// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // work around "uninitialized" warnings and give that option some testing #define EIGEN_INITIALIZE_MATRICES_BY_ZERO #ifndef EIGEN_NO_STATIC_ASSERT #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them #endif // #ifndef EIGEN_DONT_VECTORIZE // #define EIGEN_DONT_VECTORIZE // SSE intrinsics aren't designed to allow mixing types // #endif #include "main.h" using namespace std; template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType) { typedef std::complex<float> CF; typedef std::complex<double> CD; typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f; typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d; typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf; typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd; typedef Matrix<float, SizeAtCompileType, 1> Vec_f; typedef Matrix<double, SizeAtCompileType, 1> Vec_d; typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf; typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd; Mat_f mf = Mat_f::Random(size,size); Mat_d md = mf.template cast<double>(); Mat_cf mcf = Mat_cf::Random(size,size); Mat_cd mcd = mcf.template cast<complex<double> >(); Vec_f vf = Vec_f::Random(size,1); Vec_d vd = vf.template cast<double>(); Vec_cf vcf = Vec_cf::Random(size,1); Vec_cd vcd = vcf.template cast<complex<double> >(); float sf = internal::random<float>(); double sd = internal::random<double>(); complex<float> scf = internal::random<complex<float> >(); complex<double> scd = internal::random<complex<double> >(); mf+mf; VERIFY_RAISES_ASSERT(mf+md); VERIFY_RAISES_ASSERT(mf+mcf); VERIFY_RAISES_ASSERT(vf=vd); VERIFY_RAISES_ASSERT(vf+=vd); VERIFY_RAISES_ASSERT(mcd=md); // check scalar products VERIFY_IS_APPROX(vcf * sf , vcf * complex<float>(sf)); VERIFY_IS_APPROX(sd * vcd, complex<double>(sd) * vcd); VERIFY_IS_APPROX(vf * scf , vf.template cast<complex<float> >() * scf); VERIFY_IS_APPROX(scd * vd, scd * vd.template cast<complex<double> >()); // check dot product vf.dot(vf); #if 0 // we get other compilation errors here than just static asserts VERIFY_RAISES_ASSERT(vd.dot(vf)); #endif VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >())); // check diagonal product VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf); VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >()); VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal()); VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal()); // vd.asDiagonal() * mf; // does not even compile // vcd.asDiagonal() * mf; // does not even compile // check inner product VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value()); // check outer product VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval()); // coeff wise product VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval()); Mat_cd mcd2 = mcd; VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >()); // check matrix-matrix products VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd); VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>()); VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd); VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>()); VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf); VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>()); VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf); VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>()); VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf); VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf); VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>()); VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>()); VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval()); VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval()); VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf); VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf); VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd); VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd); VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval()); VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval()); VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval()); VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd); } void test_mixingtypes() { CALL_SUBTEST_1(mixingtypes<3>()); CALL_SUBTEST_2(mixingtypes<4>()); CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))); }