/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/row.h" #include <string.h> // For memcpy #include "libyuv/basic_types.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif void BGRAToARGBRow_C(const uint8* src_bgra, uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { // To support in-place conversion. uint8 a = src_bgra[0]; uint8 r = src_bgra[1]; uint8 g = src_bgra[2]; uint8 b = src_bgra[3]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = a; dst_argb += 4; src_bgra += 4; } } void ABGRToARGBRow_C(const uint8* src_abgr, uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { // To support in-place conversion. uint8 r = src_abgr[0]; uint8 g = src_abgr[1]; uint8 b = src_abgr[2]; uint8 a = src_abgr[3]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = a; dst_argb += 4; src_abgr += 4; } } void RGBAToARGBRow_C(const uint8* src_abgr, uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { // To support in-place conversion. uint8 a = src_abgr[0]; uint8 b = src_abgr[1]; uint8 g = src_abgr[2]; uint8 r = src_abgr[3]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = a; dst_argb += 4; src_abgr += 4; } } void RGB24ToARGBRow_C(const uint8* src_rgb24, uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { uint8 b = src_rgb24[0]; uint8 g = src_rgb24[1]; uint8 r = src_rgb24[2]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = 255u; dst_argb += 4; src_rgb24 += 3; } } void RAWToARGBRow_C(const uint8* src_raw, uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { uint8 r = src_raw[0]; uint8 g = src_raw[1]; uint8 b = src_raw[2]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = 255u; dst_argb += 4; src_raw += 3; } } void RGB565ToARGBRow_C(const uint8* src_rgb, uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { uint8 b = src_rgb[0] & 0x1f; uint8 g = (src_rgb[0] >> 5) | ((src_rgb[1] & 0x07) << 3); uint8 r = src_rgb[1] >> 3; dst_argb[0] = (b << 3) | (b >> 2); dst_argb[1] = (g << 2) | (g >> 4); dst_argb[2] = (r << 3) | (r >> 2); dst_argb[3] = 255u; dst_argb += 4; src_rgb += 2; } } void ARGB1555ToARGBRow_C(const uint8* src_rgb, uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { uint8 b = src_rgb[0] & 0x1f; uint8 g = (src_rgb[0] >> 5) | ((src_rgb[1] & 0x03) << 3); uint8 r = (src_rgb[1] & 0x7c) >> 2; uint8 a = src_rgb[1] >> 7; dst_argb[0] = (b << 3) | (b >> 2); dst_argb[1] = (g << 3) | (g >> 2); dst_argb[2] = (r << 3) | (r >> 2); dst_argb[3] = -a; dst_argb += 4; src_rgb += 2; } } void ARGB4444ToARGBRow_C(const uint8* src_rgb, uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { uint8 b = src_rgb[0] & 0x0f; uint8 g = src_rgb[0] >> 4; uint8 r = src_rgb[1] & 0x0f; uint8 a = src_rgb[1] >> 4; dst_argb[0] = (b << 4) | b; dst_argb[1] = (g << 4) | g; dst_argb[2] = (r << 4) | r; dst_argb[3] = (a << 4) | a; dst_argb += 4; src_rgb += 2; } } void ARGBToRGBARow_C(const uint8* src_argb, uint8* dst_rgb, int width) { for (int x = 0; x < width; ++x) { uint8 b = src_argb[0]; uint8 g = src_argb[1]; uint8 r = src_argb[2]; uint8 a = src_argb[3]; dst_rgb[0] = a; dst_rgb[1] = b; dst_rgb[2] = g; dst_rgb[3] = r; dst_rgb += 4; src_argb += 4; } } void ARGBToRGB24Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { for (int x = 0; x < width; ++x) { uint8 b = src_argb[0]; uint8 g = src_argb[1]; uint8 r = src_argb[2]; dst_rgb[0] = b; dst_rgb[1] = g; dst_rgb[2] = r; dst_rgb += 3; src_argb += 4; } } void ARGBToRAWRow_C(const uint8* src_argb, uint8* dst_rgb, int width) { for (int x = 0; x < width; ++x) { uint8 b = src_argb[0]; uint8 g = src_argb[1]; uint8 r = src_argb[2]; dst_rgb[0] = r; dst_rgb[1] = g; dst_rgb[2] = b; dst_rgb += 3; src_argb += 4; } } // TODO(fbarchard): support big endian CPU void ARGBToRGB565Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { for (int x = 0; x < width - 1; x += 2) { uint8 b0 = src_argb[0] >> 3; uint8 g0 = src_argb[1] >> 2; uint8 r0 = src_argb[2] >> 3; uint8 b1 = src_argb[4] >> 3; uint8 g1 = src_argb[5] >> 2; uint8 r1 = src_argb[6] >> 3; *reinterpret_cast<uint32*>(dst_rgb) = b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | (r1 << 27); dst_rgb += 4; src_argb += 8; } if (width & 1) { uint8 b0 = src_argb[0] >> 3; uint8 g0 = src_argb[1] >> 2; uint8 r0 = src_argb[2] >> 3; *reinterpret_cast<uint16*>(dst_rgb) = b0 | (g0 << 5) | (r0 << 11); } } void ARGBToARGB1555Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { for (int x = 0; x < width - 1; x += 2) { uint8 b0 = src_argb[0] >> 3; uint8 g0 = src_argb[1] >> 3; uint8 r0 = src_argb[2] >> 3; uint8 a0 = src_argb[3] >> 7; uint8 b1 = src_argb[4] >> 3; uint8 g1 = src_argb[5] >> 3; uint8 r1 = src_argb[6] >> 3; uint8 a1 = src_argb[7] >> 7; *reinterpret_cast<uint32*>(dst_rgb) = b0 | (g0 << 5) | (r0 << 10) | (a0 << 15) | (b1 << 16) | (g1 << 21) | (r1 << 26) | (a1 << 31); dst_rgb += 4; src_argb += 8; } if (width & 1) { uint8 b0 = src_argb[0] >> 3; uint8 g0 = src_argb[1] >> 3; uint8 r0 = src_argb[2] >> 3; uint8 a0 = src_argb[3] >> 7; *reinterpret_cast<uint16*>(dst_rgb) = b0 | (g0 << 5) | (r0 << 10) | (a0 << 15); } } void ARGBToARGB4444Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { for (int x = 0; x < width - 1; x += 2) { uint8 b0 = src_argb[0] >> 4; uint8 g0 = src_argb[1] >> 4; uint8 r0 = src_argb[2] >> 4; uint8 a0 = src_argb[3] >> 4; uint8 b1 = src_argb[4] >> 4; uint8 g1 = src_argb[5] >> 4; uint8 r1 = src_argb[6] >> 4; uint8 a1 = src_argb[7] >> 4; *reinterpret_cast<uint32*>(dst_rgb) = b0 | (g0 << 4) | (r0 << 8) | (a0 << 12) | (b1 << 16) | (g1 << 20) | (r1 << 24) | (a1 << 28); dst_rgb += 4; src_argb += 8; } if (width & 1) { uint8 b0 = src_argb[0] >> 4; uint8 g0 = src_argb[1] >> 4; uint8 r0 = src_argb[2] >> 4; uint8 a0 = src_argb[3] >> 4; *reinterpret_cast<uint16*>(dst_rgb) = b0 | (g0 << 4) | (r0 << 8) | (a0 << 12); } } static __inline int RGBToY(uint8 r, uint8 g, uint8 b) { return (( 66 * r + 129 * g + 25 * b + 128) >> 8) + 16; } static __inline int RGBToU(uint8 r, uint8 g, uint8 b) { return ((-38 * r - 74 * g + 112 * b + 128) >> 8) + 128; } static __inline int RGBToV(uint8 r, uint8 g, uint8 b) { return ((112 * r - 94 * g - 18 * b + 128) >> 8) + 128; } #define MAKEROWY(NAME, R, G, B) \ void NAME ## ToYRow_C(const uint8* src_argb0, uint8* dst_y, int width) { \ for (int x = 0; x < width; ++x) { \ dst_y[0] = RGBToY(src_argb0[R], src_argb0[G], src_argb0[B]); \ src_argb0 += 4; \ dst_y += 1; \ } \ } \ void NAME ## ToUVRow_C(const uint8* src_rgb0, int src_stride_rgb, \ uint8* dst_u, uint8* dst_v, int width) { \ const uint8* src_rgb1 = src_rgb0 + src_stride_rgb; \ for (int x = 0; x < width - 1; x += 2) { \ uint8 ab = (src_rgb0[B] + src_rgb0[B + 4] + \ src_rgb1[B] + src_rgb1[B + 4]) >> 2; \ uint8 ag = (src_rgb0[G] + src_rgb0[G + 4] + \ src_rgb1[G] + src_rgb1[G + 4]) >> 2; \ uint8 ar = (src_rgb0[R] + src_rgb0[R + 4] + \ src_rgb1[R] + src_rgb1[R + 4]) >> 2; \ dst_u[0] = RGBToU(ar, ag, ab); \ dst_v[0] = RGBToV(ar, ag, ab); \ src_rgb0 += 8; \ src_rgb1 += 8; \ dst_u += 1; \ dst_v += 1; \ } \ if (width & 1) { \ uint8 ab = (src_rgb0[B] + src_rgb1[B]) >> 1; \ uint8 ag = (src_rgb0[G] + src_rgb1[G]) >> 1; \ uint8 ar = (src_rgb0[R] + src_rgb1[R]) >> 1; \ dst_u[0] = RGBToU(ar, ag, ab); \ dst_v[0] = RGBToV(ar, ag, ab); \ } \ } MAKEROWY(ARGB, 2, 1, 0) MAKEROWY(BGRA, 1, 2, 3) MAKEROWY(ABGR, 0, 1, 2) MAKEROWY(RGBA, 3, 2, 1) // http://en.wikipedia.org/wiki/Grayscale. // 0.11 * B + 0.59 * G + 0.30 * R // Coefficients rounded to multiple of 2 for consistency with SSSE3 version. static __inline int RGBToGray(uint8 r, uint8 g, uint8 b) { return (( 76 * r + 152 * g + 28 * b) >> 8); } void ARGBGrayRow_C(const uint8* src_argb, uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { uint8 y = RGBToGray(src_argb[2], src_argb[1], src_argb[0]); dst_argb[2] = dst_argb[1] = dst_argb[0] = y; dst_argb[3] = src_argb[3]; dst_argb += 4; src_argb += 4; } } // Convert a row of image to Sepia tone. void ARGBSepiaRow_C(uint8* dst_argb, int width) { for (int x = 0; x < width; ++x) { int b = dst_argb[0]; int g = dst_argb[1]; int r = dst_argb[2]; int sb = (b * 17 + g * 68 + r * 35) >> 7; int sg = (b * 22 + g * 88 + r * 45) >> 7; int sr = (b * 24 + g * 98 + r * 50) >> 7; // b does not over flow. a is preserved from original. if (sg > 255) { sg = 255; } if (sr > 255) { sr = 255; } dst_argb[0] = sb; dst_argb[1] = sg; dst_argb[2] = sr; dst_argb += 4; } } // Apply color matrix to a row of image. Matrix is signed. void ARGBColorMatrixRow_C(uint8* dst_argb, const int8* matrix_argb, int width) { for (int x = 0; x < width; ++x) { int b = dst_argb[0]; int g = dst_argb[1]; int r = dst_argb[2]; int a = dst_argb[3]; int sb = (b * matrix_argb[0] + g * matrix_argb[1] + r * matrix_argb[2] + a * matrix_argb[3]) >> 7; int sg = (b * matrix_argb[4] + g * matrix_argb[5] + r * matrix_argb[6] + a * matrix_argb[7]) >> 7; int sr = (b * matrix_argb[8] + g * matrix_argb[9] + r * matrix_argb[10] + a * matrix_argb[11]) >> 7; if (sb < 0) { sb = 0; } if (sb > 255) { sb = 255; } if (sg < 0) { sg = 0; } if (sg > 255) { sg = 255; } if (sr < 0) { sr = 0; } if (sr > 255) { sr = 255; } dst_argb[0] = sb; dst_argb[1] = sg; dst_argb[2] = sr; dst_argb += 4; } } // Apply color table to a row of image. void ARGBColorTableRow_C(uint8* dst_argb, const uint8* table_argb, int width) { for (int x = 0; x < width; ++x) { int b = dst_argb[0]; int g = dst_argb[1]; int r = dst_argb[2]; int a = dst_argb[3]; dst_argb[0] = table_argb[b * 4 + 0]; dst_argb[1] = table_argb[g * 4 + 1]; dst_argb[2] = table_argb[r * 4 + 2]; dst_argb[3] = table_argb[a * 4 + 3]; dst_argb += 4; } } void ARGBQuantizeRow_C(uint8* dst_argb, int scale, int interval_size, int interval_offset, int width) { for (int x = 0; x < width; ++x) { int b = dst_argb[0]; int g = dst_argb[1]; int r = dst_argb[2]; dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset; dst_argb[1] = (g * scale >> 16) * interval_size + interval_offset; dst_argb[2] = (r * scale >> 16) * interval_size + interval_offset; dst_argb += 4; } } void I400ToARGBRow_C(const uint8* src_y, uint8* dst_argb, int width) { // Copy a Y to RGB. for (int x = 0; x < width; ++x) { uint8 y = src_y[0]; dst_argb[2] = dst_argb[1] = dst_argb[0] = y; dst_argb[3] = 255u; dst_argb += 4; ++src_y; } } // C reference code that mimics the YUV assembly. #define YG 74 /* static_cast<int8>(1.164 * 64 + 0.5) */ #define UB 127 /* min(63,static_cast<int8>(2.018 * 64)) */ #define UG -25 /* static_cast<int8>(-0.391 * 64 - 0.5) */ #define UR 0 #define VB 0 #define VG -52 /* static_cast<int8>(-0.813 * 64 - 0.5) */ #define VR 102 /* static_cast<int8>(1.596 * 64 + 0.5) */ // Bias #define BB UB * 128 + VB * 128 #define BG UG * 128 + VG * 128 #define BR UR * 128 + VR * 128 static __inline uint32 Clip(int32 val) { if (val < 0) { return static_cast<uint32>(0); } else if (val > 255) { return static_cast<uint32>(255); } return static_cast<uint32>(val); } static __inline void YuvPixel(uint8 y, uint8 u, uint8 v, uint8* rgb_buf, int ashift, int rshift, int gshift, int bshift) { int32 y1 = (static_cast<int32>(y) - 16) * YG; uint32 b = Clip(static_cast<int32>((u * UB + v * VB) - (BB) + y1) >> 6); uint32 g = Clip(static_cast<int32>((u * UG + v * VG) - (BG) + y1) >> 6); uint32 r = Clip(static_cast<int32>((u * UR + v * VR) - (BR) + y1) >> 6); *reinterpret_cast<uint32*>(rgb_buf) = (b << bshift) | (g << gshift) | (r << rshift) | (255u << ashift); } static __inline void YuvPixel2(uint8 y, uint8 u, uint8 v, uint8* b, uint8* g, uint8* r) { int32 y1 = (static_cast<int32>(y) - 16) * YG; *b = Clip(static_cast<int32>((u * UB + v * VB) - (BB) + y1) >> 6); *g = Clip(static_cast<int32>((u * UG + v * VG) - (BG) + y1) >> 6); *r = Clip(static_cast<int32>((u * UR + v * VR) - (BR) + y1) >> 6); } void I444ToARGBRow_C(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width; ++x) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf, 24, 16, 8, 0); y_buf += 1; u_buf += 1; v_buf += 1; rgb_buf += 4; // Advance 1 pixel. } } // Also used for 420 void I422ToARGBRow_C(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width - 1; x += 2) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 16, 8, 0); YuvPixel(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 4, 24, 16, 8, 0); y_buf += 2; u_buf += 1; v_buf += 1; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 16, 8, 0); } } void I422ToRGB24Row_C(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width - 1; x += 2) { YuvPixel2(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); YuvPixel2(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 3, rgb_buf + 4, rgb_buf + 5); y_buf += 2; u_buf += 1; v_buf += 1; rgb_buf += 6; // Advance 2 pixels. } if (width & 1) { YuvPixel2(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); } } void I422ToRAWRow_C(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width - 1; x += 2) { YuvPixel2(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 2, rgb_buf + 1, rgb_buf + 0); YuvPixel2(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 5, rgb_buf + 4, rgb_buf + 3); y_buf += 2; u_buf += 1; v_buf += 1; rgb_buf += 6; // Advance 2 pixels. } if (width & 1) { YuvPixel2(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); } } void I411ToARGBRow_C(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width - 3; x += 4) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 16, 8, 0); YuvPixel(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 4, 24, 16, 8, 0); YuvPixel(y_buf[2], u_buf[0], v_buf[0], rgb_buf + 8, 24, 16, 8, 0); YuvPixel(y_buf[3], u_buf[0], v_buf[0], rgb_buf + 12, 24, 16, 8, 0); y_buf += 4; u_buf += 1; v_buf += 1; rgb_buf += 16; // Advance 4 pixels. } if (width & 2) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 16, 8, 0); YuvPixel(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 4, 24, 16, 8, 0); y_buf += 2; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 16, 8, 0); } } void NV12ToARGBRow_C(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width - 1; x += 2) { YuvPixel(y_buf[0], uv_buf[0], uv_buf[1], rgb_buf + 0, 24, 16, 8, 0); YuvPixel(y_buf[1], uv_buf[0], uv_buf[1], rgb_buf + 4, 24, 16, 8, 0); y_buf += 2; uv_buf += 2; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(y_buf[0], uv_buf[0], uv_buf[1], rgb_buf + 0, 24, 16, 8, 0); } } void NV21ToARGBRow_C(const uint8* y_buf, const uint8* vu_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width - 1; x += 2) { YuvPixel(y_buf[0], vu_buf[1], vu_buf[0], rgb_buf + 0, 24, 16, 8, 0); YuvPixel(y_buf[1], vu_buf[1], vu_buf[0], rgb_buf + 4, 24, 16, 8, 0); y_buf += 2; vu_buf += 2; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(y_buf[0], vu_buf[1], vu_buf[0], rgb_buf + 0, 24, 16, 8, 0); } } void I422ToBGRARow_C(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width - 1; x += 2) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 0, 8, 16, 24); YuvPixel(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 4, 0, 8, 16, 24); y_buf += 2; u_buf += 1; v_buf += 1; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf, 0, 8, 16, 24); } } void I422ToABGRRow_C(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width - 1; x += 2) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 0, 8, 16); YuvPixel(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 4, 24, 0, 8, 16); y_buf += 2; u_buf += 1; v_buf += 1; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 0, 8, 16); } } void I422ToRGBARow_C(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width - 1; x += 2) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 0, 24, 16, 8); YuvPixel(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 4, 0, 24, 16, 8); y_buf += 2; u_buf += 1; v_buf += 1; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 0, 24, 16, 8); } } void YToARGBRow_C(const uint8* y_buf, uint8* rgb_buf, int width) { for (int x = 0; x < width; ++x) { YuvPixel(y_buf[0], 128, 128, rgb_buf, 24, 16, 8, 0); y_buf += 1; rgb_buf += 4; // Advance 1 pixel. } } void MirrorRow_C(const uint8* src, uint8* dst, int width) { src += width - 1; for (int x = 0; x < width - 1; x += 2) { dst[x] = src[0]; dst[x + 1] = src[-1]; src -= 2; } if (width & 1) { dst[width - 1] = src[0]; } } void MirrorRowUV_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) { src_uv += (width - 1) << 1; for (int x = 0; x < width - 1; x += 2) { dst_u[x] = src_uv[0]; dst_u[x + 1] = src_uv[-2]; dst_v[x] = src_uv[1]; dst_v[x + 1] = src_uv[-2 + 1]; src_uv -= 4; } if (width & 1) { dst_u[width - 1] = src_uv[0]; dst_v[width - 1] = src_uv[1]; } } void ARGBMirrorRow_C(const uint8* src, uint8* dst, int width) { const uint32* src32 = reinterpret_cast<const uint32*>(src); uint32* dst32 = reinterpret_cast<uint32*>(dst); src32 += width - 1; for (int x = 0; x < width - 1; x += 2) { dst32[x] = src32[0]; dst32[x + 1] = src32[-1]; src32 -= 2; } if (width & 1) { dst32[width - 1] = src32[0]; } } void SplitUV_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) { for (int x = 0; x < width - 1; x += 2) { dst_u[x] = src_uv[0]; dst_u[x + 1] = src_uv[2]; dst_v[x] = src_uv[1]; dst_v[x + 1] = src_uv[3]; src_uv += 4; } if (width & 1) { dst_u[width - 1] = src_uv[0]; dst_v[width - 1] = src_uv[1]; } } void CopyRow_C(const uint8* src, uint8* dst, int count) { memcpy(dst, src, count); } void SetRow8_C(uint8* dst, uint32 v8, int count) { #ifdef _MSC_VER // VC will generate rep stosb. for (int x = 0; x < count; ++x) { dst[x] = v8; } #else memset(dst, v8, count); #endif } void SetRows32_C(uint8* dst, uint32 v32, int width, int dst_stride, int height) { for (int y = 0; y < height; ++y) { uint32* d = reinterpret_cast<uint32*>(dst); for (int x = 0; x < width; ++x) { d[x] = v32; } dst += dst_stride; } } // Filter 2 rows of YUY2 UV's (422) into U and V (420). void YUY2ToUVRow_C(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_u, uint8* dst_v, int width) { // Output a row of UV values, filtering 2 rows of YUY2. for (int x = 0; x < width; x += 2) { dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1; dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1; src_yuy2 += 4; dst_u += 1; dst_v += 1; } } // Copy row of YUY2 UV's (422) into U and V (422). void YUY2ToUV422Row_C(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v, int width) { // Output a row of UV values. for (int x = 0; x < width; x += 2) { dst_u[0] = src_yuy2[1]; dst_v[0] = src_yuy2[3]; src_yuy2 += 4; dst_u += 1; dst_v += 1; } } // Copy row of YUY2 Y's (422) into Y (420/422). void YUY2ToYRow_C(const uint8* src_yuy2, uint8* dst_y, int width) { // Output a row of Y values. for (int x = 0; x < width - 1; x += 2) { dst_y[x] = src_yuy2[0]; dst_y[x + 1] = src_yuy2[2]; src_yuy2 += 4; } if (width & 1) { dst_y[width - 1] = src_yuy2[0]; } } // Filter 2 rows of UYVY UV's (422) into U and V (420). void UYVYToUVRow_C(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_u, uint8* dst_v, int width) { // Output a row of UV values. for (int x = 0; x < width; x += 2) { dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1; dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1; src_uyvy += 4; dst_u += 1; dst_v += 1; } } // Copy row of UYVY UV's (422) into U and V (422). void UYVYToUV422Row_C(const uint8* src_uyvy, uint8* dst_u, uint8* dst_v, int width) { // Output a row of UV values. for (int x = 0; x < width; x += 2) { dst_u[0] = src_uyvy[0]; dst_v[0] = src_uyvy[2]; src_uyvy += 4; dst_u += 1; dst_v += 1; } } // Copy row of UYVY Y's (422) into Y (420/422). void UYVYToYRow_C(const uint8* src_uyvy, uint8* dst_y, int width) { // Output a row of Y values. for (int x = 0; x < width - 1; x += 2) { dst_y[x] = src_uyvy[1]; dst_y[x + 1] = src_uyvy[3]; src_uyvy += 4; } if (width & 1) { dst_y[width - 1] = src_uyvy[1]; } } #define BLEND(f, b, a) (((256 - a) * b) >> 8) + f // Blend src_argb0 over src_argb1 and store to dst_argb. // dst_argb may be src_argb0 or src_argb1. // This code mimics the SSSE3 version for better testability. void ARGBBlendRow_C(const uint8* src_argb0, const uint8* src_argb1, uint8* dst_argb, int width) { for (int x = 0; x < width - 1; x += 2) { uint32 fb = src_argb0[0]; uint32 fg = src_argb0[1]; uint32 fr = src_argb0[2]; uint32 a = src_argb0[3]; uint32 bb = src_argb1[0]; uint32 bg = src_argb1[1]; uint32 br = src_argb1[2]; dst_argb[0] = BLEND(fb, bb, a); dst_argb[1] = BLEND(fg, bg, a); dst_argb[2] = BLEND(fr, br, a); dst_argb[3] = 255u; fb = src_argb0[4 + 0]; fg = src_argb0[4 + 1]; fr = src_argb0[4 + 2]; a = src_argb0[4 + 3]; bb = src_argb1[4 + 0]; bg = src_argb1[4 + 1]; br = src_argb1[4 + 2]; dst_argb[4 + 0] = BLEND(fb, bb, a); dst_argb[4 + 1] = BLEND(fg, bg, a); dst_argb[4 + 2] = BLEND(fr, br, a); dst_argb[4 + 3] = 255u; src_argb0 += 8; src_argb1 += 8; dst_argb += 8; } if (width & 1) { uint32 fb = src_argb0[0]; uint32 fg = src_argb0[1]; uint32 fr = src_argb0[2]; uint32 a = src_argb0[3]; uint32 bb = src_argb1[0]; uint32 bg = src_argb1[1]; uint32 br = src_argb1[2]; dst_argb[0] = BLEND(fb, bb, a); dst_argb[1] = BLEND(fg, bg, a); dst_argb[2] = BLEND(fr, br, a); dst_argb[3] = 255u; } } #undef BLEND #define ATTENUATE(f, a) (a | (a << 8)) * (f | (f << 8)) >> 24 // Multiply source RGB by alpha and store to destination. // This code mimics the SSSE3 version for better testability. void ARGBAttenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width) { for (int i = 0; i < width - 1; i += 2) { uint32 b = src_argb[0]; uint32 g = src_argb[1]; uint32 r = src_argb[2]; uint32 a = src_argb[3]; dst_argb[0] = ATTENUATE(b, a); dst_argb[1] = ATTENUATE(g, a); dst_argb[2] = ATTENUATE(r, a); dst_argb[3] = a; b = src_argb[4]; g = src_argb[5]; r = src_argb[6]; a = src_argb[7]; dst_argb[4] = ATTENUATE(b, a); dst_argb[5] = ATTENUATE(g, a); dst_argb[6] = ATTENUATE(r, a); dst_argb[7] = a; src_argb += 8; dst_argb += 8; } if (width & 1) { const uint32 b = src_argb[0]; const uint32 g = src_argb[1]; const uint32 r = src_argb[2]; const uint32 a = src_argb[3]; dst_argb[0] = ATTENUATE(b, a); dst_argb[1] = ATTENUATE(g, a); dst_argb[2] = ATTENUATE(r, a); dst_argb[3] = a; } } #undef ATTENUATE // Divide source RGB by alpha and store to destination. // b = (b * 255 + (a / 2)) / a; // g = (g * 255 + (a / 2)) / a; // r = (r * 255 + (a / 2)) / a; // Reciprocal method is off by 1 on some values. ie 125 // 8.16 fixed point inverse table #define T(a) 0x10000 / a uint32 fixed_invtbl8[256] = { 0x0100, T(0x01), T(0x02), T(0x03), T(0x04), T(0x05), T(0x06), T(0x07), T(0x08), T(0x09), T(0x0a), T(0x0b), T(0x0c), T(0x0d), T(0x0e), T(0x0f), T(0x10), T(0x11), T(0x12), T(0x13), T(0x14), T(0x15), T(0x16), T(0x17), T(0x18), T(0x19), T(0x1a), T(0x1b), T(0x1c), T(0x1d), T(0x1e), T(0x1f), T(0x20), T(0x21), T(0x22), T(0x23), T(0x24), T(0x25), T(0x26), T(0x27), T(0x28), T(0x29), T(0x2a), T(0x2b), T(0x2c), T(0x2d), T(0x2e), T(0x2f), T(0x30), T(0x31), T(0x32), T(0x33), T(0x34), T(0x35), T(0x36), T(0x37), T(0x38), T(0x39), T(0x3a), T(0x3b), T(0x3c), T(0x3d), T(0x3e), T(0x3f), T(0x40), T(0x41), T(0x42), T(0x43), T(0x44), T(0x45), T(0x46), T(0x47), T(0x48), T(0x49), T(0x4a), T(0x4b), T(0x4c), T(0x4d), T(0x4e), T(0x4f), T(0x50), T(0x51), T(0x52), T(0x53), T(0x54), T(0x55), T(0x56), T(0x57), T(0x58), T(0x59), T(0x5a), T(0x5b), T(0x5c), T(0x5d), T(0x5e), T(0x5f), T(0x60), T(0x61), T(0x62), T(0x63), T(0x64), T(0x65), T(0x66), T(0x67), T(0x68), T(0x69), T(0x6a), T(0x6b), T(0x6c), T(0x6d), T(0x6e), T(0x6f), T(0x70), T(0x71), T(0x72), T(0x73), T(0x74), T(0x75), T(0x76), T(0x77), T(0x78), T(0x79), T(0x7a), T(0x7b), T(0x7c), T(0x7d), T(0x7e), T(0x7f), T(0x80), T(0x81), T(0x82), T(0x83), T(0x84), T(0x85), T(0x86), T(0x87), T(0x88), T(0x89), T(0x8a), T(0x8b), T(0x8c), T(0x8d), T(0x8e), T(0x8f), T(0x90), T(0x91), T(0x92), T(0x93), T(0x94), T(0x95), T(0x96), T(0x97), T(0x98), T(0x99), T(0x9a), T(0x9b), T(0x9c), T(0x9d), T(0x9e), T(0x9f), T(0xa0), T(0xa1), T(0xa2), T(0xa3), T(0xa4), T(0xa5), T(0xa6), T(0xa7), T(0xa8), T(0xa9), T(0xaa), T(0xab), T(0xac), T(0xad), T(0xae), T(0xaf), T(0xb0), T(0xb1), T(0xb2), T(0xb3), T(0xb4), T(0xb5), T(0xb6), T(0xb7), T(0xb8), T(0xb9), T(0xba), T(0xbb), T(0xbc), T(0xbd), T(0xbe), T(0xbf), T(0xc0), T(0xc1), T(0xc2), T(0xc3), T(0xc4), T(0xc5), T(0xc6), T(0xc7), T(0xc8), T(0xc9), T(0xca), T(0xcb), T(0xcc), T(0xcd), T(0xce), T(0xcf), T(0xd0), T(0xd1), T(0xd2), T(0xd3), T(0xd4), T(0xd5), T(0xd6), T(0xd7), T(0xd8), T(0xd9), T(0xda), T(0xdb), T(0xdc), T(0xdd), T(0xde), T(0xdf), T(0xe0), T(0xe1), T(0xe2), T(0xe3), T(0xe4), T(0xe5), T(0xe6), T(0xe7), T(0xe8), T(0xe9), T(0xea), T(0xeb), T(0xec), T(0xed), T(0xee), T(0xef), T(0xf0), T(0xf1), T(0xf2), T(0xf3), T(0xf4), T(0xf5), T(0xf6), T(0xf7), T(0xf8), T(0xf9), T(0xfa), T(0xfb), T(0xfc), T(0xfd), T(0xfe), 0x0100 }; #undef T void ARGBUnattenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width) { for (int i = 0; i < width; ++i) { uint32 b = src_argb[0]; uint32 g = src_argb[1]; uint32 r = src_argb[2]; const uint32 a = src_argb[3]; if (a) { const uint32 ia = fixed_invtbl8[a]; // 8.16 fixed point b = (b * ia) >> 8; g = (g * ia) >> 8; r = (r * ia) >> 8; // Clamping should not be necessary but is free in assembly. if (b > 255) { b = 255; } if (g > 255) { g = 255; } if (r > 255) { r = 255; } } dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = a; src_argb += 4; dst_argb += 4; } } // Wrappers to handle odd width #define YANY(NAMEANY, I420TORGB_SSE, I420TORGB_C, UV_SHIFT) \ void NAMEANY(const uint8* y_buf, \ const uint8* u_buf, \ const uint8* v_buf, \ uint8* rgb_buf, \ int width) { \ int n = width & ~7; \ I420TORGB_SSE(y_buf, u_buf, v_buf, rgb_buf, n); \ I420TORGB_C(y_buf + n, \ u_buf + (n >> UV_SHIFT), \ v_buf + (n >> UV_SHIFT), \ rgb_buf + n * 4, width & 7); \ } // Wrappers to handle odd width #define Y2NY(NAMEANY, NV12TORGB_SSE, NV12TORGB_C, UV_SHIFT) \ void NAMEANY(const uint8* y_buf, \ const uint8* uv_buf, \ uint8* rgb_buf, \ int width) { \ int n = width & ~7; \ NV12TORGB_SSE(y_buf, uv_buf, rgb_buf, n); \ NV12TORGB_C(y_buf + n, \ uv_buf + (n >> UV_SHIFT), \ rgb_buf + n * 4, width & 7); \ } #ifdef HAS_I422TOARGBROW_SSSE3 YANY(I444ToARGBRow_Any_SSSE3, I444ToARGBRow_Unaligned_SSSE3, I444ToARGBRow_C, 0) YANY(I422ToARGBRow_Any_SSSE3, I422ToARGBRow_Unaligned_SSSE3, I422ToARGBRow_C, 1) YANY(I411ToARGBRow_Any_SSSE3, I411ToARGBRow_Unaligned_SSSE3, I411ToARGBRow_C, 2) Y2NY(NV12ToARGBRow_Any_SSSE3, NV12ToARGBRow_Unaligned_SSSE3, NV12ToARGBRow_C, 0) Y2NY(NV21ToARGBRow_Any_SSSE3, NV21ToARGBRow_Unaligned_SSSE3, NV21ToARGBRow_C, 0) YANY(I422ToBGRARow_Any_SSSE3, I422ToBGRARow_Unaligned_SSSE3, I422ToBGRARow_C, 1) YANY(I422ToABGRRow_Any_SSSE3, I422ToABGRRow_Unaligned_SSSE3, I422ToABGRRow_C, 1) #endif #ifdef HAS_I422TORGB24ROW_SSSE3 YANY(I422ToRGB24Row_Any_SSSE3, I422ToRGB24Row_Unaligned_SSSE3, \ I422ToRGB24Row_C, 1) YANY(I422ToRAWRow_Any_SSSE3, I422ToRAWRow_Unaligned_SSSE3, I422ToRAWRow_C, 1) #endif #ifdef HAS_I422TORGBAROW_SSSE3 YANY(I422ToRGBARow_Any_SSSE3, I422ToRGBARow_Unaligned_SSSE3, I422ToRGBARow_C, 1) #endif #ifdef HAS_I422TOARGBROW_NEON YANY(I422ToARGBRow_Any_NEON, I422ToARGBRow_NEON, I422ToARGBRow_C, 1) YANY(I422ToBGRARow_Any_NEON, I422ToBGRARow_NEON, I422ToBGRARow_C, 1) YANY(I422ToABGRRow_Any_NEON, I422ToABGRRow_NEON, I422ToABGRRow_C, 1) YANY(I422ToRGBARow_Any_NEON, I422ToRGBARow_NEON, I422ToRGBARow_C, 1) Y2NY(NV12ToARGBRow_Any_NEON, NV12ToARGBRow_NEON, NV12ToARGBRow_C, 0) Y2NY(NV21ToARGBRow_Any_NEON, NV21ToARGBRow_NEON, NV21ToARGBRow_C, 0) YANY(I422ToRGB24Row_Any_NEON, I422ToRGB24Row_NEON, I422ToRGB24Row_C, 1) YANY(I422ToRAWRow_Any_NEON, I422ToRAWRow_NEON, I422ToRAWRow_C, 1) #endif #undef YANY #define RGBANY(NAMEANY, ARGBTORGB, BPP) \ void NAMEANY(const uint8* argb_buf, \ uint8* rgb_buf, \ int width) { \ SIMD_ALIGNED(uint8 row[kMaxStride]); \ ARGBTORGB(argb_buf, row, width); \ memcpy(rgb_buf, row, width * BPP); \ } #if defined(HAS_ARGBTORGB24ROW_SSSE3) RGBANY(ARGBToRGB24Row_Any_SSSE3, ARGBToRGB24Row_SSSE3, 3) RGBANY(ARGBToRAWRow_Any_SSSE3, ARGBToRAWRow_SSSE3, 3) RGBANY(ARGBToRGB565Row_Any_SSE2, ARGBToRGB565Row_SSE2, 2) RGBANY(ARGBToARGB1555Row_Any_SSE2, ARGBToARGB1555Row_SSE2, 2) RGBANY(ARGBToARGB4444Row_Any_SSE2, ARGBToARGB4444Row_SSE2, 2) #endif #if defined(HAS_ARGBTORGB24ROW_NEON) RGBANY(ARGBToRGB24Row_Any_NEON, ARGBToRGB24Row_NEON, 3) RGBANY(ARGBToRAWRow_Any_NEON, ARGBToRAWRow_NEON, 3) #endif #undef RGBANY #define YANY(NAMEANY, ARGBTOY_SSE, BPP) \ void NAMEANY(const uint8* src_argb, uint8* dst_y, int width) { \ ARGBTOY_SSE(src_argb, dst_y, width - 16); \ ARGBTOY_SSE(src_argb + (width - 16) * BPP, dst_y + (width - 16), 16); \ } #ifdef HAS_ARGBTOYROW_SSSE3 YANY(ARGBToYRow_Any_SSSE3, ARGBToYRow_Unaligned_SSSE3, 4) YANY(BGRAToYRow_Any_SSSE3, BGRAToYRow_Unaligned_SSSE3, 4) YANY(ABGRToYRow_Any_SSSE3, ABGRToYRow_Unaligned_SSSE3, 4) #endif #ifdef HAS_RGBATOYROW_SSSE3 YANY(RGBAToYRow_Any_SSSE3, RGBAToYRow_Unaligned_SSSE3, 4) #endif #ifdef HAS_YUY2TOYROW_SSE2 YANY(YUY2ToYRow_Any_SSE2, YUY2ToYRow_Unaligned_SSE2, 2) YANY(UYVYToYRow_Any_SSE2, UYVYToYRow_Unaligned_SSE2, 2) #endif #ifdef HAS_YUY2TOYROW_NEON YANY(YUY2ToYRow_Any_NEON, YUY2ToYRow_NEON, 2) YANY(UYVYToYRow_Any_NEON, UYVYToYRow_NEON, 2) #endif #undef YANY #define UVANY(NAMEANY, ANYTOUV_SSE, ANYTOUV_C, BPP) \ void NAMEANY(const uint8* src_argb, int src_stride_argb, \ uint8* dst_u, uint8* dst_v, int width) { \ int n = width & ~15; \ ANYTOUV_SSE(src_argb, src_stride_argb, dst_u, dst_v, n); \ ANYTOUV_C(src_argb + n * BPP, src_stride_argb, \ dst_u + (n >> 1), \ dst_v + (n >> 1), \ width & 15); \ } #ifdef HAS_ARGBTOUVROW_SSSE3 UVANY(ARGBToUVRow_Any_SSSE3, ARGBToUVRow_Unaligned_SSSE3, ARGBToUVRow_C, 4) UVANY(BGRAToUVRow_Any_SSSE3, BGRAToUVRow_Unaligned_SSSE3, BGRAToUVRow_C, 4) UVANY(ABGRToUVRow_Any_SSSE3, ABGRToUVRow_Unaligned_SSSE3, ABGRToUVRow_C, 4) #endif #ifdef HAS_RGBATOYROW_SSSE3 UVANY(RGBAToUVRow_Any_SSSE3, RGBAToUVRow_Unaligned_SSSE3, RGBAToUVRow_C, 4) #endif #ifdef HAS_YUY2TOUVROW_SSE2 UVANY(YUY2ToUVRow_Any_SSE2, YUY2ToUVRow_Unaligned_SSE2, YUY2ToUVRow_C, 2) UVANY(UYVYToUVRow_Any_SSE2, UYVYToUVRow_Unaligned_SSE2, UYVYToUVRow_C, 2) #endif #ifdef HAS_YUY2TOUVROW_NEON UVANY(YUY2ToUVRow_Any_NEON, YUY2ToUVRow_NEON, YUY2ToUVRow_C, 2) UVANY(UYVYToUVRow_Any_NEON, UYVYToUVRow_NEON, UYVYToUVRow_C, 2) #endif #undef UVANY #define UV422ANY(NAMEANY, ANYTOUV_SSE, ANYTOUV_C, BPP) \ void NAMEANY(const uint8* src_argb, \ uint8* dst_u, uint8* dst_v, int width) { \ int n = width & ~15; \ ANYTOUV_SSE(src_argb, dst_u, dst_v, n); \ ANYTOUV_C(src_argb + n * BPP, \ dst_u + (n >> 1), \ dst_v + (n >> 1), \ width & 15); \ } #ifdef HAS_YUY2TOUV422ROW_SSE2 UV422ANY(YUY2ToUV422Row_Any_SSE2, YUY2ToUV422Row_Unaligned_SSE2, \ YUY2ToUV422Row_C, 2) UV422ANY(UYVYToUV422Row_Any_SSE2, UYVYToUV422Row_Unaligned_SSE2, \ UYVYToUV422Row_C, 2) #endif #ifdef HAS_YUY2TOUV422ROW_NEON UV422ANY(YUY2ToUV422Row_Any_NEON, YUY2ToUV422Row_NEON, \ YUY2ToUV422Row_C, 2) UV422ANY(UYVYToUV422Row_Any_NEON, UYVYToUV422Row_NEON, \ UYVYToUV422Row_C, 2) #endif #undef UV422ANY void ComputeCumulativeSumRow_C(const uint8* row, int32* cumsum, const int32* previous_cumsum, int width) { int32 row_sum[4] = {0, 0, 0, 0}; for (int x = 0; x < width; ++x) { row_sum[0] += row[x * 4 + 0]; row_sum[1] += row[x * 4 + 1]; row_sum[2] += row[x * 4 + 2]; row_sum[3] += row[x * 4 + 3]; cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0]; cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1]; cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2]; cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3]; } } void CumulativeSumToAverage_C(const int32* tl, const int32* bl, int w, int area, uint8* dst, int count) { float ooa = 1.0f / area; for (int i = 0; i < count; ++i) { dst[0] = static_cast<uint8>((bl[w + 0] + tl[0] - bl[0] - tl[w + 0]) * ooa); dst[1] = static_cast<uint8>((bl[w + 1] + tl[1] - bl[1] - tl[w + 1]) * ooa); dst[2] = static_cast<uint8>((bl[w + 2] + tl[2] - bl[2] - tl[w + 2]) * ooa); dst[3] = static_cast<uint8>((bl[w + 3] + tl[3] - bl[3] - tl[w + 3]) * ooa); dst += 4; tl += 4; bl += 4; } } #define REPEAT8(v) (v) | ((v) << 8) #define SHADE(f, v) v * f >> 24 void ARGBShadeRow_C(const uint8* src_argb, uint8* dst_argb, int width, uint32 value) { const uint32 b_scale = REPEAT8(value & 0xff); const uint32 g_scale = REPEAT8((value >> 8) & 0xff); const uint32 r_scale = REPEAT8((value >> 16) & 0xff); const uint32 a_scale = REPEAT8(value >> 24); for (int i = 0; i < width; ++i) { const uint32 b = REPEAT8(src_argb[0]); const uint32 g = REPEAT8(src_argb[1]); const uint32 r = REPEAT8(src_argb[2]); const uint32 a = REPEAT8(src_argb[3]); dst_argb[0] = SHADE(b, b_scale); dst_argb[1] = SHADE(g, g_scale); dst_argb[2] = SHADE(r, r_scale); dst_argb[3] = SHADE(a, a_scale); src_argb += 4; dst_argb += 4; } } #undef REPEAT8 #undef SHADE // Copy pixels from rotated source to destination row with a slope. LIBYUV_API void ARGBAffineRow_C(const uint8* src_argb, int src_argb_stride, uint8* dst_argb, const float* uv_dudv, int width) { // Render a row of pixels from source into a buffer. float uv[2]; uv[0] = uv_dudv[0]; uv[1] = uv_dudv[1]; for (int i = 0; i < width; ++i) { int x = static_cast<int>(uv[0]); int y = static_cast<int>(uv[1]); *reinterpret_cast<uint32*>(dst_argb) = *reinterpret_cast<const uint32*>(src_argb + y * src_argb_stride + x * 4); dst_argb += 4; uv[0] += uv_dudv[2]; uv[1] += uv_dudv[3]; } } // C version 2x2 -> 2x1. void ARGBInterpolateRow_C(uint8* dst_ptr, const uint8* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) { int y1_fraction = source_y_fraction; int y0_fraction = 256 - y1_fraction; const uint8* src_ptr1 = src_ptr + src_stride; uint8* end = dst_ptr + (dst_width << 2); do { dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8; dst_ptr[1] = (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction) >> 8; dst_ptr[2] = (src_ptr[2] * y0_fraction + src_ptr1[2] * y1_fraction) >> 8; dst_ptr[3] = (src_ptr[3] * y0_fraction + src_ptr1[3] * y1_fraction) >> 8; dst_ptr[4] = (src_ptr[4] * y0_fraction + src_ptr1[4] * y1_fraction) >> 8; dst_ptr[5] = (src_ptr[5] * y0_fraction + src_ptr1[5] * y1_fraction) >> 8; dst_ptr[6] = (src_ptr[6] * y0_fraction + src_ptr1[6] * y1_fraction) >> 8; dst_ptr[7] = (src_ptr[7] * y0_fraction + src_ptr1[7] * y1_fraction) >> 8; src_ptr += 8; src_ptr1 += 8; dst_ptr += 8; } while (dst_ptr < end); } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif