// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/SVD> template<typename MatrixType> void upperbidiag(const MatrixType& m) { const typename MatrixType::Index rows = m.rows(); const typename MatrixType::Index cols = m.cols(); typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TransposeMatrixType; MatrixType a = MatrixType::Random(rows,cols); internal::UpperBidiagonalization<MatrixType> ubd(a); RealMatrixType b(rows, cols); b.setZero(); b.block(0,0,cols,cols) = ubd.bidiagonal(); MatrixType c = ubd.householderU() * b * ubd.householderV().adjoint(); VERIFY_IS_APPROX(a,c); TransposeMatrixType d = ubd.householderV() * b.adjoint() * ubd.householderU().adjoint(); VERIFY_IS_APPROX(a.adjoint(),d); } void test_upperbidiagonalization() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( upperbidiag(MatrixXf(3,3)) ); CALL_SUBTEST_2( upperbidiag(MatrixXd(17,12)) ); CALL_SUBTEST_3( upperbidiag(MatrixXcf(20,20)) ); CALL_SUBTEST_4( upperbidiag(MatrixXcd(16,15)) ); CALL_SUBTEST_5( upperbidiag(Matrix<float,6,4>()) ); CALL_SUBTEST_6( upperbidiag(Matrix<float,5,5>()) ); CALL_SUBTEST_7( upperbidiag(Matrix<double,4,3>()) ); } }