// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// work around "uninitialized" warnings and give that option some testing
#define EIGEN_INITIALIZE_MATRICES_BY_ZERO

#ifndef EIGEN_NO_STATIC_ASSERT
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
#endif

// #ifndef EIGEN_DONT_VECTORIZE
// #define EIGEN_DONT_VECTORIZE // SSE intrinsics aren't designed to allow mixing types
// #endif

#include "main.h"

using namespace std;

template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
{
  typedef std::complex<float>   CF;
  typedef std::complex<double>  CD;
  typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
  typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
  typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
  typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;

  Mat_f mf    = Mat_f::Random(size,size);
  Mat_d md    = mf.template cast<double>();
  Mat_cf mcf  = Mat_cf::Random(size,size);
  Mat_cd mcd  = mcf.template cast<complex<double> >();
  Vec_f vf    = Vec_f::Random(size,1);
  Vec_d vd    = vf.template cast<double>();
  Vec_cf vcf  = Vec_cf::Random(size,1);
  Vec_cd vcd  = vcf.template cast<complex<double> >();
  float           sf  = internal::random<float>();
  double          sd  = internal::random<double>();
  complex<float>  scf = internal::random<complex<float> >();
  complex<double> scd = internal::random<complex<double> >();


  mf+mf;
  VERIFY_RAISES_ASSERT(mf+md);
  VERIFY_RAISES_ASSERT(mf+mcf);
  VERIFY_RAISES_ASSERT(vf=vd);
  VERIFY_RAISES_ASSERT(vf+=vd);
  VERIFY_RAISES_ASSERT(mcd=md);

  // check scalar products
  VERIFY_IS_APPROX(vcf * sf , vcf * complex<float>(sf));
  VERIFY_IS_APPROX(sd * vcd, complex<double>(sd) * vcd);
  VERIFY_IS_APPROX(vf * scf , vf.template cast<complex<float> >() * scf);
  VERIFY_IS_APPROX(scd * vd, scd * vd.template cast<complex<double> >());

  // check dot product
  vf.dot(vf);
#if 0 // we get other compilation errors here than just static asserts
  VERIFY_RAISES_ASSERT(vd.dot(vf));
#endif
  VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));

  // check diagonal product
  VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
  VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
  VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
  VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
//   vd.asDiagonal() * mf;    // does not even compile
//   vcd.asDiagonal() * mf;   // does not even compile

  // check inner product
  VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());

  // check outer product
  VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());

  // coeff wise product

  VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());

  Mat_cd mcd2 = mcd;
  VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
  
  // check matrix-matrix products

  VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
  VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
  VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
  VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());

  VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
  VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
  VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
  VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());

  VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
  VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
  VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
  VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());

  VERIFY_IS_APPROX(sf*vcf.adjoint()*mf,  sf*vcf.adjoint()*mf.template cast<CF>().eval());
  VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
  VERIFY_IS_APPROX(sf*vf.adjoint()*mcf,  sf*vf.adjoint().template cast<CF>().eval()*mcf);
  VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);

  VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
  VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
  VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
  VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());

  VERIFY_IS_APPROX(sd*vcd.adjoint()*md,  sd*vcd.adjoint()*md.template cast<CD>().eval());
  VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
  VERIFY_IS_APPROX(sd*vd.adjoint()*mcd,  sd*vd.adjoint().template cast<CD>().eval()*mcd);
  VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
}

void test_mixingtypes()
{
  CALL_SUBTEST_1(mixingtypes<3>());
  CALL_SUBTEST_2(mixingtypes<4>());
  CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
}