// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSE_BLOCK_H #define EIGEN_SPARSE_BLOCK_H namespace Eigen { template<typename XprType, int BlockRows, int BlockCols> class BlockImpl<XprType,BlockRows,BlockCols,true,Sparse> : public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,true> > { typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested; typedef Block<XprType, BlockRows, BlockCols, true> BlockType; public: enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor }; protected: enum { OuterSize = IsRowMajor ? BlockRows : BlockCols }; public: EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) class InnerIterator: public XprType::InnerIterator { typedef typename BlockImpl::Index Index; public: inline InnerIterator(const BlockType& xpr, Index outer) : XprType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer) {} inline Index row() const { return IsRowMajor ? m_outer : this->index(); } inline Index col() const { return IsRowMajor ? this->index() : m_outer; } protected: Index m_outer; }; class ReverseInnerIterator: public XprType::ReverseInnerIterator { typedef typename BlockImpl::Index Index; public: inline ReverseInnerIterator(const BlockType& xpr, Index outer) : XprType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer) {} inline Index row() const { return IsRowMajor ? m_outer : this->index(); } inline Index col() const { return IsRowMajor ? this->index() : m_outer; } protected: Index m_outer; }; inline BlockImpl(const XprType& xpr, int i) : m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize) {} inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols) : m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols) {} EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } protected: typename XprType::Nested m_matrix; Index m_outerStart; const internal::variable_if_dynamic<Index, OuterSize> m_outerSize; EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl) }; /*************************************************************************** * specialisation for SparseMatrix ***************************************************************************/ template<typename _Scalar, int _Options, typename _Index, int BlockRows, int BlockCols> class BlockImpl<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true,Sparse> : public SparseMatrixBase<Block<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true> > { typedef SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType; typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested; typedef Block<SparseMatrixType, BlockRows, BlockCols, true> BlockType; public: enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor }; EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) protected: enum { OuterSize = IsRowMajor ? BlockRows : BlockCols }; public: class InnerIterator: public SparseMatrixType::InnerIterator { public: inline InnerIterator(const BlockType& xpr, Index outer) : SparseMatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer) {} inline Index row() const { return IsRowMajor ? m_outer : this->index(); } inline Index col() const { return IsRowMajor ? this->index() : m_outer; } protected: Index m_outer; }; class ReverseInnerIterator: public SparseMatrixType::ReverseInnerIterator { public: inline ReverseInnerIterator(const BlockType& xpr, Index outer) : SparseMatrixType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer) {} inline Index row() const { return IsRowMajor ? m_outer : this->index(); } inline Index col() const { return IsRowMajor ? this->index() : m_outer; } protected: Index m_outer; }; inline BlockImpl(const SparseMatrixType& xpr, int i) : m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize) {} inline BlockImpl(const SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols) : m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols) {} template<typename OtherDerived> inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other) { typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _NestedMatrixType; _NestedMatrixType& matrix = const_cast<_NestedMatrixType&>(m_matrix);; // This assignement is slow if this vector set is not empty // and/or it is not at the end of the nonzeros of the underlying matrix. // 1 - eval to a temporary to avoid transposition and/or aliasing issues SparseMatrix<Scalar, IsRowMajor ? RowMajor : ColMajor, Index> tmp(other); // 2 - let's check whether there is enough allocated memory Index nnz = tmp.nonZeros(); Index start = m_outerStart==0 ? 0 : matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending posiiton of the current block Index block_size = end - start; // available room in the current block Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end; Index free_size = m_matrix.isCompressed() ? Index(matrix.data().allocatedSize()) + block_size : block_size; if(nnz>free_size) { // realloc manually to reduce copies typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz); std::memcpy(&newdata.value(0), &m_matrix.data().value(0), start*sizeof(Scalar)); std::memcpy(&newdata.index(0), &m_matrix.data().index(0), start*sizeof(Index)); std::memcpy(&newdata.value(start), &tmp.data().value(0), nnz*sizeof(Scalar)); std::memcpy(&newdata.index(start), &tmp.data().index(0), nnz*sizeof(Index)); std::memcpy(&newdata.value(start+nnz), &matrix.data().value(end), tail_size*sizeof(Scalar)); std::memcpy(&newdata.index(start+nnz), &matrix.data().index(end), tail_size*sizeof(Index)); newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz); matrix.data().swap(newdata); } else { // no need to realloc, simply copy the tail at its respective position and insert tmp matrix.data().resize(start + nnz + tail_size); std::memmove(&matrix.data().value(start+nnz), &matrix.data().value(end), tail_size*sizeof(Scalar)); std::memmove(&matrix.data().index(start+nnz), &matrix.data().index(end), tail_size*sizeof(Index)); std::memcpy(&matrix.data().value(start), &tmp.data().value(0), nnz*sizeof(Scalar)); std::memcpy(&matrix.data().index(start), &tmp.data().index(0), nnz*sizeof(Index)); } // update innerNonZeros if(!m_matrix.isCompressed()) for(Index j=0; j<m_outerSize.value(); ++j) matrix.innerNonZeroPtr()[m_outerStart+j] = tmp.innerVector(j).nonZeros(); // update outer index pointers Index p = start; for(Index k=0; k<m_outerSize.value(); ++k) { matrix.outerIndexPtr()[m_outerStart+k] = p; p += tmp.innerVector(k).nonZeros(); } std::ptrdiff_t offset = nnz - block_size; for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k) { matrix.outerIndexPtr()[k] += offset; } return derived(); } inline BlockType& operator=(const BlockType& other) { return operator=<BlockType>(other); } inline const Scalar* valuePtr() const { return m_matrix.valuePtr() + m_matrix.outerIndexPtr()[m_outerStart]; } inline Scalar* valuePtr() { return m_matrix.const_cast_derived().valuePtr() + m_matrix.outerIndexPtr()[m_outerStart]; } inline const Index* innerIndexPtr() const { return m_matrix.innerIndexPtr() + m_matrix.outerIndexPtr()[m_outerStart]; } inline Index* innerIndexPtr() { return m_matrix.const_cast_derived().innerIndexPtr() + m_matrix.outerIndexPtr()[m_outerStart]; } inline const Index* outerIndexPtr() const { return m_matrix.outerIndexPtr() + m_outerStart; } inline Index* outerIndexPtr() { return m_matrix.const_cast_derived().outerIndexPtr() + m_outerStart; } Index nonZeros() const { if(m_matrix.isCompressed()) return std::size_t(m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]) - std::size_t(m_matrix.outerIndexPtr()[m_outerStart]); else if(m_outerSize.value()==0) return 0; else return Map<const Matrix<Index,OuterSize,1> >(m_matrix.innerNonZeroPtr()+m_outerStart, m_outerSize.value()).sum(); } const Scalar& lastCoeff() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(BlockImpl); eigen_assert(nonZeros()>0); if(m_matrix.isCompressed()) return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1]; else return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1]; } EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } protected: typename SparseMatrixType::Nested m_matrix; Index m_outerStart; const internal::variable_if_dynamic<Index, OuterSize> m_outerSize; }; //---------- /** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this * is col-major (resp. row-major). */ template<typename Derived> typename SparseMatrixBase<Derived>::InnerVectorReturnType SparseMatrixBase<Derived>::innerVector(Index outer) { return InnerVectorReturnType(derived(), outer); } /** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this * is col-major (resp. row-major). Read-only. */ template<typename Derived> const typename SparseMatrixBase<Derived>::ConstInnerVectorReturnType SparseMatrixBase<Derived>::innerVector(Index outer) const { return ConstInnerVectorReturnType(derived(), outer); } /** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this * is col-major (resp. row-major). */ template<typename Derived> Block<Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) { return Block<Derived,Dynamic,Dynamic,true>(derived(), IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart, IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize); } /** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this * is col-major (resp. row-major). Read-only. */ template<typename Derived> const Block<const Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) const { return Block<const Derived,Dynamic,Dynamic,true>(derived(), IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart, IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize); } /** Generic implementation of sparse Block expression. * Real-only. */ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class BlockImpl<XprType,BlockRows,BlockCols,InnerPanel,Sparse> : public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,InnerPanel> >, internal::no_assignment_operator { typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested; typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType; public: enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor }; EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) /** Column or Row constructor */ inline BlockImpl(const XprType& xpr, int i) : m_matrix(xpr), m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0), m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0), m_blockRows(xpr.rows()), m_blockCols(xpr.cols()) {} /** Dynamic-size constructor */ inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols) : m_matrix(xpr), m_startRow(startRow), m_startCol(startCol), m_blockRows(blockRows), m_blockCols(blockCols) {} inline int rows() const { return m_blockRows.value(); } inline int cols() const { return m_blockCols.value(); } inline Scalar& coeffRef(int row, int col) { return m_matrix.const_cast_derived() .coeffRef(row + m_startRow.value(), col + m_startCol.value()); } inline const Scalar coeff(int row, int col) const { return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value()); } inline Scalar& coeffRef(int index) { return m_matrix.const_cast_derived() .coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } inline const Scalar coeff(int index) const { return m_matrix .coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } inline const _MatrixTypeNested& nestedExpression() const { return m_matrix; } class InnerIterator : public _MatrixTypeNested::InnerIterator { typedef typename _MatrixTypeNested::InnerIterator Base; const BlockType& m_block; Index m_end; public: EIGEN_STRONG_INLINE InnerIterator(const BlockType& block, Index outer) : Base(block.derived().nestedExpression(), outer + (IsRowMajor ? block.m_startRow.value() : block.m_startCol.value())), m_block(block), m_end(IsRowMajor ? block.m_startCol.value()+block.m_blockCols.value() : block.m_startRow.value()+block.m_blockRows.value()) { while( (Base::operator bool()) && (Base::index() < (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value())) ) Base::operator++(); } inline Index index() const { return Base::index() - (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value()); } inline Index outer() const { return Base::outer() - (IsRowMajor ? m_block.m_startRow.value() : m_block.m_startCol.value()); } inline Index row() const { return Base::row() - m_block.m_startRow.value(); } inline Index col() const { return Base::col() - m_block.m_startCol.value(); } inline operator bool() const { return Base::operator bool() && Base::index() < m_end; } }; class ReverseInnerIterator : public _MatrixTypeNested::ReverseInnerIterator { typedef typename _MatrixTypeNested::ReverseInnerIterator Base; const BlockType& m_block; Index m_begin; public: EIGEN_STRONG_INLINE ReverseInnerIterator(const BlockType& block, Index outer) : Base(block.derived().nestedExpression(), outer + (IsRowMajor ? block.m_startRow.value() : block.m_startCol.value())), m_block(block), m_begin(IsRowMajor ? block.m_startCol.value() : block.m_startRow.value()) { while( (Base::operator bool()) && (Base::index() >= (IsRowMajor ? m_block.m_startCol.value()+block.m_blockCols.value() : m_block.m_startRow.value()+block.m_blockRows.value())) ) Base::operator--(); } inline Index index() const { return Base::index() - (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value()); } inline Index outer() const { return Base::outer() - (IsRowMajor ? m_block.m_startRow.value() : m_block.m_startCol.value()); } inline Index row() const { return Base::row() - m_block.m_startRow.value(); } inline Index col() const { return Base::col() - m_block.m_startCol.value(); } inline operator bool() const { return Base::operator bool() && Base::index() >= m_begin; } }; protected: friend class InnerIterator; friend class ReverseInnerIterator; EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl) typename XprType::Nested m_matrix; const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow; const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol; const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows; const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols; }; } // end namespace Eigen #endif // EIGEN_SPARSE_BLOCK_H