/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/convert.h" #include "libyuv/basic_types.h" #include "libyuv/cpu_id.h" #include "libyuv/format_conversion.h" #ifdef HAVE_JPEG #include "libyuv/mjpeg_decoder.h" #endif #include "libyuv/planar_functions.h" #include "libyuv/rotate.h" #include "libyuv/video_common.h" #include "libyuv/row.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif // Copy I420 with optional flipping LIBYUV_API int I420Copy(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; int halfheight = (height + 1) >> 1; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (halfheight - 1) * src_stride_u; src_v = src_v + (halfheight - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; if (dst_y) { CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); } CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); return 0; } // Move to row_win etc. #if !defined(YUV_DISABLE_ASM) && defined(_M_IX86) #define HAS_HALFROW_SSE2 __declspec(naked) __declspec(align(16)) static void HalfRow_SSE2(const uint8* src_uv, int src_uv_stride, uint8* dst_uv, int pix) { __asm { push edi mov eax, [esp + 4 + 4] // src_uv mov edx, [esp + 4 + 8] // src_uv_stride mov edi, [esp + 4 + 12] // dst_v mov ecx, [esp + 4 + 16] // pix sub edi, eax align 16 convertloop: movdqa xmm0, [eax] pavgb xmm0, [eax + edx] sub ecx, 16 movdqa [eax + edi], xmm0 lea eax, [eax + 16] jg convertloop pop edi ret } } #elif !defined(YUV_DISABLE_ASM) && (defined(__x86_64__) || defined(__i386__)) #define HAS_HALFROW_SSE2 static void HalfRow_SSE2(const uint8* src_uv, int src_uv_stride, uint8* dst_uv, int pix) { asm volatile ( "sub %0,%1 \n" ".p2align 4 \n" "1: \n" "movdqa (%0),%%xmm0 \n" "pavgb (%0,%3),%%xmm0 \n" "sub $0x10,%2 \n" "movdqa %%xmm0,(%0,%1) \n" "lea 0x10(%0),%0 \n" "jg 1b \n" : "+r"(src_uv), // %0 "+r"(dst_uv), // %1 "+r"(pix) // %2 : "r"(static_cast<intptr_t>(src_uv_stride)) // %3 : "memory", "cc" #if defined(__SSE2__) , "xmm0" #endif ); } #endif static void HalfRow_C(const uint8* src_uv, int src_uv_stride, uint8* dst_uv, int pix) { for (int x = 0; x < pix; ++x) { dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1; } } LIBYUV_API int I422ToI420(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (height - 1) * src_stride_u; src_v = src_v + (height - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } int halfwidth = (width + 1) >> 1; void (*HalfRow)(const uint8* src_uv, int src_uv_stride, uint8* dst_uv, int pix) = HalfRow_C; #if defined(HAS_HALFROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(halfwidth, 16) && IS_ALIGNED(src_u, 16) && IS_ALIGNED(src_stride_u, 16) && IS_ALIGNED(src_v, 16) && IS_ALIGNED(src_stride_v, 16) && IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) && IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) { HalfRow = HalfRow_SSE2; } #endif // Copy Y plane if (dst_y) { CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); } // SubSample U plane. int y; for (y = 0; y < height - 1; y += 2) { HalfRow(src_u, src_stride_u, dst_u, halfwidth); src_u += src_stride_u * 2; dst_u += dst_stride_u; } if (height & 1) { HalfRow(src_u, 0, dst_u, halfwidth); } // SubSample V plane. for (y = 0; y < height - 1; y += 2) { HalfRow(src_v, src_stride_v, dst_v, halfwidth); src_v += src_stride_v * 2; dst_v += dst_stride_v; } if (height & 1) { HalfRow(src_v, 0, dst_v, halfwidth); } return 0; } // Blends 32x2 pixels to 16x1 // source in scale.cc #if !defined(YUV_DISABLE_ASM) && (defined(__ARM_NEON__) || defined(LIBYUV_NEON)) #define HAS_SCALEROWDOWN2_NEON void ScaleRowDown2Int_NEON(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst, int dst_width); #elif !defined(YUV_DISABLE_ASM) && \ (defined(_M_IX86) || defined(__x86_64__) || defined(__i386__)) void ScaleRowDown2Int_SSE2(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width); #endif void ScaleRowDown2Int_C(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width); LIBYUV_API int I444ToI420(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (height - 1) * src_stride_u; src_v = src_v + (height - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } int halfwidth = (width + 1) >> 1; void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width) = ScaleRowDown2Int_C; #if defined(HAS_SCALEROWDOWN2_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(halfwidth, 16)) { ScaleRowDown2 = ScaleRowDown2Int_NEON; } #elif defined(HAS_SCALEROWDOWN2_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(halfwidth, 16) && IS_ALIGNED(src_u, 16) && IS_ALIGNED(src_stride_u, 16) && IS_ALIGNED(src_v, 16) && IS_ALIGNED(src_stride_v, 16) && IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) && IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) { ScaleRowDown2 = ScaleRowDown2Int_SSE2; } #endif // Copy Y plane if (dst_y) { CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); } // SubSample U plane. int y; for (y = 0; y < height - 1; y += 2) { ScaleRowDown2(src_u, src_stride_u, dst_u, halfwidth); src_u += src_stride_u * 2; dst_u += dst_stride_u; } if (height & 1) { ScaleRowDown2(src_u, 0, dst_u, halfwidth); } // SubSample V plane. for (y = 0; y < height - 1; y += 2) { ScaleRowDown2(src_v, src_stride_v, dst_v, halfwidth); src_v += src_stride_v * 2; dst_v += dst_stride_v; } if (height & 1) { ScaleRowDown2(src_v, 0, dst_v, halfwidth); } return 0; } // use Bilinear for upsampling chroma void ScalePlaneBilinear(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_ptr, uint8* dst_ptr); // 411 chroma is 1/4 width, 1x height // 420 chroma is 1/2 width, 1/2 height LIBYUV_API int I411ToI420(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_y = dst_y + (height - 1) * dst_stride_y; dst_u = dst_u + (height - 1) * dst_stride_u; dst_v = dst_v + (height - 1) * dst_stride_v; dst_stride_y = -dst_stride_y; dst_stride_u = -dst_stride_u; dst_stride_v = -dst_stride_v; } // Copy Y plane if (dst_y) { CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); } int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; int quarterwidth = (width + 3) >> 2; // Resample U plane. ScalePlaneBilinear(quarterwidth, height, // from 1/4 width, 1x height halfwidth, halfheight, // to 1/2 width, 1/2 height src_stride_u, dst_stride_u, src_u, dst_u); // Resample V plane. ScalePlaneBilinear(quarterwidth, height, // from 1/4 width, 1x height halfwidth, halfheight, // to 1/2 width, 1/2 height src_stride_v, dst_stride_v, src_v, dst_v); return 0; } // I400 is greyscale typically used in MJPG LIBYUV_API int I400ToI420(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); SetPlane(dst_u, dst_stride_u, halfwidth, halfheight, 128); SetPlane(dst_v, dst_stride_v, halfwidth, halfheight, 128); return 0; } static void CopyPlane2(const uint8* src, int src_stride_0, int src_stride_1, uint8* dst, int dst_stride_frame, int width, int height) { void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; #if defined(HAS_COPYROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 64)) { CopyRow = CopyRow_NEON; } #elif defined(HAS_COPYROW_X86) if (IS_ALIGNED(width, 4)) { CopyRow = CopyRow_X86; #if defined(HAS_COPYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32) && IS_ALIGNED(src, 16) && IS_ALIGNED(src_stride_0, 16) && IS_ALIGNED(src_stride_1, 16) && IS_ALIGNED(dst, 16) && IS_ALIGNED(dst_stride_frame, 16)) { CopyRow = CopyRow_SSE2; } #endif } #endif // Copy plane for (int y = 0; y < height - 1; y += 2) { CopyRow(src, dst, width); CopyRow(src + src_stride_0, dst + dst_stride_frame, width); src += src_stride_0 + src_stride_1; dst += dst_stride_frame * 2; } if (height & 1) { CopyRow(src, dst, width); } } // Support converting from FOURCC_M420 // Useful for bandwidth constrained transports like USB 1.0 and 2.0 and for // easy conversion to I420. // M420 format description: // M420 is row biplanar 420: 2 rows of Y and 1 row of UV. // Chroma is half width / half height. (420) // src_stride_m420 is row planar. Normally this will be the width in pixels. // The UV plane is half width, but 2 values, so src_stride_m420 applies to // this as well as the two Y planes. static int X420ToI420(const uint8* src_y, int src_stride_y0, int src_stride_y1, const uint8* src_uv, int src_stride_uv, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !src_uv || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; int halfheight = (height + 1) >> 1; dst_y = dst_y + (height - 1) * dst_stride_y; dst_u = dst_u + (halfheight - 1) * dst_stride_u; dst_v = dst_v + (halfheight - 1) * dst_stride_v; dst_stride_y = -dst_stride_y; dst_stride_u = -dst_stride_u; dst_stride_v = -dst_stride_v; } int halfwidth = (width + 1) >> 1; void (*SplitUV)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix) = SplitUV_C; #if defined(HAS_SPLITUV_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(halfwidth, 16)) { SplitUV = SplitUV_NEON; } #elif defined(HAS_SPLITUV_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(halfwidth, 16) && IS_ALIGNED(src_uv, 16) && IS_ALIGNED(src_stride_uv, 16) && IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) && IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) { SplitUV = SplitUV_SSE2; } #endif if (dst_y) { CopyPlane2(src_y, src_stride_y0, src_stride_y1, dst_y, dst_stride_y, width, height); } int halfheight = (height + 1) >> 1; for (int y = 0; y < halfheight; ++y) { // Copy a row of UV. SplitUV(src_uv, dst_u, dst_v, halfwidth); dst_u += dst_stride_u; dst_v += dst_stride_v; src_uv += src_stride_uv; } return 0; } // Convert NV12 to I420. LIBYUV_API int NV12ToI420(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { return X420ToI420(src_y, src_stride_y, src_stride_y, src_uv, src_stride_uv, dst_y, dst_stride_y, dst_u, dst_stride_u, dst_v, dst_stride_v, width, height); } // Convert M420 to I420. LIBYUV_API int M420ToI420(const uint8* src_m420, int src_stride_m420, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { return X420ToI420(src_m420, src_stride_m420, src_stride_m420 * 2, src_m420 + src_stride_m420 * 2, src_stride_m420 * 3, dst_y, dst_stride_y, dst_u, dst_stride_u, dst_v, dst_stride_v, width, height); } // Convert Q420 to I420. // Format is rows of YY/YUYV LIBYUV_API int Q420ToI420(const uint8* src_y, int src_stride_y, const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !src_yuy2 || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; int halfheight = (height + 1) >> 1; dst_y = dst_y + (height - 1) * dst_stride_y; dst_u = dst_u + (halfheight - 1) * dst_stride_u; dst_v = dst_v + (halfheight - 1) * dst_stride_v; dst_stride_y = -dst_stride_y; dst_stride_u = -dst_stride_u; dst_stride_v = -dst_stride_v; } // CopyRow for rows of just Y in Q420 copied to Y plane of I420. void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; #if defined(HAS_COPYROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 64)) { CopyRow = CopyRow_NEON; } #endif #if defined(HAS_COPYROW_X86) if (IS_ALIGNED(width, 4)) { CopyRow = CopyRow_X86; } #endif #if defined(HAS_COPYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32) && IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { CopyRow = CopyRow_SSE2; } #endif void (*YUY2ToUV422Row)(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v, int pix) = YUY2ToUV422Row_C; void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int pix) = YUY2ToYRow_C; #if defined(HAS_YUY2TOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2; YUY2ToYRow = YUY2ToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { YUY2ToUV422Row = YUY2ToUV422Row_Unaligned_SSE2; YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) { YUY2ToUV422Row = YUY2ToUV422Row_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { YUY2ToYRow = YUY2ToYRow_SSE2; } } } } #elif defined(HAS_YUY2TOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width > 8) { YUY2ToYRow = YUY2ToYRow_Any_NEON; if (width > 16) { YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON; } } if (IS_ALIGNED(width, 16)) { YUY2ToYRow = YUY2ToYRow_NEON; YUY2ToUV422Row = YUY2ToUV422Row_NEON; } } #endif for (int y = 0; y < height - 1; y += 2) { CopyRow(src_y, dst_y, width); src_y += src_stride_y; dst_y += dst_stride_y; YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width); YUY2ToYRow(src_yuy2, dst_y, width); src_yuy2 += src_stride_yuy2; dst_y += dst_stride_y; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { CopyRow(src_y, dst_y, width); YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width); } return 0; } // Test if over reading on source is safe. // TODO(fbarchard): Find more efficient solution to safely do odd sizes. // Macros to control read policy, from slowest to fastest: // READSAFE_NEVER - disables read ahead on systems with strict memory reads // READSAFE_ODDHEIGHT - last row of odd height done with C. // This policy assumes that the caller handles the last row of an odd height // image using C. // READSAFE_PAGE - enable read ahead within same page. // A page is 4096 bytes. When reading ahead, if the last pixel is near the // end the page, and a read spans the page into the next page, a memory // exception can occur if that page has not been allocated, or is a guard // page. This setting ensures the overread is within the same page. // READSAFE_ALWAYS - enables read ahead on systems without memory exceptions // or where buffers are padded by 64 bytes. #if defined(HAS_RGB24TOARGBROW_SSSE3) || \ defined(HAS_RGB24TOARGBROW_SSSE3) || \ defined(HAS_RAWTOARGBROW_SSSE3) || \ defined(HAS_RGB565TOARGBROW_SSE2) || \ defined(HAS_ARGB1555TOARGBROW_SSE2) || \ defined(HAS_ARGB4444TOARGBROW_SSE2) #define READSAFE_ODDHEIGHT static bool TestReadSafe(const uint8* src_yuy2, int src_stride_yuy2, int width, int height, int bpp, int overread) { if (width > kMaxStride) { return false; } #if defined(READSAFE_ALWAYS) return true; #elif defined(READSAFE_NEVER) return false; #elif defined(READSAFE_ODDHEIGHT) if (!(width & 15) || (src_stride_yuy2 >= 0 && (height & 1) && width * bpp >= overread)) { return true; } return false; #elif defined(READSAFE_PAGE) if (src_stride_yuy2 >= 0) { src_yuy2 += (height - 1) * src_stride_yuy2; } uintptr_t last_adr = (uintptr_t)(src_yuy2) + width * bpp - 1; uintptr_t last_read_adr = last_adr + overread - 1; if (((last_adr ^ last_read_adr) & ~4095) == 0) { return true; } return false; #endif } #endif // Convert YUY2 to I420. LIBYUV_API int YUY2ToI420(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; src_stride_yuy2 = -src_stride_yuy2; } void (*YUY2ToUVRow)(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_u, uint8* dst_v, int pix); void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int pix); YUY2ToYRow = YUY2ToYRow_C; YUY2ToUVRow = YUY2ToUVRow_C; #if defined(HAS_YUY2TOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { YUY2ToUVRow = YUY2ToUVRow_Any_SSE2; YUY2ToYRow = YUY2ToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { YUY2ToUVRow = YUY2ToUVRow_Unaligned_SSE2; YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) { YUY2ToUVRow = YUY2ToUVRow_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { YUY2ToYRow = YUY2ToYRow_SSE2; } } } } #elif defined(HAS_YUY2TOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width > 8) { YUY2ToYRow = YUY2ToYRow_Any_NEON; if (width > 16) { YUY2ToUVRow = YUY2ToUVRow_Any_NEON; } } if (IS_ALIGNED(width, 16)) { YUY2ToYRow = YUY2ToYRow_NEON; YUY2ToUVRow = YUY2ToUVRow_NEON; } } #endif for (int y = 0; y < height - 1; y += 2) { YUY2ToUVRow(src_yuy2, src_stride_yuy2, dst_u, dst_v, width); YUY2ToYRow(src_yuy2, dst_y, width); YUY2ToYRow(src_yuy2 + src_stride_yuy2, dst_y + dst_stride_y, width); src_yuy2 += src_stride_yuy2 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { YUY2ToUVRow(src_yuy2, 0, dst_u, dst_v, width); YUY2ToYRow(src_yuy2, dst_y, width); } return 0; } // Convert UYVY to I420. LIBYUV_API int UYVYToI420(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; src_stride_uyvy = -src_stride_uyvy; } void (*UYVYToUVRow)(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_u, uint8* dst_v, int pix); void (*UYVYToYRow)(const uint8* src_uyvy, uint8* dst_y, int pix); UYVYToYRow = UYVYToYRow_C; UYVYToUVRow = UYVYToUVRow_C; #if defined(HAS_UYVYTOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { UYVYToUVRow = UYVYToUVRow_Any_SSE2; UYVYToYRow = UYVYToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { UYVYToUVRow = UYVYToUVRow_Unaligned_SSE2; UYVYToYRow = UYVYToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16)) { UYVYToUVRow = UYVYToUVRow_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { UYVYToYRow = UYVYToYRow_SSE2; } } } } #elif defined(HAS_UYVYTOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width > 8) { UYVYToYRow = UYVYToYRow_Any_NEON; if (width > 16) { UYVYToUVRow = UYVYToUVRow_Any_NEON; } } if (IS_ALIGNED(width, 16)) { UYVYToYRow = UYVYToYRow_NEON; UYVYToUVRow = UYVYToUVRow_NEON; } } #endif for (int y = 0; y < height - 1; y += 2) { UYVYToUVRow(src_uyvy, src_stride_uyvy, dst_u, dst_v, width); UYVYToYRow(src_uyvy, dst_y, width); UYVYToYRow(src_uyvy + src_stride_uyvy, dst_y + dst_stride_y, width); src_uyvy += src_stride_uyvy * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { UYVYToUVRow(src_uyvy, 0, dst_u, dst_v, width); UYVYToYRow(src_uyvy, dst_y, width); } return 0; } // Visual C x86 or GCC little endian. #if defined(__x86_64__) || defined(_M_X64) || \ defined(__i386__) || defined(_M_IX86) || \ defined(__arm__) || defined(_M_ARM) || \ (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) #define LIBYUV_LITTLE_ENDIAN #endif #ifdef LIBYUV_LITTLE_ENDIAN #define READWORD(p) (*reinterpret_cast<const uint32*>(p)) #else static inline uint32 READWORD(const uint8* p) { return static_cast<uint32>(p[0]) | (static_cast<uint32>(p[1]) << 8) | (static_cast<uint32>(p[2]) << 16) | (static_cast<uint32>(p[3]) << 24); } #endif // Must be multiple of 6 pixels. Will over convert to handle remainder. // https://developer.apple.com/quicktime/icefloe/dispatch019.html#v210 static void V210ToUYVYRow_C(const uint8* src_v210, uint8* dst_uyvy, int width) { for (int x = 0; x < width; x += 6) { uint32 w = READWORD(src_v210 + 0); dst_uyvy[0] = (w >> 2) & 0xff; dst_uyvy[1] = (w >> 12) & 0xff; dst_uyvy[2] = (w >> 22) & 0xff; w = READWORD(src_v210 + 4); dst_uyvy[3] = (w >> 2) & 0xff; dst_uyvy[4] = (w >> 12) & 0xff; dst_uyvy[5] = (w >> 22) & 0xff; w = READWORD(src_v210 + 8); dst_uyvy[6] = (w >> 2) & 0xff; dst_uyvy[7] = (w >> 12) & 0xff; dst_uyvy[8] = (w >> 22) & 0xff; w = READWORD(src_v210 + 12); dst_uyvy[9] = (w >> 2) & 0xff; dst_uyvy[10] = (w >> 12) & 0xff; dst_uyvy[11] = (w >> 22) & 0xff; src_v210 += 16; dst_uyvy += 12; } } // Convert V210 to I420. // V210 is 10 bit version of UYVY. 16 bytes to store 6 pixels. // With is multiple of 48. LIBYUV_API int V210ToI420(const uint8* src_v210, int src_stride_v210, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 2 * 2 > kMaxStride) { // 2 rows of UYVY are required. return -1; } else if (!src_v210 || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_v210 = src_v210 + (height - 1) * src_stride_v210; src_stride_v210 = -src_stride_v210; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*V210ToUYVYRow)(const uint8* src_v210, uint8* dst_uyvy, int pix); V210ToUYVYRow = V210ToUYVYRow_C; void (*UYVYToUVRow)(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_u, uint8* dst_v, int pix); void (*UYVYToYRow)(const uint8* src_uyvy, uint8* dst_y, int pix); UYVYToYRow = UYVYToYRow_C; UYVYToUVRow = UYVYToUVRow_C; #if defined(HAS_UYVYTOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16)) { UYVYToUVRow = UYVYToUVRow_SSE2; UYVYToYRow = UYVYToYRow_Unaligned_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { UYVYToYRow = UYVYToYRow_SSE2; } } #elif defined(HAS_UYVYTOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width > 8) { UYVYToYRow = UYVYToYRow_Any_NEON; if (width > 16) { UYVYToUVRow = UYVYToUVRow_Any_NEON; } } if (IS_ALIGNED(width, 16)) { UYVYToYRow = UYVYToYRow_NEON; UYVYToUVRow = UYVYToUVRow_NEON; } } #endif #if defined(HAS_UYVYTOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { UYVYToUVRow = UYVYToUVRow_Any_SSE2; UYVYToYRow = UYVYToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { UYVYToYRow = UYVYToYRow_Unaligned_SSE2; UYVYToUVRow = UYVYToUVRow_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { UYVYToYRow = UYVYToYRow_SSE2; } } } #elif defined(HAS_UYVYTOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (width > 8) { UYVYToYRow = UYVYToYRow_Any_NEON; if (width > 16) { UYVYToUVRow = UYVYToUVRow_Any_NEON; } } if (IS_ALIGNED(width, 16)) { UYVYToYRow = UYVYToYRow_NEON; UYVYToUVRow = UYVYToUVRow_NEON; } } #endif for (int y = 0; y < height - 1; y += 2) { V210ToUYVYRow(src_v210, row, width); V210ToUYVYRow(src_v210 + src_stride_v210, row + kMaxStride, width); UYVYToUVRow(row, kMaxStride, dst_u, dst_v, width); UYVYToYRow(row, dst_y, width); UYVYToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_v210 += src_stride_v210 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { V210ToUYVYRow(src_v210, row, width); UYVYToUVRow(row, 0, dst_u, dst_v, width); UYVYToYRow(row, dst_y, width); } return 0; } LIBYUV_API int ARGBToI420(const uint8* src_argb, int src_stride_argb, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_argb || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; ARGBToYRow = ARGBToYRow_Any_SSSE3; } if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_Unaligned_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } } #endif for (int y = 0; y < height - 1; y += 2) { ARGBToUVRow(src_argb, src_stride_argb, dst_u, dst_v, width); ARGBToYRow(src_argb, dst_y, width); ARGBToYRow(src_argb + src_stride_argb, dst_y + dst_stride_y, width); src_argb += src_stride_argb * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGBToUVRow(src_argb, 0, dst_u, dst_v, width); ARGBToYRow(src_argb, dst_y, width); } return 0; } LIBYUV_API int BGRAToI420(const uint8* src_bgra, int src_stride_bgra, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_bgra || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_bgra = src_bgra + (height - 1) * src_stride_bgra; src_stride_bgra = -src_stride_bgra; } void (*BGRAToYRow)(const uint8* src_bgra, uint8* dst_y, int pix); void (*BGRAToUVRow)(const uint8* src_bgra0, int src_stride_bgra, uint8* dst_u, uint8* dst_v, int width); BGRAToYRow = BGRAToYRow_C; BGRAToUVRow = BGRAToUVRow_C; #if defined(HAS_BGRATOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { BGRAToUVRow = BGRAToUVRow_Any_SSSE3; BGRAToYRow = BGRAToYRow_Any_SSSE3; } if (IS_ALIGNED(width, 16)) { BGRAToUVRow = BGRAToUVRow_Unaligned_SSSE3; BGRAToYRow = BGRAToYRow_Unaligned_SSSE3; if (IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16)) { BGRAToUVRow = BGRAToUVRow_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { BGRAToYRow = BGRAToYRow_SSSE3; } } } } #endif for (int y = 0; y < height - 1; y += 2) { BGRAToUVRow(src_bgra, src_stride_bgra, dst_u, dst_v, width); BGRAToYRow(src_bgra, dst_y, width); BGRAToYRow(src_bgra + src_stride_bgra, dst_y + dst_stride_y, width); src_bgra += src_stride_bgra * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { BGRAToUVRow(src_bgra, 0, dst_u, dst_v, width); BGRAToYRow(src_bgra, dst_y, width); } return 0; } LIBYUV_API int ABGRToI420(const uint8* src_abgr, int src_stride_abgr, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_abgr || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_abgr = src_abgr + (height - 1) * src_stride_abgr; src_stride_abgr = -src_stride_abgr; } void (*ABGRToYRow)(const uint8* src_abgr, uint8* dst_y, int pix); void (*ABGRToUVRow)(const uint8* src_abgr0, int src_stride_abgr, uint8* dst_u, uint8* dst_v, int width); ABGRToYRow = ABGRToYRow_C; ABGRToUVRow = ABGRToUVRow_C; #if defined(HAS_ABGRTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ABGRToUVRow = ABGRToUVRow_Any_SSSE3; ABGRToYRow = ABGRToYRow_Any_SSSE3; } if (IS_ALIGNED(width, 16)) { ABGRToUVRow = ABGRToUVRow_Unaligned_SSSE3; ABGRToYRow = ABGRToYRow_Unaligned_SSSE3; if (IS_ALIGNED(src_abgr, 16) && IS_ALIGNED(src_stride_abgr, 16)) { ABGRToUVRow = ABGRToUVRow_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ABGRToYRow = ABGRToYRow_SSSE3; } } } } #endif for (int y = 0; y < height - 1; y += 2) { ABGRToUVRow(src_abgr, src_stride_abgr, dst_u, dst_v, width); ABGRToYRow(src_abgr, dst_y, width); ABGRToYRow(src_abgr + src_stride_abgr, dst_y + dst_stride_y, width); src_abgr += src_stride_abgr * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ABGRToUVRow(src_abgr, 0, dst_u, dst_v, width); ABGRToYRow(src_abgr, dst_y, width); } return 0; } LIBYUV_API int RGBAToI420(const uint8* src_rgba, int src_stride_rgba, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_rgba || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_rgba = src_rgba + (height - 1) * src_stride_rgba; src_stride_rgba = -src_stride_rgba; } void (*RGBAToYRow)(const uint8* src_rgba, uint8* dst_y, int pix); void (*RGBAToUVRow)(const uint8* src_rgba0, int src_stride_rgba, uint8* dst_u, uint8* dst_v, int width); RGBAToYRow = RGBAToYRow_C; RGBAToUVRow = RGBAToUVRow_C; #if defined(HAS_RGBATOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { RGBAToUVRow = RGBAToUVRow_Any_SSSE3; RGBAToYRow = RGBAToYRow_Any_SSSE3; } if (IS_ALIGNED(width, 16)) { RGBAToUVRow = RGBAToUVRow_Unaligned_SSSE3; RGBAToYRow = RGBAToYRow_Unaligned_SSSE3; if (IS_ALIGNED(src_rgba, 16) && IS_ALIGNED(src_stride_rgba, 16)) { RGBAToUVRow = RGBAToUVRow_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { RGBAToYRow = RGBAToYRow_SSSE3; } } } } #endif for (int y = 0; y < height - 1; y += 2) { RGBAToUVRow(src_rgba, src_stride_rgba, dst_u, dst_v, width); RGBAToYRow(src_rgba, dst_y, width); RGBAToYRow(src_rgba + src_stride_rgba, dst_y + dst_stride_y, width); src_rgba += src_stride_rgba * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { RGBAToUVRow(src_rgba, 0, dst_u, dst_v, width); RGBAToYRow(src_rgba, dst_y, width); } return 0; } LIBYUV_API int RGB24ToI420(const uint8* src_rgb24, int src_stride_rgb24, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // Row buffer is required. return -1; } else if (!src_rgb24 || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24; src_stride_rgb24 = -src_stride_rgb24; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*RGB24ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); RGB24ToARGBRow = RGB24ToARGBRow_C; #if defined(HAS_RGB24TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && TestReadSafe(src_rgb24, src_stride_rgb24, width, height, 3, 48)) { RGB24ToARGBRow = RGB24ToARGBRow_SSSE3; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { RGB24ToARGBRow(src_rgb24, row, width); RGB24ToARGBRow(src_rgb24 + src_stride_rgb24, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_rgb24 += src_stride_rgb24 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { RGB24ToARGBRow_C(src_rgb24, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } LIBYUV_API int RAWToI420(const uint8* src_raw, int src_stride_raw, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // Row buffer is required. return -1; } else if (!src_raw || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_raw = src_raw + (height - 1) * src_stride_raw; src_stride_raw = -src_stride_raw; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*RAWToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); RAWToARGBRow = RAWToARGBRow_C; #if defined(HAS_RAWTOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && TestReadSafe(src_raw, src_stride_raw, width, height, 3, 48)) { RAWToARGBRow = RAWToARGBRow_SSSE3; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { RAWToARGBRow(src_raw, row, width); RAWToARGBRow(src_raw + src_stride_raw, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_raw += src_stride_raw * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { RAWToARGBRow_C(src_raw, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } LIBYUV_API int RGB565ToI420(const uint8* src_rgb565, int src_stride_rgb565, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // Row buffer is required. return -1; } else if (!src_rgb565 || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_rgb565 = src_rgb565 + (height - 1) * src_stride_rgb565; src_stride_rgb565 = -src_stride_rgb565; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*RGB565ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); RGB565ToARGBRow = RGB565ToARGBRow_C; #if defined(HAS_RGB565TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && TestReadSafe(src_rgb565, src_stride_rgb565, width, height, 2, 16)) { RGB565ToARGBRow = RGB565ToARGBRow_SSE2; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { RGB565ToARGBRow(src_rgb565, row, width); RGB565ToARGBRow(src_rgb565 + src_stride_rgb565, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_rgb565 += src_stride_rgb565 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { RGB565ToARGBRow_C(src_rgb565, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } LIBYUV_API int ARGB1555ToI420(const uint8* src_argb1555, int src_stride_argb1555, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // Row buffer is required. return -1; } else if (!src_argb1555 || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb1555 = src_argb1555 + (height - 1) * src_stride_argb1555; src_stride_argb1555 = -src_stride_argb1555; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*ARGB1555ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); ARGB1555ToARGBRow = ARGB1555ToARGBRow_C; #if defined(HAS_ARGB1555TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && TestReadSafe(src_argb1555, src_stride_argb1555, width, height, 2, 16)) { ARGB1555ToARGBRow = ARGB1555ToARGBRow_SSE2; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { ARGB1555ToARGBRow(src_argb1555, row, width); ARGB1555ToARGBRow(src_argb1555 + src_stride_argb1555, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_argb1555 += src_stride_argb1555 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGB1555ToARGBRow_C(src_argb1555, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } LIBYUV_API int ARGB4444ToI420(const uint8* src_argb4444, int src_stride_argb4444, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // Row buffer is required. return -1; } else if (!src_argb4444 || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb4444 = src_argb4444 + (height - 1) * src_stride_argb4444; src_stride_argb4444 = -src_stride_argb4444; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*ARGB4444ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); ARGB4444ToARGBRow = ARGB4444ToARGBRow_C; #if defined(HAS_ARGB4444TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && TestReadSafe(src_argb4444, src_stride_argb4444, width, height, 2, 16)) { ARGB4444ToARGBRow = ARGB4444ToARGBRow_SSE2; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { ARGB4444ToARGBRow(src_argb4444, row, width); ARGB4444ToARGBRow(src_argb4444 + src_stride_argb4444, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_argb4444 += src_stride_argb4444 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGB4444ToARGBRow_C(src_argb4444, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } #ifdef HAVE_JPEG struct I420Buffers { uint8* y; int y_stride; uint8* u; int u_stride; uint8* v; int v_stride; int w; int h; }; static void JpegCopyI420(void* opaque, const uint8* const* data, const int* strides, int rows) { I420Buffers* dest = static_cast<I420Buffers*>(opaque); I420Copy(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->y, dest->y_stride, dest->u, dest->u_stride, dest->v, dest->v_stride, dest->w, rows); dest->y += rows * dest->y_stride; dest->u += ((rows + 1) >> 1) * dest->u_stride; dest->v += ((rows + 1) >> 1) * dest->v_stride; dest->h -= rows; } static void JpegI422ToI420(void* opaque, const uint8* const* data, const int* strides, int rows) { I420Buffers* dest = static_cast<I420Buffers*>(opaque); I422ToI420(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->y, dest->y_stride, dest->u, dest->u_stride, dest->v, dest->v_stride, dest->w, rows); dest->y += rows * dest->y_stride; dest->u += ((rows + 1) >> 1) * dest->u_stride; dest->v += ((rows + 1) >> 1) * dest->v_stride; dest->h -= rows; } static void JpegI444ToI420(void* opaque, const uint8* const* data, const int* strides, int rows) { I420Buffers* dest = static_cast<I420Buffers*>(opaque); I444ToI420(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->y, dest->y_stride, dest->u, dest->u_stride, dest->v, dest->v_stride, dest->w, rows); dest->y += rows * dest->y_stride; dest->u += ((rows + 1) >> 1) * dest->u_stride; dest->v += ((rows + 1) >> 1) * dest->v_stride; dest->h -= rows; } static void JpegI411ToI420(void* opaque, const uint8* const* data, const int* strides, int rows) { I420Buffers* dest = static_cast<I420Buffers*>(opaque); I411ToI420(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->y, dest->y_stride, dest->u, dest->u_stride, dest->v, dest->v_stride, dest->w, rows); dest->y += rows * dest->y_stride; dest->u += ((rows + 1) >> 1) * dest->u_stride; dest->v += ((rows + 1) >> 1) * dest->v_stride; dest->h -= rows; } static void JpegI400ToI420(void* opaque, const uint8* const* data, const int* strides, int rows) { I420Buffers* dest = static_cast<I420Buffers*>(opaque); I400ToI420(data[0], strides[0], dest->y, dest->y_stride, dest->u, dest->u_stride, dest->v, dest->v_stride, dest->w, rows); dest->y += rows * dest->y_stride; dest->u += ((rows + 1) >> 1) * dest->u_stride; dest->v += ((rows + 1) >> 1) * dest->v_stride; dest->h -= rows; } // MJPG (Motion JPeg) to I420 // TODO(fbarchard): review w and h requirement. dw and dh may be enough. LIBYUV_API int MJPGToI420(const uint8* sample, size_t sample_size, uint8* y, int y_stride, uint8* u, int u_stride, uint8* v, int v_stride, int w, int h, int dw, int dh) { if (sample_size == kUnknownDataSize) { // ERROR: MJPEG frame size unknown return -1; } // TODO(fbarchard): Port to C MJpegDecoder mjpeg_decoder; bool ret = mjpeg_decoder.LoadFrame(sample, sample_size); if (ret && (mjpeg_decoder.GetWidth() != w || mjpeg_decoder.GetHeight() != h)) { // ERROR: MJPEG frame has unexpected dimensions mjpeg_decoder.UnloadFrame(); return 1; // runtime failure } if (ret) { I420Buffers bufs = { y, y_stride, u, u_stride, v, v_stride, dw, dh }; // YUV420 if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 2 && mjpeg_decoder.GetHorizSampFactor(0) == 2 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegCopyI420, &bufs, dw, dh); // YUV422 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 2 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI422ToI420, &bufs, dw, dh); // YUV444 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 1 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI444ToI420, &bufs, dw, dh); // YUV411 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 4 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI411ToI420, &bufs, dw, dh); // YUV400 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceGrayscale && mjpeg_decoder.GetNumComponents() == 1 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI400ToI420, &bufs, dw, dh); } else { // TODO(fbarchard): Implement conversion for any other colorspace/sample // factors that occur in practice. 411 is supported by libjpeg // ERROR: Unable to convert MJPEG frame because format is not supported mjpeg_decoder.UnloadFrame(); return 1; } } return 0; } #endif // Convert camera sample to I420 with cropping, rotation and vertical flip. // src_width is used for source stride computation // src_height is used to compute location of planes, and indicate inversion // sample_size is measured in bytes and is the size of the frame. // With MJPEG it is the compressed size of the frame. LIBYUV_API int ConvertToI420(const uint8* sample, #ifdef HAVE_JPEG size_t sample_size, #else size_t /* sample_size */, #endif uint8* y, int y_stride, uint8* u, int u_stride, uint8* v, int v_stride, int crop_x, int crop_y, int src_width, int src_height, int dst_width, int dst_height, RotationMode rotation, uint32 format) { if (!y || !u || !v || !sample || src_width <= 0 || dst_width <= 0 || src_height == 0 || dst_height == 0) { return -1; } int aligned_src_width = (src_width + 1) & ~1; const uint8* src; const uint8* src_uv; int abs_src_height = (src_height < 0) ? -src_height : src_height; int inv_dst_height = (dst_height < 0) ? -dst_height : dst_height; if (src_height < 0) { inv_dst_height = -inv_dst_height; } int r = 0; // One pass rotation is available for some formats. For the rest, convert // to I420 (with optional vertical flipping) into a temporary I420 buffer, // and then rotate the I420 to the final destination buffer. // For in-place conversion, if destination y is same as source sample, // also enable temporary buffer. bool need_buf = (rotation && format != FOURCC_I420 && format != FOURCC_NV12 && format != FOURCC_NV21 && format != FOURCC_YU12 && format != FOURCC_YV12) || y == sample; uint8* tmp_y = y; uint8* tmp_u = u; uint8* tmp_v = v; int tmp_y_stride = y_stride; int tmp_u_stride = u_stride; int tmp_v_stride = v_stride; uint8* buf = NULL; int abs_dst_height = (dst_height < 0) ? -dst_height : dst_height; if (need_buf) { int y_size = dst_width * abs_dst_height; int uv_size = ((dst_width + 1) / 2) * ((abs_dst_height + 1) / 2); buf = new uint8[y_size + uv_size * 2]; if (!buf) { return 1; // Out of memory runtime error. } y = buf; u = y + y_size; v = u + uv_size; y_stride = dst_width; u_stride = v_stride = ((dst_width + 1) / 2); } switch (format) { // Single plane formats case FOURCC_YUY2: src = sample + (aligned_src_width * crop_y + crop_x) * 2; r = YUY2ToI420(src, aligned_src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_UYVY: src = sample + (aligned_src_width * crop_y + crop_x) * 2; r = UYVYToI420(src, aligned_src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_V210: // stride is multiple of 48 pixels (128 bytes). // pixels come in groups of 6 = 16 bytes src = sample + (aligned_src_width + 47) / 48 * 128 * crop_y + crop_x / 6 * 16; r = V210ToI420(src, (aligned_src_width + 47) / 48 * 128, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_24BG: src = sample + (src_width * crop_y + crop_x) * 3; r = RGB24ToI420(src, src_width * 3, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_RAW: src = sample + (src_width * crop_y + crop_x) * 3; r = RAWToI420(src, src_width * 3, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_ARGB: src = sample + (src_width * crop_y + crop_x) * 4; r = ARGBToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_BGRA: src = sample + (src_width * crop_y + crop_x) * 4; r = BGRAToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_ABGR: src = sample + (src_width * crop_y + crop_x) * 4; r = ABGRToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_RGBA: src = sample + (src_width * crop_y + crop_x) * 4; r = RGBAToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_RGBP: src = sample + (src_width * crop_y + crop_x) * 2; r = RGB565ToI420(src, src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_RGBO: src = sample + (src_width * crop_y + crop_x) * 2; r = ARGB1555ToI420(src, src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_R444: src = sample + (src_width * crop_y + crop_x) * 2; r = ARGB4444ToI420(src, src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // TODO(fbarchard): Support cropping Bayer by odd numbers // by adjusting fourcc. case FOURCC_BGGR: src = sample + (src_width * crop_y + crop_x); r = BayerBGGRToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_GBRG: src = sample + (src_width * crop_y + crop_x); r = BayerGBRGToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_GRBG: src = sample + (src_width * crop_y + crop_x); r = BayerGRBGToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_RGGB: src = sample + (src_width * crop_y + crop_x); r = BayerRGGBToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_I400: src = sample + src_width * crop_y + crop_x; r = I400ToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // Biplanar formats case FOURCC_NV12: src = sample + (src_width * crop_y + crop_x); src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; r = NV12ToI420Rotate(src, src_width, src_uv, aligned_src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height, rotation); break; case FOURCC_NV21: src = sample + (src_width * crop_y + crop_x); src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; // Call NV12 but with u and v parameters swapped. r = NV12ToI420Rotate(src, src_width, src_uv, aligned_src_width, y, y_stride, v, v_stride, u, u_stride, dst_width, inv_dst_height, rotation); break; case FOURCC_M420: src = sample + (src_width * crop_y) * 12 / 8 + crop_x; r = M420ToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_Q420: src = sample + (src_width + aligned_src_width * 2) * crop_y + crop_x; src_uv = sample + (src_width + aligned_src_width * 2) * crop_y + src_width + crop_x * 2; r = Q420ToI420(src, src_width * 3, src_uv, src_width * 3, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // Triplanar formats case FOURCC_I420: case FOURCC_YU12: case FOURCC_YV12: { const uint8* src_y = sample + (src_width * crop_y + crop_x); const uint8* src_u; const uint8* src_v; int halfwidth = (src_width + 1) / 2; int halfheight = (abs_src_height + 1) / 2; if (format == FOURCC_YV12) { src_v = sample + src_width * abs_src_height + (halfwidth * crop_y + crop_x) / 2; src_u = sample + src_width * abs_src_height + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; } else { src_u = sample + src_width * abs_src_height + (halfwidth * crop_y + crop_x) / 2; src_v = sample + src_width * abs_src_height + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; } r = I420Rotate(src_y, src_width, src_u, halfwidth, src_v, halfwidth, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height, rotation); break; } case FOURCC_I422: case FOURCC_YV16: { const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u; const uint8* src_v; int halfwidth = (src_width + 1) / 2; if (format == FOURCC_YV16) { src_v = sample + src_width * abs_src_height + halfwidth * crop_y + crop_x / 2; src_u = sample + src_width * abs_src_height + halfwidth * (abs_src_height + crop_y) + crop_x / 2; } else { src_u = sample + src_width * abs_src_height + halfwidth * crop_y + crop_x / 2; src_v = sample + src_width * abs_src_height + halfwidth * (abs_src_height + crop_y) + crop_x / 2; } r = I422ToI420(src_y, src_width, src_u, halfwidth, src_v, halfwidth, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; } case FOURCC_I444: case FOURCC_YV24: { const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u; const uint8* src_v; if (format == FOURCC_YV24) { src_v = sample + src_width * (abs_src_height + crop_y) + crop_x; src_u = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; } else { src_u = sample + src_width * (abs_src_height + crop_y) + crop_x; src_v = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; } r = I444ToI420(src_y, src_width, src_u, src_width, src_v, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; } case FOURCC_I411: { int quarterwidth = (src_width + 3) / 4; const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u = sample + src_width * abs_src_height + quarterwidth * crop_y + crop_x / 4; const uint8* src_v = sample + src_width * abs_src_height + quarterwidth * (abs_src_height + crop_y) + crop_x / 4; r = I411ToI420(src_y, src_width, src_u, quarterwidth, src_v, quarterwidth, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; } #ifdef HAVE_JPEG case FOURCC_MJPG: r = MJPGToI420(sample, sample_size, y, y_stride, u, u_stride, v, v_stride, src_width, abs_src_height, dst_width, inv_dst_height); break; #endif default: r = -1; // unknown fourcc - return failure code. } if (need_buf) { if (!r) { r = I420Rotate(y, y_stride, u, u_stride, v, v_stride, tmp_y, tmp_y_stride, tmp_u, tmp_u_stride, tmp_v, tmp_v_stride, dst_width, abs_dst_height, rotation); } delete buf; } return r; } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif