// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_TRIDIAGONALIZATION_H #define EIGEN_TRIDIAGONALIZATION_H namespace Eigen { namespace internal { template<typename MatrixType> struct TridiagonalizationMatrixTReturnType; template<typename MatrixType> struct traits<TridiagonalizationMatrixTReturnType<MatrixType> > { typedef typename MatrixType::PlainObject ReturnType; }; template<typename MatrixType, typename CoeffVectorType> void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); } /** \eigenvalues_module \ingroup Eigenvalues_Module * * * \class Tridiagonalization * * \brief Tridiagonal decomposition of a selfadjoint matrix * * \tparam _MatrixType the type of the matrix of which we are computing the * tridiagonal decomposition; this is expected to be an instantiation of the * Matrix class template. * * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. * * A tridiagonal matrix is a matrix which has nonzero elements only on the * main diagonal and the first diagonal below and above it. The Hessenberg * decomposition of a selfadjoint matrix is in fact a tridiagonal * decomposition. This class is used in SelfAdjointEigenSolver to compute the * eigenvalues and eigenvectors of a selfadjoint matrix. * * Call the function compute() to compute the tridiagonal decomposition of a * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) * constructor which computes the tridiagonal Schur decomposition at * construction time. Once the decomposition is computed, you can use the * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the * decomposition. * * The documentation of Tridiagonalization(const MatrixType&) contains an * example of the typical use of this class. * * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver */ template<typename _MatrixType> class Tridiagonalization { public: /** \brief Synonym for the template parameter \p _MatrixType. */ typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename MatrixType::Index Index; enum { Size = MatrixType::RowsAtCompileTime, SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), Options = MatrixType::Options, MaxSize = MatrixType::MaxRowsAtCompileTime, MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) }; typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType; typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType; typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView; typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType; typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type, const Diagonal<const MatrixType> >::type DiagonalReturnType; typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::add_const_on_value_type<typename Diagonal< Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType>::type, const Diagonal< Block<const MatrixType,SizeMinusOne,SizeMinusOne> > >::type SubDiagonalReturnType; /** \brief Return type of matrixQ() */ typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType; /** \brief Default constructor. * * \param [in] size Positive integer, size of the matrix whose tridiagonal * decomposition will be computed. * * The default constructor is useful in cases in which the user intends to * perform decompositions via compute(). The \p size parameter is only * used as a hint. It is not an error to give a wrong \p size, but it may * impair performance. * * \sa compute() for an example. */ Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) : m_matrix(size,size), m_hCoeffs(size > 1 ? size-1 : 1), m_isInitialized(false) {} /** \brief Constructor; computes tridiagonal decomposition of given matrix. * * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition * is to be computed. * * This constructor calls compute() to compute the tridiagonal decomposition. * * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out */ Tridiagonalization(const MatrixType& matrix) : m_matrix(matrix), m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), m_isInitialized(false) { internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); m_isInitialized = true; } /** \brief Computes tridiagonal decomposition of given matrix. * * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition * is to be computed. * \returns Reference to \c *this * * The tridiagonal decomposition is computed by bringing the columns of * the matrix successively in the required form using Householder * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes * the size of the given matrix. * * This method reuses of the allocated data in the Tridiagonalization * object, if the size of the matrix does not change. * * Example: \include Tridiagonalization_compute.cpp * Output: \verbinclude Tridiagonalization_compute.out */ Tridiagonalization& compute(const MatrixType& matrix) { m_matrix = matrix; m_hCoeffs.resize(matrix.rows()-1, 1); internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); m_isInitialized = true; return *this; } /** \brief Returns the Householder coefficients. * * \returns a const reference to the vector of Householder coefficients * * \pre Either the constructor Tridiagonalization(const MatrixType&) or * the member function compute(const MatrixType&) has been called before * to compute the tridiagonal decomposition of a matrix. * * The Householder coefficients allow the reconstruction of the matrix * \f$ Q \f$ in the tridiagonal decomposition from the packed data. * * Example: \include Tridiagonalization_householderCoefficients.cpp * Output: \verbinclude Tridiagonalization_householderCoefficients.out * * \sa packedMatrix(), \ref Householder_Module "Householder module" */ inline CoeffVectorType householderCoefficients() const { eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); return m_hCoeffs; } /** \brief Returns the internal representation of the decomposition * * \returns a const reference to a matrix with the internal representation * of the decomposition. * * \pre Either the constructor Tridiagonalization(const MatrixType&) or * the member function compute(const MatrixType&) has been called before * to compute the tridiagonal decomposition of a matrix. * * The returned matrix contains the following information: * - the strict upper triangular part is equal to the input matrix A. * - the diagonal and lower sub-diagonal represent the real tridiagonal * symmetric matrix T. * - the rest of the lower part contains the Householder vectors that, * combined with Householder coefficients returned by * householderCoefficients(), allows to reconstruct the matrix Q as * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. * Here, the matrices \f$ H_i \f$ are the Householder transformations * \f$ H_i = (I - h_i v_i v_i^T) \f$ * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and * \f$ v_i \f$ is the Householder vector defined by * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ * with M the matrix returned by this function. * * See LAPACK for further details on this packed storage. * * Example: \include Tridiagonalization_packedMatrix.cpp * Output: \verbinclude Tridiagonalization_packedMatrix.out * * \sa householderCoefficients() */ inline const MatrixType& packedMatrix() const { eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); return m_matrix; } /** \brief Returns the unitary matrix Q in the decomposition * * \returns object representing the matrix Q * * \pre Either the constructor Tridiagonalization(const MatrixType&) or * the member function compute(const MatrixType&) has been called before * to compute the tridiagonal decomposition of a matrix. * * This function returns a light-weight object of template class * HouseholderSequence. You can either apply it directly to a matrix or * you can convert it to a matrix of type #MatrixType. * * \sa Tridiagonalization(const MatrixType&) for an example, * matrixT(), class HouseholderSequence */ HouseholderSequenceType matrixQ() const { eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) .setLength(m_matrix.rows() - 1) .setShift(1); } /** \brief Returns an expression of the tridiagonal matrix T in the decomposition * * \returns expression object representing the matrix T * * \pre Either the constructor Tridiagonalization(const MatrixType&) or * the member function compute(const MatrixType&) has been called before * to compute the tridiagonal decomposition of a matrix. * * Currently, this function can be used to extract the matrix T from internal * data and copy it to a dense matrix object. In most cases, it may be * sufficient to directly use the packed matrix or the vector expressions * returned by diagonal() and subDiagonal() instead of creating a new * dense copy matrix with this function. * * \sa Tridiagonalization(const MatrixType&) for an example, * matrixQ(), packedMatrix(), diagonal(), subDiagonal() */ MatrixTReturnType matrixT() const { eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); return MatrixTReturnType(m_matrix.real()); } /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. * * \returns expression representing the diagonal of T * * \pre Either the constructor Tridiagonalization(const MatrixType&) or * the member function compute(const MatrixType&) has been called before * to compute the tridiagonal decomposition of a matrix. * * Example: \include Tridiagonalization_diagonal.cpp * Output: \verbinclude Tridiagonalization_diagonal.out * * \sa matrixT(), subDiagonal() */ DiagonalReturnType diagonal() const; /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. * * \returns expression representing the subdiagonal of T * * \pre Either the constructor Tridiagonalization(const MatrixType&) or * the member function compute(const MatrixType&) has been called before * to compute the tridiagonal decomposition of a matrix. * * \sa diagonal() for an example, matrixT() */ SubDiagonalReturnType subDiagonal() const; protected: MatrixType m_matrix; CoeffVectorType m_hCoeffs; bool m_isInitialized; }; template<typename MatrixType> typename Tridiagonalization<MatrixType>::DiagonalReturnType Tridiagonalization<MatrixType>::diagonal() const { eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); return m_matrix.diagonal(); } template<typename MatrixType> typename Tridiagonalization<MatrixType>::SubDiagonalReturnType Tridiagonalization<MatrixType>::subDiagonal() const { eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); Index n = m_matrix.rows(); return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal(); } namespace internal { /** \internal * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. * * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. * On output, the strict upper part is left unchanged, and the lower triangular part * represents the T and Q matrices in packed format has detailed below. * \param[out] hCoeffs returned Householder coefficients (see below) * * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal * and lower sub-diagonal of the matrix \a matA. * The unitary matrix Q is represented in a compact way as a product of * Householder reflectors \f$ H_i \f$ such that: * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. * The Householder reflectors are defined as * \f$ H_i = (I - h_i v_i v_i^T) \f$ * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and * \f$ v_i \f$ is the Householder vector defined by * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. * * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. * * \sa Tridiagonalization::packedMatrix() */ template<typename MatrixType, typename CoeffVectorType> void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) { using numext::conj; typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; Index n = matA.rows(); eigen_assert(n==matA.cols()); eigen_assert(n==hCoeffs.size()+1 || n==1); for (Index i = 0; i<n-1; ++i) { Index remainingSize = n-i-1; RealScalar beta; Scalar h; matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); // Apply similarity transformation to remaining columns, // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1) matA.col(i).coeffRef(i+1) = 1; hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>() * (conj(h) * matA.col(i).tail(remainingSize))); hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>() .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1); matA.col(i).coeffRef(i+1) = beta; hCoeffs.coeffRef(i) = h; } } // forward declaration, implementation at the end of this file template<typename MatrixType, int Size=MatrixType::ColsAtCompileTime, bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex> struct tridiagonalization_inplace_selector; /** \brief Performs a full tridiagonalization in place * * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal * decomposition is to be computed. Only the lower triangular part referenced. * The rest is left unchanged. On output, the orthogonal matrix Q * in the decomposition if \p extractQ is true. * \param[out] diag The diagonal of the tridiagonal matrix T in the * decomposition. * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in * the decomposition. * \param[in] extractQ If true, the orthogonal matrix Q in the * decomposition is computed and stored in \p mat. * * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real * symmetric tridiagonal matrix. * * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower * part of the matrix \p mat is destroyed. * * The vectors \p diag and \p subdiag are not resized. The function * assumes that they are already of the correct size. The length of the * vector \p diag should equal the number of rows in \p mat, and the * length of the vector \p subdiag should be one left. * * This implementation contains an optimized path for 3-by-3 matrices * which is especially useful for plane fitting. * * \note Currently, it requires two temporary vectors to hold the intermediate * Householder coefficients, and to reconstruct the matrix Q from the Householder * reflectors. * * Example (this uses the same matrix as the example in * Tridiagonalization::Tridiagonalization(const MatrixType&)): * \include Tridiagonalization_decomposeInPlace.cpp * Output: \verbinclude Tridiagonalization_decomposeInPlace.out * * \sa class Tridiagonalization */ template<typename MatrixType, typename DiagonalType, typename SubDiagonalType> void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) { eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ); } /** \internal * General full tridiagonalization */ template<typename MatrixType, int Size, bool IsComplex> struct tridiagonalization_inplace_selector { typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType; typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType; typedef typename MatrixType::Index Index; template<typename DiagonalType, typename SubDiagonalType> static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) { CoeffVectorType hCoeffs(mat.cols()-1); tridiagonalization_inplace(mat,hCoeffs); diag = mat.diagonal().real(); subdiag = mat.template diagonal<-1>().real(); if(extractQ) mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) .setLength(mat.rows() - 1) .setShift(1); } }; /** \internal * Specialization for 3x3 real matrices. * Especially useful for plane fitting. */ template<typename MatrixType> struct tridiagonalization_inplace_selector<MatrixType,3,false> { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; template<typename DiagonalType, typename SubDiagonalType> static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) { using std::sqrt; diag[0] = mat(0,0); RealScalar v1norm2 = numext::abs2(mat(2,0)); if(v1norm2 == RealScalar(0)) { diag[1] = mat(1,1); diag[2] = mat(2,2); subdiag[0] = mat(1,0); subdiag[1] = mat(2,1); if (extractQ) mat.setIdentity(); } else { RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2); RealScalar invBeta = RealScalar(1)/beta; Scalar m01 = mat(1,0) * invBeta; Scalar m02 = mat(2,0) * invBeta; Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); diag[1] = mat(1,1) + m02*q; diag[2] = mat(2,2) - m02*q; subdiag[0] = beta; subdiag[1] = mat(2,1) - m01 * q; if (extractQ) { mat << 1, 0, 0, 0, m01, m02, 0, m02, -m01; } } } }; /** \internal * Trivial specialization for 1x1 matrices */ template<typename MatrixType, bool IsComplex> struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex> { typedef typename MatrixType::Scalar Scalar; template<typename DiagonalType, typename SubDiagonalType> static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ) { diag(0,0) = numext::real(mat(0,0)); if(extractQ) mat(0,0) = Scalar(1); } }; /** \internal * \eigenvalues_module \ingroup Eigenvalues_Module * * \brief Expression type for return value of Tridiagonalization::matrixT() * * \tparam MatrixType type of underlying dense matrix */ template<typename MatrixType> struct TridiagonalizationMatrixTReturnType : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> > { typedef typename MatrixType::Index Index; public: /** \brief Constructor. * * \param[in] mat The underlying dense matrix */ TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } template <typename ResultType> inline void evalTo(ResultType& result) const { result.setZero(); result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); result.diagonal() = m_matrix.diagonal(); result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); } Index rows() const { return m_matrix.rows(); } Index cols() const { return m_matrix.cols(); } protected: typename MatrixType::Nested m_matrix; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_TRIDIAGONALIZATION_H