_written; } size_t Stream::PutBytesAsRawHex8 (const void *s, size_t src_len, ByteOrder src_byte_order, ByteOrder dst_byte_order) { if (src_byte_order == eByteOrderInvalid) src_byte_order = m_byte_order; if (dst_byte_order == eByteOrderInvalid) dst_byte_order = m_byte_order; size_t bytes_written = 0; const uint8_t *src = (const uint8_t *)s; bool binary_is_set = m_flags.Test(eBinary); m_flags.Clear(eBinary); if (src_byte_order == dst_byte_order) { for (size_t i = 0; i < src_len; ++i) bytes_written += _PutHex8 (src[i], false); } else { for (size_t i = src_len-1; i < src_len; --i) bytes_written += _PutHex8 (src[i], false); } if (binary_is_set) m_flags.Set(eBinary); return bytes_written; } size_t Stream::PutCStringAsRawHex8 (const char *s) { size_t bytes_written = 0; bool binary_is_set = m_flags.Test(eBinary); m_flags.Clear(eBinary); do { bytes_written += _PutHex8 (*s, false); ++s; } while (*s); if (binary_is_set) m_flags.Set(eBinary); return bytes_written; } void Stream::UnitTest(Stream *s) { s->PutHex8(0x12); s->PutChar(' '); s->PutHex16(0x3456, lldb::endian::InlHostByteOrder()); s->PutChar(' '); s->PutHex16(0x3456, eByteOrderBig); s->PutChar(' '); s->PutHex16(0x3456, eByteOrderLittle); s->PutChar(' '); s->PutHex32(0x789abcde, lldb::endian::InlHostByteOrder()); s->PutChar(' '); s->PutHex32(0x789abcde, eByteOrderBig); s->PutChar(' '); s->PutHex32(0x789abcde, eByteOrderLittle); s->PutChar(' '); s->PutHex64(0x1122334455667788ull, lldb::endian::InlHostByteOrder()); s->PutChar(' '); s->PutHex64(0x1122334455667788ull, eByteOrderBig); s->PutChar(' '); s->PutHex64(0x1122334455667788ull, eByteOrderLittle); const char *hola = "Hello World!!!"; s->PutChar(' '); s->PutCString (hola); s->PutChar(' '); s->Write (hola, 5); s->PutChar(' '); s->PutCStringAsRawHex8 (hola); s->PutChar(' '); s->PutCStringAsRawHex8 ("01234"); s->PutChar(' '); s->Printf ("pid=%i", 12733); s->PutChar(' '); s->PrintfAsRawHex8 ("pid=%i", 12733); s->PutChar('\n'); }