/* * q_sfq.c SFQ. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <syslog.h> #include <fcntl.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <string.h> #include <math.h> #include "utils.h" #include "tc_util.h" #include "tc_red.h" static void explain(void) { fprintf(stderr, "Usage: ... sfq [ limit NUMBER ] [ perturb SECS ] [ quantum BYTES ]\n"); fprintf(stderr, " [ divisor NUMBER ] [ flows NUMBER] [ depth NUMBER ]\n"); fprintf(stderr, " [ headdrop ]\n"); fprintf(stderr, " [ redflowlimit BYTES ] [ min BYTES ] [ max BYTES ]\n"); fprintf(stderr, " [ avpkt BYTES ] [ burst PACKETS ] [ probability P ]\n"); fprintf(stderr, " [ ecn ] [ harddrop ]\n"); } static int sfq_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { int ok = 0, red = 0; struct tc_sfq_qopt_v1 opt; unsigned int burst = 0; int wlog; unsigned int avpkt = 1000; double probability = 0.02; memset(&opt, 0, sizeof(opt)); while (argc > 0) { if (strcmp(*argv, "quantum") == 0) { NEXT_ARG(); if (get_size(&opt.v0.quantum, *argv)) { fprintf(stderr, "Illegal \"limit\"\n"); return -1; } ok++; } else if (strcmp(*argv, "perturb") == 0) { NEXT_ARG(); if (get_integer(&opt.v0.perturb_period, *argv, 0)) { fprintf(stderr, "Illegal \"perturb\"\n"); return -1; } ok++; } else if (strcmp(*argv, "limit") == 0) { NEXT_ARG(); if (get_u32(&opt.v0.limit, *argv, 0)) { fprintf(stderr, "Illegal \"limit\"\n"); return -1; } if (opt.v0.limit < 2) { fprintf(stderr, "Illegal \"limit\", must be > 1\n"); return -1; } ok++; } else if (strcmp(*argv, "divisor") == 0) { NEXT_ARG(); if (get_u32(&opt.v0.divisor, *argv, 0)) { fprintf(stderr, "Illegal \"divisor\"\n"); return -1; } ok++; } else if (strcmp(*argv, "flows") == 0) { NEXT_ARG(); if (get_u32(&opt.v0.flows, *argv, 0)) { fprintf(stderr, "Illegal \"flows\"\n"); return -1; } ok++; } else if (strcmp(*argv, "depth") == 0) { NEXT_ARG(); if (get_u32(&opt.depth, *argv, 0)) { fprintf(stderr, "Illegal \"flows\"\n"); return -1; } ok++; } else if (strcmp(*argv, "headdrop") == 0) { opt.headdrop = 1; ok++; } else if (strcmp(*argv, "redflowlimit") == 0) { NEXT_ARG(); if (get_u32(&opt.limit, *argv, 0)) { fprintf(stderr, "Illegal \"redflowlimit\"\n"); return -1; } red++; } else if (strcmp(*argv, "min") == 0) { NEXT_ARG(); if (get_u32(&opt.qth_min, *argv, 0)) { fprintf(stderr, "Illegal \"min\"\n"); return -1; } red++; } else if (strcmp(*argv, "max") == 0) { NEXT_ARG(); if (get_u32(&opt.qth_max, *argv, 0)) { fprintf(stderr, "Illegal \"max\"\n"); return -1; } red++; } else if (strcmp(*argv, "burst") == 0) { NEXT_ARG(); if (get_unsigned(&burst, *argv, 0)) { fprintf(stderr, "Illegal \"burst\"\n"); return -1; } red++; } else if (strcmp(*argv, "avpkt") == 0) { NEXT_ARG(); if (get_size(&avpkt, *argv)) { fprintf(stderr, "Illegal \"avpkt\"\n"); return -1; } red++; } else if (strcmp(*argv, "probability") == 0) { NEXT_ARG(); if (sscanf(*argv, "%lg", &probability) != 1) { fprintf(stderr, "Illegal \"probability\"\n"); return -1; } red++; } else if (strcmp(*argv, "ecn") == 0) { opt.flags |= TC_RED_ECN; red++; } else if (strcmp(*argv, "harddrop") == 0) { opt.flags |= TC_RED_HARDDROP; red++; } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } if (red) { if (!opt.limit) { fprintf(stderr, "Required parameter (redflowlimit) is missing\n"); return -1; } /* Compute default min/max thresholds based on Sally Floyd's recommendations: http://www.icir.org/floyd/REDparameters.txt */ if (!opt.qth_max) opt.qth_max = opt.limit / 4; if (!opt.qth_min) opt.qth_min = opt.qth_max / 3; if (!burst) burst = (2 * opt.qth_min + opt.qth_max) / (3 * avpkt); if (opt.qth_max > opt.limit) { fprintf(stderr, "\"max\" is larger than \"limit\"\n"); return -1; } if (opt.qth_min >= opt.qth_max) { fprintf(stderr, "\"min\" is not smaller than \"max\"\n"); return -1; } wlog = tc_red_eval_ewma(opt.qth_min, burst, avpkt); if (wlog < 0) { fprintf(stderr, "SFQ: failed to calculate EWMA constant.\n"); return -1; } if (wlog >= 10) fprintf(stderr, "SFQ: WARNING. Burst %u seems to be too large.\n", burst); opt.Wlog = wlog; wlog = tc_red_eval_P(opt.qth_min, opt.qth_max, probability); if (wlog < 0) { fprintf(stderr, "SFQ: failed to calculate probability.\n"); return -1; } opt.Plog = wlog; opt.max_P = probability * pow(2, 32); } if (ok || red) addattr_l(n, 1024, TCA_OPTIONS, &opt, sizeof(opt)); return 0; } static int sfq_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct tc_sfq_qopt *qopt; struct tc_sfq_qopt_v1 *qopt_ext = NULL; SPRINT_BUF(b1); SPRINT_BUF(b2); SPRINT_BUF(b3); if (opt == NULL) return 0; if (RTA_PAYLOAD(opt) < sizeof(*qopt)) return -1; if (RTA_PAYLOAD(opt) >= sizeof(*qopt_ext)) qopt_ext = RTA_DATA(opt); qopt = RTA_DATA(opt); fprintf(f, "limit %up ", qopt->limit); fprintf(f, "quantum %s ", sprint_size(qopt->quantum, b1)); if (qopt_ext && qopt_ext->depth) fprintf(f, "depth %u ", qopt_ext->depth); if (qopt_ext && qopt_ext->headdrop) fprintf(f, "headdrop "); if (show_details) { fprintf(f, "flows %u/%u ", qopt->flows, qopt->divisor); } fprintf(f, "divisor %u ", qopt->divisor); if (qopt->perturb_period) fprintf(f, "perturb %dsec ", qopt->perturb_period); if (qopt_ext && qopt_ext->qth_min) { fprintf(f, "\n ewma %u ", qopt_ext->Wlog); fprintf(f, "min %s max %s probability %g ", sprint_size(qopt_ext->qth_min, b2), sprint_size(qopt_ext->qth_max, b3), qopt_ext->max_P / pow(2, 32)); if (qopt_ext->flags & TC_RED_ECN) fprintf(f, "ecn "); if (show_stats) { fprintf(f, "\n prob_mark %u prob_mark_head %u prob_drop %u", qopt_ext->stats.prob_mark, qopt_ext->stats.prob_mark_head, qopt_ext->stats.prob_drop); fprintf(f, "\n forced_mark %u forced_mark_head %u forced_drop %u", qopt_ext->stats.forced_mark, qopt_ext->stats.forced_mark_head, qopt_ext->stats.forced_drop); } } return 0; } static int sfq_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { struct tc_sfq_xstats *st; if (xstats == NULL) return 0; if (RTA_PAYLOAD(xstats) < sizeof(*st)) return -1; st = RTA_DATA(xstats); fprintf(f, " allot %d ", st->allot); fprintf(f, "\n"); return 0; } struct qdisc_util sfq_qdisc_util = { .id = "sfq", .parse_qopt = sfq_parse_opt, .print_qopt = sfq_print_opt, .print_xstats = sfq_print_xstats, };