/* * hash.c: chained hash tables * * Reference: Your favorite introductory book on algorithms * * Copyright (C) 2000,2012 Bjorn Reese and Daniel Veillard. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER. * * Author: breese@users.sourceforge.net */ #define IN_LIBXML #include "libxml.h" #include <string.h> #ifdef HAVE_STDLIB_H #include <stdlib.h> #endif #ifdef HAVE_TIME_H #include <time.h> #endif /* * Following http://www.ocert.org/advisories/ocert-2011-003.html * it seems that having hash randomization might be a good idea * when using XML with untrusted data */ #if defined(HAVE_RAND) && defined(HAVE_SRAND) && defined(HAVE_TIME) #define HASH_RANDOMIZATION #endif #include <libxml/parser.h> #include <libxml/hash.h> #include <libxml/xmlmemory.h> #include <libxml/xmlerror.h> #include <libxml/globals.h> #define MAX_HASH_LEN 8 /* #define DEBUG_GROW */ /* * A single entry in the hash table */ typedef struct _xmlHashEntry xmlHashEntry; typedef xmlHashEntry *xmlHashEntryPtr; struct _xmlHashEntry { struct _xmlHashEntry *next; xmlChar *name; xmlChar *name2; xmlChar *name3; void *payload; int valid; }; /* * The entire hash table */ struct _xmlHashTable { struct _xmlHashEntry *table; int size; int nbElems; xmlDictPtr dict; #ifdef HASH_RANDOMIZATION int random_seed; #endif }; /* * xmlHashComputeKey: * Calculate the hash key */ static unsigned long xmlHashComputeKey(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, const xmlChar *name3) { unsigned long value = 0L; char ch; #ifdef HASH_RANDOMIZATION value = table->random_seed; #endif if (name != NULL) { value += 30 * (*name); while ((ch = *name++) != 0) { value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); } } value = value ^ ((value << 5) + (value >> 3)); if (name2 != NULL) { while ((ch = *name2++) != 0) { value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); } } value = value ^ ((value << 5) + (value >> 3)); if (name3 != NULL) { while ((ch = *name3++) != 0) { value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); } } return (value % table->size); } static unsigned long xmlHashComputeQKey(xmlHashTablePtr table, const xmlChar *prefix, const xmlChar *name, const xmlChar *prefix2, const xmlChar *name2, const xmlChar *prefix3, const xmlChar *name3) { unsigned long value = 0L; char ch; #ifdef HASH_RANDOMIZATION value = table->random_seed; #endif if (prefix != NULL) value += 30 * (*prefix); else value += 30 * (*name); if (prefix != NULL) { while ((ch = *prefix++) != 0) { value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); } value = value ^ ((value << 5) + (value >> 3) + (unsigned long)':'); } if (name != NULL) { while ((ch = *name++) != 0) { value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); } } value = value ^ ((value << 5) + (value >> 3)); if (prefix2 != NULL) { while ((ch = *prefix2++) != 0) { value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); } value = value ^ ((value << 5) + (value >> 3) + (unsigned long)':'); } if (name2 != NULL) { while ((ch = *name2++) != 0) { value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); } } value = value ^ ((value << 5) + (value >> 3)); if (prefix3 != NULL) { while ((ch = *prefix3++) != 0) { value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); } value = value ^ ((value << 5) + (value >> 3) + (unsigned long)':'); } if (name3 != NULL) { while ((ch = *name3++) != 0) { value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); } } return (value % table->size); } /** * xmlHashCreate: * @size: the size of the hash table * * Create a new xmlHashTablePtr. * * Returns the newly created object, or NULL if an error occured. */ xmlHashTablePtr xmlHashCreate(int size) { xmlHashTablePtr table; if (size <= 0) size = 256; table = xmlMalloc(sizeof(xmlHashTable)); if (table) { table->dict = NULL; table->size = size; table->nbElems = 0; table->table = xmlMalloc(size * sizeof(xmlHashEntry)); if (table->table) { memset(table->table, 0, size * sizeof(xmlHashEntry)); #ifdef HASH_RANDOMIZATION table->random_seed = __xmlRandom(); #endif return(table); } xmlFree(table); } return(NULL); } /** * xmlHashCreateDict: * @size: the size of the hash table * @dict: a dictionary to use for the hash * * Create a new xmlHashTablePtr which will use @dict as the internal dictionary * * Returns the newly created object, or NULL if an error occured. */ xmlHashTablePtr xmlHashCreateDict(int size, xmlDictPtr dict) { xmlHashTablePtr table; table = xmlHashCreate(size); if (table != NULL) { table->dict = dict; xmlDictReference(dict); } return(table); } /** * xmlHashGrow: * @table: the hash table * @size: the new size of the hash table * * resize the hash table * * Returns 0 in case of success, -1 in case of failure */ static int xmlHashGrow(xmlHashTablePtr table, int size) { unsigned long key; int oldsize, i; xmlHashEntryPtr iter, next; struct _xmlHashEntry *oldtable; #ifdef DEBUG_GROW unsigned long nbElem = 0; #endif if (table == NULL) return(-1); if (size < 8) return(-1); if (size > 8 * 2048) return(-1); oldsize = table->size; oldtable = table->table; if (oldtable == NULL) return(-1); table->table = xmlMalloc(size * sizeof(xmlHashEntry)); if (table->table == NULL) { table->table = oldtable; return(-1); } memset(table->table, 0, size * sizeof(xmlHashEntry)); table->size = size; /* If the two loops are merged, there would be situations where a new entry needs to allocated and data copied into it from the main table. So instead, we run through the array twice, first copying all the elements in the main array (where we can't get conflicts) and then the rest, so we only free (and don't allocate) */ for (i = 0; i < oldsize; i++) { if (oldtable[i].valid == 0) continue; key = xmlHashComputeKey(table, oldtable[i].name, oldtable[i].name2, oldtable[i].name3); memcpy(&(table->table[key]), &(oldtable[i]), sizeof(xmlHashEntry)); table->table[key].next = NULL; } for (i = 0; i < oldsize; i++) { iter = oldtable[i].next; while (iter) { next = iter->next; /* * put back the entry in the new table */ key = xmlHashComputeKey(table, iter->name, iter->name2, iter->name3); if (table->table[key].valid == 0) { memcpy(&(table->table[key]), iter, sizeof(xmlHashEntry)); table->table[key].next = NULL; xmlFree(iter); } else { iter->next = table->table[key].next; table->table[key].next = iter; } #ifdef DEBUG_GROW nbElem++; #endif iter = next; } } xmlFree(oldtable); #ifdef DEBUG_GROW xmlGenericError(xmlGenericErrorContext, "xmlHashGrow : from %d to %d, %d elems\n", oldsize, size, nbElem); #endif return(0); } /** * xmlHashFree: * @table: the hash table * @f: the deallocator function for items in the hash * * Free the hash @table and its contents. The userdata is * deallocated with @f if provided. */ void xmlHashFree(xmlHashTablePtr table, xmlHashDeallocator f) { int i; xmlHashEntryPtr iter; xmlHashEntryPtr next; int inside_table = 0; int nbElems; if (table == NULL) return; if (table->table) { nbElems = table->nbElems; for(i = 0; (i < table->size) && (nbElems > 0); i++) { iter = &(table->table[i]); if (iter->valid == 0) continue; inside_table = 1; while (iter) { next = iter->next; if ((f != NULL) && (iter->payload != NULL)) f(iter->payload, iter->name); if (table->dict == NULL) { if (iter->name) xmlFree(iter->name); if (iter->name2) xmlFree(iter->name2); if (iter->name3) xmlFree(iter->name3); } iter->payload = NULL; if (!inside_table) xmlFree(iter); nbElems--; inside_table = 0; iter = next; } } xmlFree(table->table); } if (table->dict) xmlDictFree(table->dict); xmlFree(table); } /** * xmlHashAddEntry: * @table: the hash table * @name: the name of the userdata * @userdata: a pointer to the userdata * * Add the @userdata to the hash @table. This can later be retrieved * by using the @name. Duplicate names generate errors. * * Returns 0 the addition succeeded and -1 in case of error. */ int xmlHashAddEntry(xmlHashTablePtr table, const xmlChar *name, void *userdata) { return(xmlHashAddEntry3(table, name, NULL, NULL, userdata)); } /** * xmlHashAddEntry2: * @table: the hash table * @name: the name of the userdata * @name2: a second name of the userdata * @userdata: a pointer to the userdata * * Add the @userdata to the hash @table. This can later be retrieved * by using the (@name, @name2) tuple. Duplicate tuples generate errors. * * Returns 0 the addition succeeded and -1 in case of error. */ int xmlHashAddEntry2(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, void *userdata) { return(xmlHashAddEntry3(table, name, name2, NULL, userdata)); } /** * xmlHashUpdateEntry: * @table: the hash table * @name: the name of the userdata * @userdata: a pointer to the userdata * @f: the deallocator function for replaced item (if any) * * Add the @userdata to the hash @table. This can later be retrieved * by using the @name. Existing entry for this @name will be removed * and freed with @f if found. * * Returns 0 the addition succeeded and -1 in case of error. */ int xmlHashUpdateEntry(xmlHashTablePtr table, const xmlChar *name, void *userdata, xmlHashDeallocator f) { return(xmlHashUpdateEntry3(table, name, NULL, NULL, userdata, f)); } /** * xmlHashUpdateEntry2: * @table: the hash table * @name: the name of the userdata * @name2: a second name of the userdata * @userdata: a pointer to the userdata * @f: the deallocator function for replaced item (if any) * * Add the @userdata to the hash @table. This can later be retrieved * by using the (@name, @name2) tuple. Existing entry for this tuple will * be removed and freed with @f if found. * * Returns 0 the addition succeeded and -1 in case of error. */ int xmlHashUpdateEntry2(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, void *userdata, xmlHashDeallocator f) { return(xmlHashUpdateEntry3(table, name, name2, NULL, userdata, f)); } /** * xmlHashLookup: * @table: the hash table * @name: the name of the userdata * * Find the userdata specified by the @name. * * Returns the pointer to the userdata */ void * xmlHashLookup(xmlHashTablePtr table, const xmlChar *name) { return(xmlHashLookup3(table, name, NULL, NULL)); } /** * xmlHashLookup2: * @table: the hash table * @name: the name of the userdata * @name2: a second name of the userdata * * Find the userdata specified by the (@name, @name2) tuple. * * Returns the pointer to the userdata */ void * xmlHashLookup2(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2) { return(xmlHashLookup3(table, name, name2, NULL)); } /** * xmlHashQLookup: * @table: the hash table * @prefix: the prefix of the userdata * @name: the name of the userdata * * Find the userdata specified by the QName @prefix:@name/@name. * * Returns the pointer to the userdata */ void * xmlHashQLookup(xmlHashTablePtr table, const xmlChar *prefix, const xmlChar *name) { return(xmlHashQLookup3(table, prefix, name, NULL, NULL, NULL, NULL)); } /** * xmlHashQLookup2: * @table: the hash table * @prefix: the prefix of the userdata * @name: the name of the userdata * @prefix2: the second prefix of the userdata * @name2: a second name of the userdata * * Find the userdata specified by the QNames tuple * * Returns the pointer to the userdata */ void * xmlHashQLookup2(xmlHashTablePtr table, const xmlChar *prefix, const xmlChar *name, const xmlChar *prefix2, const xmlChar *name2) { return(xmlHashQLookup3(table, prefix, name, prefix2, name2, NULL, NULL)); } /** * xmlHashAddEntry3: * @table: the hash table * @name: the name of the userdata * @name2: a second name of the userdata * @name3: a third name of the userdata * @userdata: a pointer to the userdata * * Add the @userdata to the hash @table. This can later be retrieved * by using the tuple (@name, @name2, @name3). Duplicate entries generate * errors. * * Returns 0 the addition succeeded and -1 in case of error. */ int xmlHashAddEntry3(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, const xmlChar *name3, void *userdata) { unsigned long key, len = 0; xmlHashEntryPtr entry; xmlHashEntryPtr insert; if ((table == NULL) || (name == NULL)) return(-1); /* * If using a dict internalize if needed */ if (table->dict) { if (!xmlDictOwns(table->dict, name)) { name = xmlDictLookup(table->dict, name, -1); if (name == NULL) return(-1); } if ((name2 != NULL) && (!xmlDictOwns(table->dict, name2))) { name2 = xmlDictLookup(table->dict, name2, -1); if (name2 == NULL) return(-1); } if ((name3 != NULL) && (!xmlDictOwns(table->dict, name3))) { name3 = xmlDictLookup(table->dict, name3, -1); if (name3 == NULL) return(-1); } } /* * Check for duplicate and insertion location. */ key = xmlHashComputeKey(table, name, name2, name3); if (table->table[key].valid == 0) { insert = NULL; } else { if (table->dict) { for (insert = &(table->table[key]); insert->next != NULL; insert = insert->next) { if ((insert->name == name) && (insert->name2 == name2) && (insert->name3 == name3)) return(-1); len++; } if ((insert->name == name) && (insert->name2 == name2) && (insert->name3 == name3)) return(-1); } else { for (insert = &(table->table[key]); insert->next != NULL; insert = insert->next) { if ((xmlStrEqual(insert->name, name)) && (xmlStrEqual(insert->name2, name2)) && (xmlStrEqual(insert->name3, name3))) return(-1); len++; } if ((xmlStrEqual(insert->name, name)) && (xmlStrEqual(insert->name2, name2)) && (xmlStrEqual(insert->name3, name3))) return(-1); } } if (insert == NULL) { entry = &(table->table[key]); } else { entry = xmlMalloc(sizeof(xmlHashEntry)); if (entry == NULL) return(-1); } if (table->dict != NULL) { entry->name = (xmlChar *) name; entry->name2 = (xmlChar *) name2; entry->name3 = (xmlChar *) name3; } else { entry->name = xmlStrdup(name); entry->name2 = xmlStrdup(name2); entry->name3 = xmlStrdup(name3); } entry->payload = userdata; entry->next = NULL; entry->valid = 1; if (insert != NULL) insert->next = entry; table->nbElems++; if (len > MAX_HASH_LEN) xmlHashGrow(table, MAX_HASH_LEN * table->size); return(0); } /** * xmlHashUpdateEntry3: * @table: the hash table * @name: the name of the userdata * @name2: a second name of the userdata * @name3: a third name of the userdata * @userdata: a pointer to the userdata * @f: the deallocator function for replaced item (if any) * * Add the @userdata to the hash @table. This can later be retrieved * by using the tuple (@name, @name2, @name3). Existing entry for this tuple * will be removed and freed with @f if found. * * Returns 0 the addition succeeded and -1 in case of error. */ int xmlHashUpdateEntry3(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, const xmlChar *name3, void *userdata, xmlHashDeallocator f) { unsigned long key; xmlHashEntryPtr entry; xmlHashEntryPtr insert; if ((table == NULL) || name == NULL) return(-1); /* * If using a dict internalize if needed */ if (table->dict) { if (!xmlDictOwns(table->dict, name)) { name = xmlDictLookup(table->dict, name, -1); if (name == NULL) return(-1); } if ((name2 != NULL) && (!xmlDictOwns(table->dict, name2))) { name2 = xmlDictLookup(table->dict, name2, -1); if (name2 == NULL) return(-1); } if ((name3 != NULL) && (!xmlDictOwns(table->dict, name3))) { name3 = xmlDictLookup(table->dict, name3, -1); if (name3 == NULL) return(-1); } } /* * Check for duplicate and insertion location. */ key = xmlHashComputeKey(table, name, name2, name3); if (table->table[key].valid == 0) { insert = NULL; } else { if (table ->dict) { for (insert = &(table->table[key]); insert->next != NULL; insert = insert->next) { if ((insert->name == name) && (insert->name2 == name2) && (insert->name3 == name3)) { if (f) f(insert->payload, insert->name); insert->payload = userdata; return(0); } } if ((insert->name == name) && (insert->name2 == name2) && (insert->name3 == name3)) { if (f) f(insert->payload, insert->name); insert->payload = userdata; return(0); } } else { for (insert = &(table->table[key]); insert->next != NULL; insert = insert->next) { if ((xmlStrEqual(insert->name, name)) && (xmlStrEqual(insert->name2, name2)) && (xmlStrEqual(insert->name3, name3))) { if (f) f(insert->payload, insert->name); insert->payload = userdata; return(0); } } if ((xmlStrEqual(insert->name, name)) && (xmlStrEqual(insert->name2, name2)) && (xmlStrEqual(insert->name3, name3))) { if (f) f(insert->payload, insert->name); insert->payload = userdata; return(0); } } } if (insert == NULL) { entry = &(table->table[key]); } else { entry = xmlMalloc(sizeof(xmlHashEntry)); if (entry == NULL) return(-1); } if (table->dict != NULL) { entry->name = (xmlChar *) name; entry->name2 = (xmlChar *) name2; entry->name3 = (xmlChar *) name3; } else { entry->name = xmlStrdup(name); entry->name2 = xmlStrdup(name2); entry->name3 = xmlStrdup(name3); } entry->payload = userdata; entry->next = NULL; entry->valid = 1; table->nbElems++; if (insert != NULL) { insert->next = entry; } return(0); } /** * xmlHashLookup3: * @table: the hash table * @name: the name of the userdata * @name2: a second name of the userdata * @name3: a third name of the userdata * * Find the userdata specified by the (@name, @name2, @name3) tuple. * * Returns the a pointer to the userdata */ void * xmlHashLookup3(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, const xmlChar *name3) { unsigned long key; xmlHashEntryPtr entry; if (table == NULL) return(NULL); if (name == NULL) return(NULL); key = xmlHashComputeKey(table, name, name2, name3); if (table->table[key].valid == 0) return(NULL); if (table->dict) { for (entry = &(table->table[key]); entry != NULL; entry = entry->next) { if ((entry->name == name) && (entry->name2 == name2) && (entry->name3 == name3)) return(entry->payload); } } for (entry = &(table->table[key]); entry != NULL; entry = entry->next) { if ((xmlStrEqual(entry->name, name)) && (xmlStrEqual(entry->name2, name2)) && (xmlStrEqual(entry->name3, name3))) return(entry->payload); } return(NULL); } /** * xmlHashQLookup3: * @table: the hash table * @prefix: the prefix of the userdata * @name: the name of the userdata * @prefix2: the second prefix of the userdata * @name2: a second name of the userdata * @prefix3: the third prefix of the userdata * @name3: a third name of the userdata * * Find the userdata specified by the (@name, @name2, @name3) tuple. * * Returns the a pointer to the userdata */ void * xmlHashQLookup3(xmlHashTablePtr table, const xmlChar *prefix, const xmlChar *name, const xmlChar *prefix2, const xmlChar *name2, const xmlChar *prefix3, const xmlChar *name3) { unsigned long key; xmlHashEntryPtr entry; if (table == NULL) return(NULL); if (name == NULL) return(NULL); key = xmlHashComputeQKey(table, prefix, name, prefix2, name2, prefix3, name3); if (table->table[key].valid == 0) return(NULL); for (entry = &(table->table[key]); entry != NULL; entry = entry->next) { if ((xmlStrQEqual(prefix, name, entry->name)) && (xmlStrQEqual(prefix2, name2, entry->name2)) && (xmlStrQEqual(prefix3, name3, entry->name3))) return(entry->payload); } return(NULL); } typedef struct { xmlHashScanner hashscanner; void *data; } stubData; static void stubHashScannerFull (void *payload, void *data, const xmlChar *name, const xmlChar *name2 ATTRIBUTE_UNUSED, const xmlChar *name3 ATTRIBUTE_UNUSED) { stubData *stubdata = (stubData *) data; stubdata->hashscanner (payload, stubdata->data, (xmlChar *) name); } /** * xmlHashScan: * @table: the hash table * @f: the scanner function for items in the hash * @data: extra data passed to f * * Scan the hash @table and applied @f to each value. */ void xmlHashScan(xmlHashTablePtr table, xmlHashScanner f, void *data) { stubData stubdata; stubdata.data = data; stubdata.hashscanner = f; xmlHashScanFull (table, stubHashScannerFull, &stubdata); } /** * xmlHashScanFull: * @table: the hash table * @f: the scanner function for items in the hash * @data: extra data passed to f * * Scan the hash @table and applied @f to each value. */ void xmlHashScanFull(xmlHashTablePtr table, xmlHashScannerFull f, void *data) { int i, nb; xmlHashEntryPtr iter; xmlHashEntryPtr next; if (table == NULL) return; if (f == NULL) return; if (table->table) { for(i = 0; i < table->size; i++) { if (table->table[i].valid == 0) continue; iter = &(table->table[i]); while (iter) { next = iter->next; nb = table->nbElems; if ((f != NULL) && (iter->payload != NULL)) f(iter->payload, data, iter->name, iter->name2, iter->name3); if (nb != table->nbElems) { /* table was modified by the callback, be careful */ if (iter == &(table->table[i])) { if (table->table[i].valid == 0) iter = NULL; if (table->table[i].next != next) iter = &(table->table[i]); } else iter = next; } else iter = next; } } } } /** * xmlHashScan3: * @table: the hash table * @name: the name of the userdata or NULL * @name2: a second name of the userdata or NULL * @name3: a third name of the userdata or NULL * @f: the scanner function for items in the hash * @data: extra data passed to f * * Scan the hash @table and applied @f to each value matching * (@name, @name2, @name3) tuple. If one of the names is null, * the comparison is considered to match. */ void xmlHashScan3(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, const xmlChar *name3, xmlHashScanner f, void *data) { xmlHashScanFull3 (table, name, name2, name3, (xmlHashScannerFull) f, data); } /** * xmlHashScanFull3: * @table: the hash table * @name: the name of the userdata or NULL * @name2: a second name of the userdata or NULL * @name3: a third name of the userdata or NULL * @f: the scanner function for items in the hash * @data: extra data passed to f * * Scan the hash @table and applied @f to each value matching * (@name, @name2, @name3) tuple. If one of the names is null, * the comparison is considered to match. */ void xmlHashScanFull3(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, const xmlChar *name3, xmlHashScannerFull f, void *data) { int i; xmlHashEntryPtr iter; xmlHashEntryPtr next; if (table == NULL) return; if (f == NULL) return; if (table->table) { for(i = 0; i < table->size; i++) { if (table->table[i].valid == 0) continue; iter = &(table->table[i]); while (iter) { next = iter->next; if (((name == NULL) || (xmlStrEqual(name, iter->name))) && ((name2 == NULL) || (xmlStrEqual(name2, iter->name2))) && ((name3 == NULL) || (xmlStrEqual(name3, iter->name3))) && (iter->payload != NULL)) { f(iter->payload, data, iter->name, iter->name2, iter->name3); } iter = next; } } } } /** * xmlHashCopy: * @table: the hash table * @f: the copier function for items in the hash * * Scan the hash @table and applied @f to each value. * * Returns the new table or NULL in case of error. */ xmlHashTablePtr xmlHashCopy(xmlHashTablePtr table, xmlHashCopier f) { int i; xmlHashEntryPtr iter; xmlHashEntryPtr next; xmlHashTablePtr ret; if (table == NULL) return(NULL); if (f == NULL) return(NULL); ret = xmlHashCreate(table->size); if (table->table) { for(i = 0; i < table->size; i++) { if (table->table[i].valid == 0) continue; iter = &(table->table[i]); while (iter) { next = iter->next; xmlHashAddEntry3(ret, iter->name, iter->name2, iter->name3, f(iter->payload, iter->name)); iter = next; } } } ret->nbElems = table->nbElems; return(ret); } /** * xmlHashSize: * @table: the hash table * * Query the number of elements installed in the hash @table. * * Returns the number of elements in the hash table or * -1 in case of error */ int xmlHashSize(xmlHashTablePtr table) { if (table == NULL) return(-1); return(table->nbElems); } /** * xmlHashRemoveEntry: * @table: the hash table * @name: the name of the userdata * @f: the deallocator function for removed item (if any) * * Find the userdata specified by the @name and remove * it from the hash @table. Existing userdata for this tuple will be removed * and freed with @f. * * Returns 0 if the removal succeeded and -1 in case of error or not found. */ int xmlHashRemoveEntry(xmlHashTablePtr table, const xmlChar *name, xmlHashDeallocator f) { return(xmlHashRemoveEntry3(table, name, NULL, NULL, f)); } /** * xmlHashRemoveEntry2: * @table: the hash table * @name: the name of the userdata * @name2: a second name of the userdata * @f: the deallocator function for removed item (if any) * * Find the userdata specified by the (@name, @name2) tuple and remove * it from the hash @table. Existing userdata for this tuple will be removed * and freed with @f. * * Returns 0 if the removal succeeded and -1 in case of error or not found. */ int xmlHashRemoveEntry2(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, xmlHashDeallocator f) { return(xmlHashRemoveEntry3(table, name, name2, NULL, f)); } /** * xmlHashRemoveEntry3: * @table: the hash table * @name: the name of the userdata * @name2: a second name of the userdata * @name3: a third name of the userdata * @f: the deallocator function for removed item (if any) * * Find the userdata specified by the (@name, @name2, @name3) tuple and remove * it from the hash @table. Existing userdata for this tuple will be removed * and freed with @f. * * Returns 0 if the removal succeeded and -1 in case of error or not found. */ int xmlHashRemoveEntry3(xmlHashTablePtr table, const xmlChar *name, const xmlChar *name2, const xmlChar *name3, xmlHashDeallocator f) { unsigned long key; xmlHashEntryPtr entry; xmlHashEntryPtr prev = NULL; if (table == NULL || name == NULL) return(-1); key = xmlHashComputeKey(table, name, name2, name3); if (table->table[key].valid == 0) { return(-1); } else { for (entry = &(table->table[key]); entry != NULL; entry = entry->next) { if (xmlStrEqual(entry->name, name) && xmlStrEqual(entry->name2, name2) && xmlStrEqual(entry->name3, name3)) { if ((f != NULL) && (entry->payload != NULL)) f(entry->payload, entry->name); entry->payload = NULL; if (table->dict == NULL) { if(entry->name) xmlFree(entry->name); if(entry->name2) xmlFree(entry->name2); if(entry->name3) xmlFree(entry->name3); } if(prev) { prev->next = entry->next; xmlFree(entry); } else { if (entry->next == NULL) { entry->valid = 0; } else { entry = entry->next; memcpy(&(table->table[key]), entry, sizeof(xmlHashEntry)); xmlFree(entry); } } table->nbElems--; return(0); } prev = entry; } return(-1); } } #define bottom_hash #include "elfgcchack.h"