/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdlib.h> #include <time.h> #include "libyuv/convert_argb.h" #include "libyuv/convert_from.h" #include "libyuv/compare.h" #include "libyuv/cpu_id.h" #include "libyuv/format_conversion.h" #include "libyuv/planar_functions.h" #include "libyuv/rotate.h" #include "../unit_test/unit_test.h" #if defined(_MSC_VER) #define SIMD_ALIGNED(var) __declspec(align(16)) var #else // __GNUC__ #define SIMD_ALIGNED(var) var __attribute__((aligned(16))) #endif namespace libyuv { #define TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, N, NEG) \ TEST_F(libyuvTest, FMT_PLANAR##To##FMT_B##N##_OptVsC) { \ const int kWidth = 1280; \ const int kHeight = 720; \ const int kStride = (kWidth * 8 * BPP_B + 7) / 8; \ align_buffer_16(src_y, kWidth * kHeight); \ align_buffer_16(src_u, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \ align_buffer_16(src_v, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \ align_buffer_16(dst_argb_c, kStride * kHeight); \ align_buffer_16(dst_argb_opt, kStride * kHeight); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[(i * kWidth) + j] = (random() & 0xff); \ for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) \ for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \ src_u[(i * kWidth / SUBSAMP_X) + j] = (random() & 0xff); \ src_v[(i * kWidth / SUBSAMP_X) + j] = (random() & 0xff); \ } \ MaskCpuFlags(kCpuInitialized); \ FMT_PLANAR##To##FMT_B(src_y, kWidth, \ src_u, kWidth / SUBSAMP_X, \ src_v, kWidth / SUBSAMP_X, \ dst_argb_c, kStride, \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B(src_y, kWidth, \ src_u, kWidth / SUBSAMP_X, \ src_v, kWidth / SUBSAMP_X, \ dst_argb_opt, kStride, \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth * BPP_B; ++j) { \ int abs_diff = \ abs(static_cast<int>(dst_argb_c[i * kWidth * BPP_B + j]) - \ static_cast<int>(dst_argb_opt[i * kWidth * BPP_B + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 2); \ free_aligned_buffer_16(src_y) \ free_aligned_buffer_16(src_u) \ free_aligned_buffer_16(src_v) \ free_aligned_buffer_16(dst_argb_c) \ free_aligned_buffer_16(dst_argb_opt) \ } #define TESTPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, , +) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, Invert, -) TESTPLANARTOB(I420, 2, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, BGRA, 4) TESTPLANARTOB(I420, 2, 2, ABGR, 4) TESTPLANARTOB(I420, 2, 2, RGBA, 4) TESTPLANARTOB(I420, 2, 2, RAW, 3) TESTPLANARTOB(I420, 2, 2, RGB24, 3) TESTPLANARTOB(I420, 2, 2, RGB565, 2) TESTPLANARTOB(I420, 2, 2, ARGB1555, 2) TESTPLANARTOB(I420, 2, 2, ARGB4444, 2) TESTPLANARTOB(I422, 2, 1, ARGB, 4) TESTPLANARTOB(I422, 2, 1, BGRA, 4) TESTPLANARTOB(I422, 2, 1, ABGR, 4) TESTPLANARTOB(I422, 2, 1, RGBA, 4) TESTPLANARTOB(I411, 4, 1, ARGB, 4) TESTPLANARTOB(I444, 1, 1, ARGB, 4) TESTPLANARTOB(I420, 2, 2, YUY2, 2) TESTPLANARTOB(I420, 2, 2, UYVY, 2) // TODO(fbarchard): Re-enable test and fix valgrind. // TESTPLANARTOB(I420, 2, 2, V210, 16 / 6) TESTPLANARTOB(I420, 2, 2, I400, 1) TESTPLANARTOB(I420, 2, 2, BayerBGGR, 1) TESTPLANARTOB(I420, 2, 2, BayerRGGB, 1) TESTPLANARTOB(I420, 2, 2, BayerGBRG, 1) TESTPLANARTOB(I420, 2, 2, BayerGRBG, 1) #define TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ N, NEG) \ TEST_F(libyuvTest, FMT_PLANAR##To##FMT_B##N##_OptVsC) { \ const int kWidth = 1280; \ const int kHeight = 720; \ align_buffer_16(src_y, kWidth * kHeight); \ align_buffer_16(src_uv, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y * 2); \ align_buffer_16(dst_argb_c, (kWidth * BPP_B) * kHeight); \ align_buffer_16(dst_argb_opt, (kWidth * BPP_B) * kHeight); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[(i * kWidth) + j] = (random() & 0xff); \ for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) \ for (int j = 0; j < kWidth / SUBSAMP_X * 2; ++j) { \ src_uv[(i * kWidth / SUBSAMP_X) * 2 + j] = (random() & 0xff); \ } \ MaskCpuFlags(kCpuInitialized); \ FMT_PLANAR##To##FMT_B(src_y, kWidth, \ src_uv, kWidth / SUBSAMP_X * 2, \ dst_argb_c, kWidth * BPP_B, \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B(src_y, kWidth, \ src_uv, kWidth / SUBSAMP_X * 2, \ dst_argb_opt, kWidth * BPP_B, \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth * BPP_B; ++j) { \ int abs_diff = \ abs(static_cast<int>(dst_argb_c[i * kWidth * BPP_B + j]) - \ static_cast<int>(dst_argb_opt[i * kWidth * BPP_B + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 3); \ free_aligned_buffer_16(src_y) \ free_aligned_buffer_16(src_uv) \ free_aligned_buffer_16(dst_argb_c) \ free_aligned_buffer_16(dst_argb_opt) \ } #define TESTBIPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, , +) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, Invert, -) TESTBIPLANARTOB(NV12, 2, 2, ARGB, 4) TESTBIPLANARTOB(NV21, 2, 2, ARGB, 4) TESTBIPLANARTOB(NV12, 2, 2, RGB565, 2) TESTBIPLANARTOB(NV21, 2, 2, RGB565, 2) #define TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, N, NEG) \ TEST_F(libyuvTest, FMT_A##To##FMT_PLANAR##N##_OptVsC) { \ const int kWidth = 1280; \ const int kHeight = 720; \ const int kStride = (kWidth * 8 * BPP_A + 7) / 8; \ align_buffer_16(src_argb, kStride * kHeight); \ align_buffer_16(dst_y_c, kWidth * kHeight); \ align_buffer_16(dst_u_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \ align_buffer_16(dst_v_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \ align_buffer_16(dst_y_opt, kWidth * kHeight); \ align_buffer_16(dst_u_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \ align_buffer_16(dst_v_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kStride; ++j) \ src_argb[(i * kStride) + j] = (random() & 0xff); \ MaskCpuFlags(kCpuInitialized); \ FMT_A##To##FMT_PLANAR(src_argb, kStride, \ dst_y_c, kWidth, \ dst_u_c, kWidth / SUBSAMP_X, \ dst_v_c, kWidth / SUBSAMP_X, \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_PLANAR(src_argb, kStride, \ dst_y_opt, kWidth, \ dst_u_opt, kWidth / SUBSAMP_X, \ dst_v_opt, kWidth / SUBSAMP_X, \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = \ abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \ static_cast<int>(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 2); \ for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \ for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \ int abs_diff = \ abs(static_cast<int>(dst_u_c[i * kWidth / SUBSAMP_X + j]) - \ static_cast<int>(dst_u_opt[i * kWidth / SUBSAMP_X + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 2); \ for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \ for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \ int abs_diff = \ abs(static_cast<int>(dst_v_c[i * kWidth / SUBSAMP_X + j]) - \ static_cast<int>(dst_v_opt[i * kWidth / SUBSAMP_X + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 2); \ free_aligned_buffer_16(dst_y_c) \ free_aligned_buffer_16(dst_u_c) \ free_aligned_buffer_16(dst_v_c) \ free_aligned_buffer_16(dst_y_opt) \ free_aligned_buffer_16(dst_u_opt) \ free_aligned_buffer_16(dst_v_opt) \ free_aligned_buffer_16(src_argb) \ } #define TESTATOPLANAR(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \ TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, , +) \ TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, Invert, -) TESTATOPLANAR(ARGB, 4, I420, 2, 2) TESTATOPLANAR(BGRA, 4, I420, 2, 2) TESTATOPLANAR(ABGR, 4, I420, 2, 2) TESTATOPLANAR(RGBA, 4, I420, 2, 2) TESTATOPLANAR(RAW, 3, I420, 2, 2) TESTATOPLANAR(RGB24, 3, I420, 2, 2) TESTATOPLANAR(RGB565, 2, I420, 2, 2) TESTATOPLANAR(ARGB1555, 2, I420, 2, 2) TESTATOPLANAR(ARGB4444, 2, I420, 2, 2) // TESTATOPLANAR(ARGB, 4, I411, 4, 1) TESTATOPLANAR(ARGB, 4, I422, 2, 1) // TESTATOPLANAR(ARGB, 4, I444, 1, 1) // TODO(fbarchard): Implement and test 411 and 444 TESTATOPLANAR(YUY2, 2, I420, 2, 2) TESTATOPLANAR(UYVY, 2, I420, 2, 2) TESTATOPLANAR(YUY2, 2, I422, 2, 1) TESTATOPLANAR(UYVY, 2, I422, 2, 1) TESTATOPLANAR(V210, 16 / 6, I420, 2, 2) TESTATOPLANAR(I400, 1, I420, 2, 2) TESTATOPLANAR(BayerBGGR, 1, I420, 2, 2) TESTATOPLANAR(BayerRGGB, 1, I420, 2, 2) TESTATOPLANAR(BayerGBRG, 1, I420, 2, 2) TESTATOPLANAR(BayerGRBG, 1, I420, 2, 2) #define TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, N, NEG) \ TEST_F(libyuvTest, FMT_A##To##FMT_B##N##_OptVsC) { \ const int kWidth = 1280; \ const int kHeight = 720; \ align_buffer_16(src_argb, (kWidth * BPP_A) * kHeight); \ align_buffer_16(dst_argb_c, (kWidth * BPP_B) * kHeight); \ align_buffer_16(dst_argb_opt, (kWidth * BPP_B) * kHeight); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight * kWidth * BPP_A; ++i) { \ src_argb[i] = (random() & 0xff); \ } \ MaskCpuFlags(kCpuInitialized); \ FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \ dst_argb_c, kWidth * BPP_B, \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \ dst_argb_opt, kWidth * BPP_B, \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight * kWidth * BPP_B; ++i) { \ int abs_diff = \ abs(static_cast<int>(dst_argb_c[i]) - \ static_cast<int>(dst_argb_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, 2); \ free_aligned_buffer_16(src_argb) \ free_aligned_buffer_16(dst_argb_c) \ free_aligned_buffer_16(dst_argb_opt) \ } #define TESTATOB(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, , +) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, Invert, -) TESTATOB(I400, 1, 1, I400, 1) TESTATOB(ARGB, 4, 4, ARGB, 4) TESTATOB(ARGB, 4, 4, BGRA, 4) TESTATOB(ARGB, 4, 4, ABGR, 4) TESTATOB(ARGB, 4, 4, RGBA, 4) TESTATOB(ARGB, 4, 4, RAW, 3) TESTATOB(ARGB, 4, 4, RGB24, 3) TESTATOB(ARGB, 4, 4, RGB565, 2) TESTATOB(ARGB, 4, 4, ARGB1555, 2) TESTATOB(ARGB, 4, 4, ARGB4444, 2) TESTATOB(BGRA, 4, 4, ARGB, 4) TESTATOB(ABGR, 4, 4, ARGB, 4) TESTATOB(RGBA, 4, 4, ARGB, 4) TESTATOB(RAW, 3, 3, ARGB, 4) TESTATOB(RGB24, 3, 3, ARGB, 4) TESTATOB(RGB565, 2, 2, ARGB, 4) TESTATOB(ARGB1555, 2, 2, ARGB, 4) TESTATOB(ARGB4444, 2, 2, ARGB, 4) TESTATOB(YUY2, 2, 2, ARGB, 4) TESTATOB(UYVY, 2, 2, ARGB, 4) TESTATOB(M420, 3 / 2, 1, ARGB, 4) static const int kReadPad = 16; // Allow overread of 16 bytes. #define TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B) \ TEST_F(libyuvTest, FMT_A##To##FMT_B##_Random) { \ srandom(time(NULL)); \ for (int times = 0; times < benchmark_iterations_; ++times) { \ const int kWidth = (random() & 63) + 1; \ const int kHeight = (random() & 31) + 1; \ align_buffer_page_end(src_argb, (kWidth * BPP_A) * kHeight + kReadPad); \ align_buffer_page_end(dst_argb_c, (kWidth * BPP_B) * kHeight); \ align_buffer_page_end(dst_argb_opt, (kWidth * BPP_B) * kHeight); \ for (int i = 0; i < kHeight * kWidth * BPP_A; ++i) { \ src_argb[i] = (random() & 0xff); \ } \ MaskCpuFlags(kCpuInitialized); \ FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \ dst_argb_c, kWidth * BPP_B, \ kWidth, kHeight); \ MaskCpuFlags(-1); \ FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \ dst_argb_opt, kWidth * BPP_B, \ kWidth, kHeight); \ int max_diff = 0; \ for (int i = 0; i < kHeight * kWidth * BPP_B; ++i) { \ int abs_diff = \ abs(static_cast<int>(dst_argb_c[i]) - \ static_cast<int>(dst_argb_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, 2); \ free_aligned_buffer_page_end(src_argb) \ free_aligned_buffer_page_end(dst_argb_c) \ free_aligned_buffer_page_end(dst_argb_opt) \ } \ } TESTATOBRANDOM(ARGB, 4, 4, ARGB, 4) TESTATOBRANDOM(ARGB, 4, 4, BGRA, 4) TESTATOBRANDOM(ARGB, 4, 4, ABGR, 4) TESTATOBRANDOM(ARGB, 4, 4, RGBA, 4) TESTATOBRANDOM(ARGB, 4, 4, RAW, 3) TESTATOBRANDOM(ARGB, 4, 4, RGB24, 3) TESTATOBRANDOM(ARGB, 4, 4, RGB565, 2) TESTATOBRANDOM(ARGB, 4, 4, ARGB1555, 2) TESTATOBRANDOM(ARGB, 4, 4, ARGB4444, 2) TESTATOBRANDOM(BGRA, 4, 4, ARGB, 4) TESTATOBRANDOM(ABGR, 4, 4, ARGB, 4) TESTATOBRANDOM(RGBA, 4, 4, ARGB, 4) TESTATOBRANDOM(RAW, 3, 3, ARGB, 4) TESTATOBRANDOM(RGB24, 3, 3, ARGB, 4) TESTATOBRANDOM(RGB565, 2, 2, ARGB, 4) TESTATOBRANDOM(ARGB1555, 2, 2, ARGB, 4) TESTATOBRANDOM(ARGB4444, 2, 2, ARGB, 4) TEST_F(libyuvTest, TestAttenuate) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); SIMD_ALIGNED(uint8 atten_pixels[256][4]); SIMD_ALIGNED(uint8 unatten_pixels[256][4]); SIMD_ALIGNED(uint8 atten2_pixels[256][4]); // Test unattenuation clamps orig_pixels[0][0] = 200u; orig_pixels[0][1] = 129u; orig_pixels[0][2] = 127u; orig_pixels[0][3] = 128u; // Test unattenuation transparent and opaque are unaffected orig_pixels[1][0] = 16u; orig_pixels[1][1] = 64u; orig_pixels[1][2] = 192u; orig_pixels[1][3] = 0u; orig_pixels[2][0] = 16u; orig_pixels[2][1] = 64u; orig_pixels[2][2] = 192u; orig_pixels[2][3] = 255u; orig_pixels[3][0] = 16u; orig_pixels[3][1] = 64u; orig_pixels[3][2] = 192u; orig_pixels[3][3] = 128u; ARGBUnattenuate(&orig_pixels[0][0], 0, &unatten_pixels[0][0], 0, 4, 1); EXPECT_EQ(255u, unatten_pixels[0][0]); EXPECT_EQ(255u, unatten_pixels[0][1]); EXPECT_EQ(254u, unatten_pixels[0][2]); EXPECT_EQ(128u, unatten_pixels[0][3]); EXPECT_EQ(16u, unatten_pixels[1][0]); EXPECT_EQ(64u, unatten_pixels[1][1]); EXPECT_EQ(192u, unatten_pixels[1][2]); EXPECT_EQ(0u, unatten_pixels[1][3]); EXPECT_EQ(16u, unatten_pixels[2][0]); EXPECT_EQ(64u, unatten_pixels[2][1]); EXPECT_EQ(192u, unatten_pixels[2][2]); EXPECT_EQ(255u, unatten_pixels[2][3]); EXPECT_EQ(32u, unatten_pixels[3][0]); EXPECT_EQ(128u, unatten_pixels[3][1]); EXPECT_EQ(255u, unatten_pixels[3][2]); EXPECT_EQ(128u, unatten_pixels[3][3]); for (int i = 0; i < 256; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } ARGBAttenuate(&orig_pixels[0][0], 0, &atten_pixels[0][0], 0, 256, 1); ARGBUnattenuate(&atten_pixels[0][0], 0, &unatten_pixels[0][0], 0, 256, 1); for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBAttenuate(&unatten_pixels[0][0], 0, &atten2_pixels[0][0], 0, 256, 1); } for (int i = 0; i < 256; ++i) { EXPECT_NEAR(atten_pixels[i][0], atten2_pixels[i][0], 2); EXPECT_NEAR(atten_pixels[i][1], atten2_pixels[i][1], 2); EXPECT_NEAR(atten_pixels[i][2], atten2_pixels[i][2], 2); EXPECT_NEAR(atten_pixels[i][3], atten2_pixels[i][3], 2); } // Make sure transparent, 50% and opaque are fully accurate. EXPECT_EQ(0, atten_pixels[0][0]); EXPECT_EQ(0, atten_pixels[0][1]); EXPECT_EQ(0, atten_pixels[0][2]); EXPECT_EQ(0, atten_pixels[0][3]); EXPECT_EQ(64, atten_pixels[128][0]); EXPECT_EQ(32, atten_pixels[128][1]); EXPECT_EQ(21, atten_pixels[128][2]); EXPECT_EQ(128, atten_pixels[128][3]); EXPECT_EQ(255, atten_pixels[255][0]); EXPECT_EQ(127, atten_pixels[255][1]); EXPECT_EQ(85, atten_pixels[255][2]); EXPECT_EQ(255, atten_pixels[255][3]); } TEST_F(libyuvTest, TestARGBComputeCumulativeSum) { SIMD_ALIGNED(uint8 orig_pixels[16][16][4]); SIMD_ALIGNED(int32 added_pixels[16][16][4]); for (int y = 0; y < 16; ++y) { for (int x = 0; x < 16; ++x) { orig_pixels[y][x][0] = 1u; orig_pixels[y][x][1] = 2u; orig_pixels[y][x][2] = 3u; orig_pixels[y][x][3] = 255u; } } ARGBComputeCumulativeSum(&orig_pixels[0][0][0], 16 * 4, &added_pixels[0][0][0], 16 * 4, 16, 16); for (int y = 0; y < 16; ++y) { for (int x = 0; x < 16; ++x) { EXPECT_EQ((x + 1) * (y + 1), added_pixels[y][x][0]); EXPECT_EQ((x + 1) * (y + 1) * 2, added_pixels[y][x][1]); EXPECT_EQ((x + 1) * (y + 1) * 3, added_pixels[y][x][2]); EXPECT_EQ((x + 1) * (y + 1) * 255, added_pixels[y][x][3]); } } } TEST_F(libyuvTest, TestARGBGray) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test color orig_pixels[3][0] = 16u; orig_pixels[3][1] = 64u; orig_pixels[3][2] = 192u; orig_pixels[3][3] = 224u; // Do 16 to test asm version. ARGBGray(&orig_pixels[0][0], 0, 0, 0, 16, 1); EXPECT_EQ(27u, orig_pixels[0][0]); EXPECT_EQ(27u, orig_pixels[0][1]); EXPECT_EQ(27u, orig_pixels[0][2]); EXPECT_EQ(128u, orig_pixels[0][3]); EXPECT_EQ(151u, orig_pixels[1][0]); EXPECT_EQ(151u, orig_pixels[1][1]); EXPECT_EQ(151u, orig_pixels[1][2]); EXPECT_EQ(0u, orig_pixels[1][3]); EXPECT_EQ(75u, orig_pixels[2][0]); EXPECT_EQ(75u, orig_pixels[2][1]); EXPECT_EQ(75u, orig_pixels[2][2]); EXPECT_EQ(255u, orig_pixels[2][3]); EXPECT_EQ(96u, orig_pixels[3][0]); EXPECT_EQ(96u, orig_pixels[3][1]); EXPECT_EQ(96u, orig_pixels[3][2]); EXPECT_EQ(224u, orig_pixels[3][3]); for (int i = 0; i < 256; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBGray(&orig_pixels[0][0], 0, 0, 0, 256, 1); } } TEST_F(libyuvTest, TestARGBGrayTo) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); SIMD_ALIGNED(uint8 gray_pixels[256][4]); // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test color orig_pixels[3][0] = 16u; orig_pixels[3][1] = 64u; orig_pixels[3][2] = 192u; orig_pixels[3][3] = 224u; // Do 16 to test asm version. ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 16, 1); EXPECT_EQ(27u, gray_pixels[0][0]); EXPECT_EQ(27u, gray_pixels[0][1]); EXPECT_EQ(27u, gray_pixels[0][2]); EXPECT_EQ(128u, gray_pixels[0][3]); EXPECT_EQ(151u, gray_pixels[1][0]); EXPECT_EQ(151u, gray_pixels[1][1]); EXPECT_EQ(151u, gray_pixels[1][2]); EXPECT_EQ(0u, gray_pixels[1][3]); EXPECT_EQ(75u, gray_pixels[2][0]); EXPECT_EQ(75u, gray_pixels[2][1]); EXPECT_EQ(75u, gray_pixels[2][2]); EXPECT_EQ(255u, gray_pixels[2][3]); EXPECT_EQ(96u, gray_pixels[3][0]); EXPECT_EQ(96u, gray_pixels[3][1]); EXPECT_EQ(96u, gray_pixels[3][2]); EXPECT_EQ(224u, gray_pixels[3][3]); for (int i = 0; i < 256; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 256, 1); } } TEST_F(libyuvTest, TestARGBSepia) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test color orig_pixels[3][0] = 16u; orig_pixels[3][1] = 64u; orig_pixels[3][2] = 192u; orig_pixels[3][3] = 224u; // Do 16 to test asm version. ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 16, 1); EXPECT_EQ(33u, orig_pixels[0][0]); EXPECT_EQ(43u, orig_pixels[0][1]); EXPECT_EQ(47u, orig_pixels[0][2]); EXPECT_EQ(128u, orig_pixels[0][3]); EXPECT_EQ(135u, orig_pixels[1][0]); EXPECT_EQ(175u, orig_pixels[1][1]); EXPECT_EQ(195u, orig_pixels[1][2]); EXPECT_EQ(0u, orig_pixels[1][3]); EXPECT_EQ(69u, orig_pixels[2][0]); EXPECT_EQ(89u, orig_pixels[2][1]); EXPECT_EQ(99u, orig_pixels[2][2]); EXPECT_EQ(255u, orig_pixels[2][3]); EXPECT_EQ(88u, orig_pixels[3][0]); EXPECT_EQ(114u, orig_pixels[3][1]); EXPECT_EQ(127u, orig_pixels[3][2]); EXPECT_EQ(224u, orig_pixels[3][3]); for (int i = 0; i < 256; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 256, 1); } } TEST_F(libyuvTest, TestARGBColorMatrix) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); // Matrix for Sepia. static const int8 kARGBToSepia[] = { 17, 68, 35, 0, 22, 88, 45, 0, 24, 98, 50, 0, }; // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test color orig_pixels[3][0] = 16u; orig_pixels[3][1] = 64u; orig_pixels[3][2] = 192u; orig_pixels[3][3] = 224u; // Do 16 to test asm version. ARGBColorMatrix(&orig_pixels[0][0], 0, &kARGBToSepia[0], 0, 0, 16, 1); EXPECT_EQ(33u, orig_pixels[0][0]); EXPECT_EQ(43u, orig_pixels[0][1]); EXPECT_EQ(47u, orig_pixels[0][2]); EXPECT_EQ(128u, orig_pixels[0][3]); EXPECT_EQ(135u, orig_pixels[1][0]); EXPECT_EQ(175u, orig_pixels[1][1]); EXPECT_EQ(195u, orig_pixels[1][2]); EXPECT_EQ(0u, orig_pixels[1][3]); EXPECT_EQ(69u, orig_pixels[2][0]); EXPECT_EQ(89u, orig_pixels[2][1]); EXPECT_EQ(99u, orig_pixels[2][2]); EXPECT_EQ(255u, orig_pixels[2][3]); EXPECT_EQ(88u, orig_pixels[3][0]); EXPECT_EQ(114u, orig_pixels[3][1]); EXPECT_EQ(127u, orig_pixels[3][2]); EXPECT_EQ(224u, orig_pixels[3][3]); for (int i = 0; i < 256; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBColorMatrix(&orig_pixels[0][0], 0, &kARGBToSepia[0], 0, 0, 256, 1); } } TEST_F(libyuvTest, TestARGBColorTable) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); memset(orig_pixels, 0, sizeof(orig_pixels)); // Matrix for Sepia. static const uint8 kARGBTable[256 * 4] = { 1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 14u, 15u, 16u, }; orig_pixels[0][0] = 0u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 0u; orig_pixels[1][0] = 1u; orig_pixels[1][1] = 1u; orig_pixels[1][2] = 1u; orig_pixels[1][3] = 1u; orig_pixels[2][0] = 2u; orig_pixels[2][1] = 2u; orig_pixels[2][2] = 2u; orig_pixels[2][3] = 2u; orig_pixels[3][0] = 0u; orig_pixels[3][1] = 1u; orig_pixels[3][2] = 2u; orig_pixels[3][3] = 3u; // Do 16 to test asm version. ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1); EXPECT_EQ(1u, orig_pixels[0][0]); EXPECT_EQ(2u, orig_pixels[0][1]); EXPECT_EQ(3u, orig_pixels[0][2]); EXPECT_EQ(4u, orig_pixels[0][3]); EXPECT_EQ(5u, orig_pixels[1][0]); EXPECT_EQ(6u, orig_pixels[1][1]); EXPECT_EQ(7u, orig_pixels[1][2]); EXPECT_EQ(8u, orig_pixels[1][3]); EXPECT_EQ(9u, orig_pixels[2][0]); EXPECT_EQ(10u, orig_pixels[2][1]); EXPECT_EQ(11u, orig_pixels[2][2]); EXPECT_EQ(12u, orig_pixels[2][3]); EXPECT_EQ(1u, orig_pixels[3][0]); EXPECT_EQ(6u, orig_pixels[3][1]); EXPECT_EQ(11u, orig_pixels[3][2]); EXPECT_EQ(16u, orig_pixels[3][3]); for (int i = 0; i < 256; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 256, 1); } } TEST_F(libyuvTest, TestARGBQuantize) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); for (int i = 0; i < 256; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } ARGBQuantize(&orig_pixels[0][0], 0, (65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 256, 1); for (int i = 0; i < 256; ++i) { EXPECT_EQ(i / 8 * 8 + 8 / 2, orig_pixels[i][0]); EXPECT_EQ(i / 2 / 8 * 8 + 8 / 2, orig_pixels[i][1]); EXPECT_EQ(i / 3 / 8 * 8 + 8 / 2, orig_pixels[i][2]); EXPECT_EQ(i, orig_pixels[i][3]); } for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBQuantize(&orig_pixels[0][0], 0, (65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 256, 1); } } TEST_F(libyuvTest, TestARGBMirror) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); SIMD_ALIGNED(uint8 dst_pixels[256][4]); for (int i = 0; i < 256; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i / 4; } ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 256, 1); for (int i = 0; i < 256; ++i) { EXPECT_EQ(i, dst_pixels[255 - i][0]); EXPECT_EQ(i / 2, dst_pixels[255 - i][1]); EXPECT_EQ(i / 3, dst_pixels[255 - i][2]); EXPECT_EQ(i / 4, dst_pixels[255 - i][3]); } for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 256, 1); } } TEST_F(libyuvTest, TestShade) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); SIMD_ALIGNED(uint8 shade_pixels[256][4]); orig_pixels[0][0] = 10u; orig_pixels[0][1] = 20u; orig_pixels[0][2] = 40u; orig_pixels[0][3] = 80u; orig_pixels[1][0] = 0u; orig_pixels[1][1] = 0u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 255u; orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 0u; orig_pixels[2][3] = 0u; orig_pixels[3][0] = 0u; orig_pixels[3][1] = 0u; orig_pixels[3][2] = 0u; orig_pixels[3][3] = 0u; ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 4, 1, 0x80ffffff); EXPECT_EQ(10u, shade_pixels[0][0]); EXPECT_EQ(20u, shade_pixels[0][1]); EXPECT_EQ(40u, shade_pixels[0][2]); EXPECT_EQ(40u, shade_pixels[0][3]); EXPECT_EQ(0u, shade_pixels[1][0]); EXPECT_EQ(0u, shade_pixels[1][1]); EXPECT_EQ(0u, shade_pixels[1][2]); EXPECT_EQ(128u, shade_pixels[1][3]); EXPECT_EQ(0u, shade_pixels[2][0]); EXPECT_EQ(0u, shade_pixels[2][1]); EXPECT_EQ(0u, shade_pixels[2][2]); EXPECT_EQ(0u, shade_pixels[2][3]); EXPECT_EQ(0u, shade_pixels[3][0]); EXPECT_EQ(0u, shade_pixels[3][1]); EXPECT_EQ(0u, shade_pixels[3][2]); EXPECT_EQ(0u, shade_pixels[3][3]); ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 4, 1, 0x80808080); EXPECT_EQ(5u, shade_pixels[0][0]); EXPECT_EQ(10u, shade_pixels[0][1]); EXPECT_EQ(20u, shade_pixels[0][2]); EXPECT_EQ(40u, shade_pixels[0][3]); for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 256, 1, 0x80808080); } } TEST_F(libyuvTest, TestInterpolate) { SIMD_ALIGNED(uint8 orig_pixels_0[256][4]); SIMD_ALIGNED(uint8 orig_pixels_1[256][4]); SIMD_ALIGNED(uint8 interpolate_pixels[256][4]); orig_pixels_0[0][0] = 16u; orig_pixels_0[0][1] = 32u; orig_pixels_0[0][2] = 64u; orig_pixels_0[0][3] = 128u; orig_pixels_0[1][0] = 0u; orig_pixels_0[1][1] = 0u; orig_pixels_0[1][2] = 0u; orig_pixels_0[1][3] = 255u; orig_pixels_0[2][0] = 0u; orig_pixels_0[2][1] = 0u; orig_pixels_0[2][2] = 0u; orig_pixels_0[2][3] = 0u; orig_pixels_0[3][0] = 0u; orig_pixels_0[3][1] = 0u; orig_pixels_0[3][2] = 0u; orig_pixels_0[3][3] = 0u; orig_pixels_1[0][0] = 0u; orig_pixels_1[0][1] = 0u; orig_pixels_1[0][2] = 0u; orig_pixels_1[0][3] = 0u; orig_pixels_1[1][0] = 0u; orig_pixels_1[1][1] = 0u; orig_pixels_1[1][2] = 0u; orig_pixels_1[1][3] = 0u; orig_pixels_1[2][0] = 0u; orig_pixels_1[2][1] = 0u; orig_pixels_1[2][2] = 0u; orig_pixels_1[2][3] = 0u; orig_pixels_1[3][0] = 255u; orig_pixels_1[3][1] = 255u; orig_pixels_1[3][2] = 255u; orig_pixels_1[3][3] = 255u; ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0, &interpolate_pixels[0][0], 0, 4, 1, 128); EXPECT_EQ(8u, interpolate_pixels[0][0]); EXPECT_EQ(16u, interpolate_pixels[0][1]); EXPECT_EQ(32u, interpolate_pixels[0][2]); EXPECT_EQ(64u, interpolate_pixels[0][3]); EXPECT_EQ(0u, interpolate_pixels[1][0]); EXPECT_EQ(0u, interpolate_pixels[1][1]); EXPECT_EQ(0u, interpolate_pixels[1][2]); EXPECT_NEAR(128u, interpolate_pixels[1][3], 1); // C = 127, SSE = 128. EXPECT_EQ(0u, interpolate_pixels[2][0]); EXPECT_EQ(0u, interpolate_pixels[2][1]); EXPECT_EQ(0u, interpolate_pixels[2][2]); EXPECT_EQ(0u, interpolate_pixels[2][3]); EXPECT_NEAR(128u, interpolate_pixels[3][0], 1); EXPECT_NEAR(128u, interpolate_pixels[3][1], 1); EXPECT_NEAR(128u, interpolate_pixels[3][2], 1); EXPECT_NEAR(128u, interpolate_pixels[3][3], 1); ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0, &interpolate_pixels[0][0], 0, 4, 1, 0); EXPECT_EQ(16u, interpolate_pixels[0][0]); EXPECT_EQ(32u, interpolate_pixels[0][1]); EXPECT_EQ(64u, interpolate_pixels[0][2]); EXPECT_EQ(128u, interpolate_pixels[0][3]); ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0, &interpolate_pixels[0][0], 0, 4, 1, 192); EXPECT_EQ(4u, interpolate_pixels[0][0]); EXPECT_EQ(8u, interpolate_pixels[0][1]); EXPECT_EQ(16u, interpolate_pixels[0][2]); EXPECT_EQ(32u, interpolate_pixels[0][3]); for (int i = 0; i < benchmark_iterations_ * (1280 * 720 / 256); ++i) { ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0, &interpolate_pixels[0][0], 0, 256, 1, 128); } } TEST_F(libyuvTest, TestAffine) { SIMD_ALIGNED(uint8 orig_pixels_0[256][4]); SIMD_ALIGNED(uint8 interpolate_pixels_C[256][4]); #if defined(HAS_ARGBAFFINEROW_SSE2) SIMD_ALIGNED(uint8 interpolate_pixels_Opt[256][4]); #endif for (int i = 0; i < 256; ++i) { for (int j = 0; j < 4; ++j) { orig_pixels_0[i][j] = i; } } float uv_step[4] = { 0.f, 0.f, 0.75f, 0.f }; ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0], uv_step, 256); EXPECT_EQ(0u, interpolate_pixels_C[0][0]); EXPECT_EQ(96u, interpolate_pixels_C[128][0]); EXPECT_EQ(191u, interpolate_pixels_C[255][3]); #if defined(HAS_ARGBAFFINEROW_SSE2) ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0], uv_step, 256); EXPECT_EQ(0, memcmp(interpolate_pixels_Opt, interpolate_pixels_C, 256 * 4)); #endif #if defined(HAS_ARGBAFFINEROW_SSE2) int has_sse2 = TestCpuFlag(kCpuHasSSE2); if (has_sse2) { for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0], uv_step, 256); } } else { #endif for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) { ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0], uv_step, 256); } #if defined(HAS_ARGBAFFINEROW_SSE2) } #endif } TEST_F(libyuvTest, Test565) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); SIMD_ALIGNED(uint8 pixels565[256][2]); for (int i = 0; i < 256; ++i) { for (int j = 0; j < 4; ++j) { orig_pixels[i][j] = i; } } ARGBToRGB565(&orig_pixels[0][0], 0, &pixels565[0][0], 0, 256, 1); uint32 checksum = HashDjb2(&pixels565[0][0], sizeof(pixels565), 5381); EXPECT_EQ(610919429u, checksum); } } // namespace libyuv