//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the CFG and CFGBuilder classes for representing and // building Control-Flow Graphs (CFGs) from ASTs. // //===----------------------------------------------------------------------===// #include "clang/Analysis/CFG.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/CharUnits.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Builtins.h" #include "llvm/ADT/DenseMap.h" #include <memory> #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Format.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/SaveAndRestore.h" using namespace clang; namespace { static SourceLocation GetEndLoc(Decl *D) { if (VarDecl *VD = dyn_cast<VarDecl>(D)) if (Expr *Ex = VD->getInit()) return Ex->getSourceRange().getEnd(); return D->getLocation(); } class CFGBuilder; /// The CFG builder uses a recursive algorithm to build the CFG. When /// we process an expression, sometimes we know that we must add the /// subexpressions as block-level expressions. For example: /// /// exp1 || exp2 /// /// When processing the '||' expression, we know that exp1 and exp2 /// need to be added as block-level expressions, even though they /// might not normally need to be. AddStmtChoice records this /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then /// the builder has an option not to add a subexpression as a /// block-level expression. /// class AddStmtChoice { public: enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 }; AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {} bool alwaysAdd(CFGBuilder &builder, const Stmt *stmt) const; /// Return a copy of this object, except with the 'always-add' bit /// set as specified. AddStmtChoice withAlwaysAdd(bool alwaysAdd) const { return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd); } private: Kind kind; }; /// LocalScope - Node in tree of local scopes created for C++ implicit /// destructor calls generation. It contains list of automatic variables /// declared in the scope and link to position in previous scope this scope /// began in. /// /// The process of creating local scopes is as follows: /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null), /// - Before processing statements in scope (e.g. CompoundStmt) create /// LocalScope object using CFGBuilder::ScopePos as link to previous scope /// and set CFGBuilder::ScopePos to the end of new scope, /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points /// at this VarDecl, /// - For every normal (without jump) end of scope add to CFGBlock destructors /// for objects in the current scope, /// - For every jump add to CFGBlock destructors for objects /// between CFGBuilder::ScopePos and local scope position saved for jump /// target. Thanks to C++ restrictions on goto jumps we can be sure that /// jump target position will be on the path to root from CFGBuilder::ScopePos /// (adding any variable that doesn't need constructor to be called to /// LocalScope can break this assumption), /// class LocalScope { public: typedef BumpVector<VarDecl*> AutomaticVarsTy; /// const_iterator - Iterates local scope backwards and jumps to previous /// scope on reaching the beginning of currently iterated scope. class const_iterator { const LocalScope* Scope; /// VarIter is guaranteed to be greater then 0 for every valid iterator. /// Invalid iterator (with null Scope) has VarIter equal to 0. unsigned VarIter; public: /// Create invalid iterator. Dereferencing invalid iterator is not allowed. /// Incrementing invalid iterator is allowed and will result in invalid /// iterator. const_iterator() : Scope(nullptr), VarIter(0) {} /// Create valid iterator. In case when S.Prev is an invalid iterator and /// I is equal to 0, this will create invalid iterator. const_iterator(const LocalScope& S, unsigned I) : Scope(&S), VarIter(I) { // Iterator to "end" of scope is not allowed. Handle it by going up // in scopes tree possibly up to invalid iterator in the root. if (VarIter == 0 && Scope) *this = Scope->Prev; } VarDecl *const* operator->() const { assert (Scope && "Dereferencing invalid iterator is not allowed"); assert (VarIter != 0 && "Iterator has invalid value of VarIter member"); return &Scope->Vars[VarIter - 1]; } VarDecl *operator*() const { return *this->operator->(); } const_iterator &operator++() { if (!Scope) return *this; assert (VarIter != 0 && "Iterator has invalid value of VarIter member"); --VarIter; if (VarIter == 0) *this = Scope->Prev; return *this; } const_iterator operator++(int) { const_iterator P = *this; ++*this; return P; } bool operator==(const const_iterator &rhs) const { return Scope == rhs.Scope && VarIter == rhs.VarIter; } bool operator!=(const const_iterator &rhs) const { return !(*this == rhs); } LLVM_EXPLICIT operator bool() const { return *this != const_iterator(); } int distance(const_iterator L); }; friend class const_iterator; private: BumpVectorContext ctx; /// Automatic variables in order of declaration. AutomaticVarsTy Vars; /// Iterator to variable in previous scope that was declared just before /// begin of this scope. const_iterator Prev; public: /// Constructs empty scope linked to previous scope in specified place. LocalScope(BumpVectorContext &ctx, const_iterator P) : ctx(ctx), Vars(ctx, 4), Prev(P) {} /// Begin of scope in direction of CFG building (backwards). const_iterator begin() const { return const_iterator(*this, Vars.size()); } void addVar(VarDecl *VD) { Vars.push_back(VD, ctx); } }; /// distance - Calculates distance from this to L. L must be reachable from this /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t. /// number of scopes between this and L. int LocalScope::const_iterator::distance(LocalScope::const_iterator L) { int D = 0; const_iterator F = *this; while (F.Scope != L.Scope) { assert (F != const_iterator() && "L iterator is not reachable from F iterator."); D += F.VarIter; F = F.Scope->Prev; } D += F.VarIter - L.VarIter; return D; } /// BlockScopePosPair - Structure for specifying position in CFG during its /// build process. It consists of CFGBlock that specifies position in CFG graph /// and LocalScope::const_iterator that specifies position in LocalScope graph. struct BlockScopePosPair { BlockScopePosPair() : block(nullptr) {} BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos) : block(b), scopePosition(scopePos) {} CFGBlock *block; LocalScope::const_iterator scopePosition; }; /// TryResult - a class representing a variant over the values /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool, /// and is used by the CFGBuilder to decide if a branch condition /// can be decided up front during CFG construction. class TryResult { int X; public: TryResult(bool b) : X(b ? 1 : 0) {} TryResult() : X(-1) {} bool isTrue() const { return X == 1; } bool isFalse() const { return X == 0; } bool isKnown() const { return X >= 0; } void negate() { assert(isKnown()); X ^= 0x1; } }; class reverse_children { llvm::SmallVector<Stmt *, 12> childrenBuf; ArrayRef<Stmt*> children; public: reverse_children(Stmt *S); typedef ArrayRef<Stmt*>::reverse_iterator iterator; iterator begin() const { return children.rbegin(); } iterator end() const { return children.rend(); } }; reverse_children::reverse_children(Stmt *S) { if (CallExpr *CE = dyn_cast<CallExpr>(S)) { children = CE->getRawSubExprs(); return; } switch (S->getStmtClass()) { // Note: Fill in this switch with more cases we want to optimize. case Stmt::InitListExprClass: { InitListExpr *IE = cast<InitListExpr>(S); children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()), IE->getNumInits()); return; } default: break; } // Default case for all other statements. for (Stmt::child_range I = S->children(); I; ++I) { childrenBuf.push_back(*I); } // This needs to be done *after* childrenBuf has been populated. children = childrenBuf; } /// CFGBuilder - This class implements CFG construction from an AST. /// The builder is stateful: an instance of the builder should be used to only /// construct a single CFG. /// /// Example usage: /// /// CFGBuilder builder; /// CFG* cfg = builder.BuildAST(stmt1); /// /// CFG construction is done via a recursive walk of an AST. We actually parse /// the AST in reverse order so that the successor of a basic block is /// constructed prior to its predecessor. This allows us to nicely capture /// implicit fall-throughs without extra basic blocks. /// class CFGBuilder { typedef BlockScopePosPair JumpTarget; typedef BlockScopePosPair JumpSource; ASTContext *Context; std::unique_ptr<CFG> cfg; CFGBlock *Block; CFGBlock *Succ; JumpTarget ContinueJumpTarget; JumpTarget BreakJumpTarget; CFGBlock *SwitchTerminatedBlock; CFGBlock *DefaultCaseBlock; CFGBlock *TryTerminatedBlock; // Current position in local scope. LocalScope::const_iterator ScopePos; // LabelMap records the mapping from Label expressions to their jump targets. typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy; LabelMapTy LabelMap; // A list of blocks that end with a "goto" that must be backpatched to their // resolved targets upon completion of CFG construction. typedef std::vector<JumpSource> BackpatchBlocksTy; BackpatchBlocksTy BackpatchBlocks; // A list of labels whose address has been taken (for indirect gotos). typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy; LabelSetTy AddressTakenLabels; bool badCFG; const CFG::BuildOptions &BuildOpts; // State to track for building switch statements. bool switchExclusivelyCovered; Expr::EvalResult *switchCond; CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry; const Stmt *lastLookup; // Caches boolean evaluations of expressions to avoid multiple re-evaluations // during construction of branches for chained logical operators. typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy; CachedBoolEvalsTy CachedBoolEvals; public: explicit CFGBuilder(ASTContext *astContext, const CFG::BuildOptions &buildOpts) : Context(astContext), cfg(new CFG()), // crew a new CFG Block(nullptr), Succ(nullptr), SwitchTerminatedBlock(nullptr), DefaultCaseBlock(nullptr), TryTerminatedBlock(nullptr), badCFG(false), BuildOpts(buildOpts), switchExclusivelyCovered(false), switchCond(nullptr), cachedEntry(nullptr), lastLookup(nullptr) {} // buildCFG - Used by external clients to construct the CFG. CFG* buildCFG(const Decl *D, Stmt *Statement); bool alwaysAdd(const Stmt *stmt); private: // Visitors to walk an AST and construct the CFG. CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc); CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc); CFGBlock *VisitBreakStmt(BreakStmt *B); CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc); CFGBlock *VisitCaseStmt(CaseStmt *C); CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc); CFGBlock *VisitCompoundStmt(CompoundStmt *C); CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C, AddStmtChoice asc); CFGBlock *VisitContinueStmt(ContinueStmt *C); CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, AddStmtChoice asc); CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S); CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc); CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc); CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc); CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S); CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, AddStmtChoice asc); CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, AddStmtChoice asc); CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T); CFGBlock *VisitCXXTryStmt(CXXTryStmt *S); CFGBlock *VisitDeclStmt(DeclStmt *DS); CFGBlock *VisitDeclSubExpr(DeclStmt *DS); CFGBlock *VisitDefaultStmt(DefaultStmt *D); CFGBlock *VisitDoStmt(DoStmt *D); CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc); CFGBlock *VisitForStmt(ForStmt *F); CFGBlock *VisitGotoStmt(GotoStmt *G); CFGBlock *VisitIfStmt(IfStmt *I); CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc); CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I); CFGBlock *VisitLabelStmt(LabelStmt *L); CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc); CFGBlock *VisitLogicalOperator(BinaryOperator *B); std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B, Stmt *Term, CFGBlock *TrueBlock, CFGBlock *FalseBlock); CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc); CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S); CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S); CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S); CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S); CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S); CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S); CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E); CFGBlock *VisitReturnStmt(ReturnStmt *R); CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc); CFGBlock *VisitSwitchStmt(SwitchStmt *S); CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, AddStmtChoice asc); CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc); CFGBlock *VisitWhileStmt(WhileStmt *W); CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd); CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc); CFGBlock *VisitChildren(Stmt *S); CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc); // Visitors to walk an AST and generate destructors of temporaries in // full expression. CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false); CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E); CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E); CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E, bool BindToTemporary); CFGBlock * VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E, bool BindToTemporary); // NYS == Not Yet Supported CFGBlock *NYS() { badCFG = true; return Block; } void autoCreateBlock() { if (!Block) Block = createBlock(); } CFGBlock *createBlock(bool add_successor = true); CFGBlock *createNoReturnBlock(); CFGBlock *addStmt(Stmt *S) { return Visit(S, AddStmtChoice::AlwaysAdd); } CFGBlock *addInitializer(CXXCtorInitializer *I); void addAutomaticObjDtors(LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt *S); void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD); // Local scopes creation. LocalScope* createOrReuseLocalScope(LocalScope* Scope); void addLocalScopeForStmt(Stmt *S); LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = nullptr); LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr); void addLocalScopeAndDtors(Stmt *S); // Interface to CFGBlock - adding CFGElements. void appendStmt(CFGBlock *B, const Stmt *S) { if (alwaysAdd(S) && cachedEntry) cachedEntry->second = B; // All block-level expressions should have already been IgnoreParens()ed. assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S); B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext()); } void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) { B->appendInitializer(I, cfg->getBumpVectorContext()); } void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) { B->appendNewAllocator(NE, cfg->getBumpVectorContext()); } void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) { B->appendBaseDtor(BS, cfg->getBumpVectorContext()); } void appendMemberDtor(CFGBlock *B, FieldDecl *FD) { B->appendMemberDtor(FD, cfg->getBumpVectorContext()); } void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) { B->appendTemporaryDtor(E, cfg->getBumpVectorContext()); } void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) { B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext()); } void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) { B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext()); } void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E); void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) { B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable), cfg->getBumpVectorContext()); } /// Add a reachable successor to a block, with the alternate variant that is /// unreachable. void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) { B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock), cfg->getBumpVectorContext()); } /// \brief Find a relational comparison with an expression evaluating to a /// boolean and a constant other than 0 and 1. /// e.g. if ((x < y) == 10) TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) { const Expr *LHSExpr = B->getLHS()->IgnoreParens(); const Expr *RHSExpr = B->getRHS()->IgnoreParens(); const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr); const Expr *BoolExpr = RHSExpr; bool IntFirst = true; if (!IntLiteral) { IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr); BoolExpr = LHSExpr; IntFirst = false; } if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue()) return TryResult(); llvm::APInt IntValue = IntLiteral->getValue(); if ((IntValue == 1) || (IntValue == 0)) return TryResult(); bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() || !IntValue.isNegative(); BinaryOperatorKind Bok = B->getOpcode(); if (Bok == BO_GT || Bok == BO_GE) { // Always true for 10 > bool and bool > -1 // Always false for -1 > bool and bool > 10 return TryResult(IntFirst == IntLarger); } else { // Always true for -1 < bool and bool < 10 // Always false for 10 < bool and bool < -1 return TryResult(IntFirst != IntLarger); } } /// Find an incorrect equality comparison. Either with an expression /// evaluating to a boolean and a constant other than 0 and 1. /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to /// true/false e.q. (x & 8) == 4. TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) { const Expr *LHSExpr = B->getLHS()->IgnoreParens(); const Expr *RHSExpr = B->getRHS()->IgnoreParens(); const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr); const Expr *BoolExpr = RHSExpr; if (!IntLiteral) { IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr); BoolExpr = LHSExpr; } if (!IntLiteral) return TryResult(); const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr); if (BitOp && (BitOp->getOpcode() == BO_And || BitOp->getOpcode() == BO_Or)) { const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens(); const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens(); const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2); if (!IntLiteral2) IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2); if (!IntLiteral2) return TryResult(); llvm::APInt L1 = IntLiteral->getValue(); llvm::APInt L2 = IntLiteral2->getValue(); if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) || (BitOp->getOpcode() == BO_Or && (L2 | L1) != L1)) { if (BuildOpts.Observer) BuildOpts.Observer->compareBitwiseEquality(B, B->getOpcode() != BO_EQ); TryResult(B->getOpcode() != BO_EQ); } } else if (BoolExpr->isKnownToHaveBooleanValue()) { llvm::APInt IntValue = IntLiteral->getValue(); if ((IntValue == 1) || (IntValue == 0)) { return TryResult(); } return TryResult(B->getOpcode() != BO_EQ); } return TryResult(); } TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation, const llvm::APSInt &Value1, const llvm::APSInt &Value2) { assert(Value1.isSigned() == Value2.isSigned()); switch (Relation) { default: return TryResult(); case BO_EQ: return TryResult(Value1 == Value2); case BO_NE: return TryResult(Value1 != Value2); case BO_LT: return TryResult(Value1 < Value2); case BO_LE: return TryResult(Value1 <= Value2); case BO_GT: return TryResult(Value1 > Value2); case BO_GE: return TryResult(Value1 >= Value2); } } /// \brief Find a pair of comparison expressions with or without parentheses /// with a shared variable and constants and a logical operator between them /// that always evaluates to either true or false. /// e.g. if (x != 3 || x != 4) TryResult checkIncorrectLogicOperator(const BinaryOperator *B) { assert(B->isLogicalOp()); const BinaryOperator *LHS = dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens()); const BinaryOperator *RHS = dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens()); if (!LHS || !RHS) return TryResult(); if (!LHS->isComparisonOp() || !RHS->isComparisonOp()) return TryResult(); BinaryOperatorKind BO1 = LHS->getOpcode(); const DeclRefExpr *Decl1 = dyn_cast<DeclRefExpr>(LHS->getLHS()->IgnoreParenImpCasts()); const IntegerLiteral *Literal1 = dyn_cast<IntegerLiteral>(LHS->getRHS()->IgnoreParens()); if (!Decl1 && !Literal1) { if (BO1 == BO_GT) BO1 = BO_LT; else if (BO1 == BO_GE) BO1 = BO_LE; else if (BO1 == BO_LT) BO1 = BO_GT; else if (BO1 == BO_LE) BO1 = BO_GE; Decl1 = dyn_cast<DeclRefExpr>(LHS->getRHS()->IgnoreParenImpCasts()); Literal1 = dyn_cast<IntegerLiteral>(LHS->getLHS()->IgnoreParens()); } if (!Decl1 || !Literal1) return TryResult(); BinaryOperatorKind BO2 = RHS->getOpcode(); const DeclRefExpr *Decl2 = dyn_cast<DeclRefExpr>(RHS->getLHS()->IgnoreParenImpCasts()); const IntegerLiteral *Literal2 = dyn_cast<IntegerLiteral>(RHS->getRHS()->IgnoreParens()); if (!Decl2 && !Literal2) { if (BO2 == BO_GT) BO2 = BO_LT; else if (BO2 == BO_GE) BO2 = BO_LE; else if (BO2 == BO_LT) BO2 = BO_GT; else if (BO2 == BO_LE) BO2 = BO_GE; Decl2 = dyn_cast<DeclRefExpr>(RHS->getRHS()->IgnoreParenImpCasts()); Literal2 = dyn_cast<IntegerLiteral>(RHS->getLHS()->IgnoreParens()); } if (!Decl2 || !Literal2) return TryResult(); // Check that it is the same variable on both sides. if (Decl1->getDecl() != Decl2->getDecl()) return TryResult(); llvm::APSInt L1, L2; if (!Literal1->EvaluateAsInt(L1, *Context) || !Literal2->EvaluateAsInt(L2, *Context)) return TryResult(); // Can't compare signed with unsigned or with different bit width. if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth()) return TryResult(); // Values that will be used to determine if result of logical // operator is always true/false const llvm::APSInt Values[] = { // Value less than both Value1 and Value2 llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()), // L1 L1, // Value between Value1 and Value2 ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1), L1.isUnsigned()), // L2 L2, // Value greater than both Value1 and Value2 llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()), }; // Check whether expression is always true/false by evaluating the following // * variable x is less than the smallest literal. // * variable x is equal to the smallest literal. // * Variable x is between smallest and largest literal. // * Variable x is equal to the largest literal. // * Variable x is greater than largest literal. bool AlwaysTrue = true, AlwaysFalse = true; for (unsigned int ValueIndex = 0; ValueIndex < sizeof(Values) / sizeof(Values[0]); ++ValueIndex) { llvm::APSInt Value = Values[ValueIndex]; TryResult Res1, Res2; Res1 = analyzeLogicOperatorCondition(BO1, Value, L1); Res2 = analyzeLogicOperatorCondition(BO2, Value, L2); if (!Res1.isKnown() || !Res2.isKnown()) return TryResult(); if (B->getOpcode() == BO_LAnd) { AlwaysTrue &= (Res1.isTrue() && Res2.isTrue()); AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue()); } else { AlwaysTrue &= (Res1.isTrue() || Res2.isTrue()); AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue()); } } if (AlwaysTrue || AlwaysFalse) { if (BuildOpts.Observer) BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue); return TryResult(AlwaysTrue); } return TryResult(); } /// Try and evaluate an expression to an integer constant. bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) { if (!BuildOpts.PruneTriviallyFalseEdges) return false; return !S->isTypeDependent() && !S->isValueDependent() && S->EvaluateAsRValue(outResult, *Context); } /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1 /// if we can evaluate to a known value, otherwise return -1. TryResult tryEvaluateBool(Expr *S) { if (!BuildOpts.PruneTriviallyFalseEdges || S->isTypeDependent() || S->isValueDependent()) return TryResult(); if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) { if (Bop->isLogicalOp()) { // Check the cache first. CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S); if (I != CachedBoolEvals.end()) return I->second; // already in map; // Retrieve result at first, or the map might be updated. TryResult Result = evaluateAsBooleanConditionNoCache(S); CachedBoolEvals[S] = Result; // update or insert return Result; } else { switch (Bop->getOpcode()) { default: break; // For 'x & 0' and 'x * 0', we can determine that // the value is always false. case BO_Mul: case BO_And: { // If either operand is zero, we know the value // must be false. llvm::APSInt IntVal; if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) { if (IntVal.getBoolValue() == false) { return TryResult(false); } } if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) { if (IntVal.getBoolValue() == false) { return TryResult(false); } } } break; } } } return evaluateAsBooleanConditionNoCache(S); } /// \brief Evaluate as boolean \param E without using the cache. TryResult evaluateAsBooleanConditionNoCache(Expr *E) { if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) { if (Bop->isLogicalOp()) { TryResult LHS = tryEvaluateBool(Bop->getLHS()); if (LHS.isKnown()) { // We were able to evaluate the LHS, see if we can get away with not // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr)) return LHS.isTrue(); TryResult RHS = tryEvaluateBool(Bop->getRHS()); if (RHS.isKnown()) { if (Bop->getOpcode() == BO_LOr) return LHS.isTrue() || RHS.isTrue(); else return LHS.isTrue() && RHS.isTrue(); } } else { TryResult RHS = tryEvaluateBool(Bop->getRHS()); if (RHS.isKnown()) { // We can't evaluate the LHS; however, sometimes the result // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr)) return RHS.isTrue(); } else { TryResult BopRes = checkIncorrectLogicOperator(Bop); if (BopRes.isKnown()) return BopRes.isTrue(); } } return TryResult(); } else if (Bop->isEqualityOp()) { TryResult BopRes = checkIncorrectEqualityOperator(Bop); if (BopRes.isKnown()) return BopRes.isTrue(); } else if (Bop->isRelationalOp()) { TryResult BopRes = checkIncorrectRelationalOperator(Bop); if (BopRes.isKnown()) return BopRes.isTrue(); } } bool Result; if (E->EvaluateAsBooleanCondition(Result, *Context)) return Result; return TryResult(); } }; inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder, const Stmt *stmt) const { return builder.alwaysAdd(stmt) || kind == AlwaysAdd; } bool CFGBuilder::alwaysAdd(const Stmt *stmt) { bool shouldAdd = BuildOpts.alwaysAdd(stmt); if (!BuildOpts.forcedBlkExprs) return shouldAdd; if (lastLookup == stmt) { if (cachedEntry) { assert(cachedEntry->first == stmt); return true; } return shouldAdd; } lastLookup = stmt; // Perform the lookup! CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs; if (!fb) { // No need to update 'cachedEntry', since it will always be null. assert(!cachedEntry); return shouldAdd; } CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt); if (itr == fb->end()) { cachedEntry = nullptr; return shouldAdd; } cachedEntry = &*itr; return true; } // FIXME: Add support for dependent-sized array types in C++? // Does it even make sense to build a CFG for an uninstantiated template? static const VariableArrayType *FindVA(const Type *t) { while (const ArrayType *vt = dyn_cast<ArrayType>(t)) { if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt)) if (vat->getSizeExpr()) return vat; t = vt->getElementType().getTypePtr(); } return nullptr; } /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an /// arbitrary statement. Examples include a single expression or a function /// body (compound statement). The ownership of the returned CFG is /// transferred to the caller. If CFG construction fails, this method returns /// NULL. CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) { assert(cfg.get()); if (!Statement) return nullptr; // Create an empty block that will serve as the exit block for the CFG. Since // this is the first block added to the CFG, it will be implicitly registered // as the exit block. Succ = createBlock(); assert(Succ == &cfg->getExit()); Block = nullptr; // the EXIT block is empty. Create all other blocks lazily. if (BuildOpts.AddImplicitDtors) if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D)) addImplicitDtorsForDestructor(DD); // Visit the statements and create the CFG. CFGBlock *B = addStmt(Statement); if (badCFG) return nullptr; // For C++ constructor add initializers to CFG. if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) { for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(), E = CD->init_rend(); I != E; ++I) { B = addInitializer(*I); if (badCFG) return nullptr; } } if (B) Succ = B; // Backpatch the gotos whose label -> block mappings we didn't know when we // encountered them. for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), E = BackpatchBlocks.end(); I != E; ++I ) { CFGBlock *B = I->block; const GotoStmt *G = cast<GotoStmt>(B->getTerminator()); LabelMapTy::iterator LI = LabelMap.find(G->getLabel()); // If there is no target for the goto, then we are looking at an // incomplete AST. Handle this by not registering a successor. if (LI == LabelMap.end()) continue; JumpTarget JT = LI->second; prependAutomaticObjDtorsWithTerminator(B, I->scopePosition, JT.scopePosition); addSuccessor(B, JT.block); } // Add successors to the Indirect Goto Dispatch block (if we have one). if (CFGBlock *B = cfg->getIndirectGotoBlock()) for (LabelSetTy::iterator I = AddressTakenLabels.begin(), E = AddressTakenLabels.end(); I != E; ++I ) { // Lookup the target block. LabelMapTy::iterator LI = LabelMap.find(*I); // If there is no target block that contains label, then we are looking // at an incomplete AST. Handle this by not registering a successor. if (LI == LabelMap.end()) continue; addSuccessor(B, LI->second.block); } // Create an empty entry block that has no predecessors. cfg->setEntry(createBlock()); return cfg.release(); } /// createBlock - Used to lazily create blocks that are connected /// to the current (global) succcessor. CFGBlock *CFGBuilder::createBlock(bool add_successor) { CFGBlock *B = cfg->createBlock(); if (add_successor && Succ) addSuccessor(B, Succ); return B; } /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the /// CFG. It is *not* connected to the current (global) successor, and instead /// directly tied to the exit block in order to be reachable. CFGBlock *CFGBuilder::createNoReturnBlock() { CFGBlock *B = createBlock(false); B->setHasNoReturnElement(); addSuccessor(B, &cfg->getExit(), Succ); return B; } /// addInitializer - Add C++ base or member initializer element to CFG. CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) { if (!BuildOpts.AddInitializers) return Block; bool IsReference = false; bool HasTemporaries = false; // Destructors of temporaries in initialization expression should be called // after initialization finishes. Expr *Init = I->getInit(); if (Init) { if (FieldDecl *FD = I->getAnyMember()) IsReference = FD->getType()->isReferenceType(); HasTemporaries = isa<ExprWithCleanups>(Init); if (BuildOpts.AddTemporaryDtors && HasTemporaries) { // Generate destructors for temporaries in initialization expression. VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(), IsReference); } } autoCreateBlock(); appendInitializer(Block, I); if (Init) { if (HasTemporaries) { // For expression with temporaries go directly to subexpression to omit // generating destructors for the second time. return Visit(cast<ExprWithCleanups>(Init)->getSubExpr()); } return Visit(Init); } return Block; } /// \brief Retrieve the type of the temporary object whose lifetime was /// extended by a local reference with the given initializer. static QualType getReferenceInitTemporaryType(ASTContext &Context, const Expr *Init) { while (true) { // Skip parentheses. Init = Init->IgnoreParens(); // Skip through cleanups. if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) { Init = EWC->getSubExpr(); continue; } // Skip through the temporary-materialization expression. if (const MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { Init = MTE->GetTemporaryExpr(); continue; } // Skip derived-to-base and no-op casts. if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) { if ((CE->getCastKind() == CK_DerivedToBase || CE->getCastKind() == CK_UncheckedDerivedToBase || CE->getCastKind() == CK_NoOp) && Init->getType()->isRecordType()) { Init = CE->getSubExpr(); continue; } } // Skip member accesses into rvalues. if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) { if (!ME->isArrow() && ME->getBase()->isRValue()) { Init = ME->getBase(); continue; } } break; } return Init->getType(); } /// addAutomaticObjDtors - Add to current block automatic objects destructors /// for objects in range of local scope positions. Use S as trigger statement /// for destructors. void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt *S) { if (!BuildOpts.AddImplicitDtors) return; if (B == E) return; // We need to append the destructors in reverse order, but any one of them // may be a no-return destructor which changes the CFG. As a result, buffer // this sequence up and replay them in reverse order when appending onto the // CFGBlock(s). SmallVector<VarDecl*, 10> Decls; Decls.reserve(B.distance(E)); for (LocalScope::const_iterator I = B; I != E; ++I) Decls.push_back(*I); for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(), E = Decls.rend(); I != E; ++I) { // If this destructor is marked as a no-return destructor, we need to // create a new block for the destructor which does not have as a successor // anything built thus far: control won't flow out of this block. QualType Ty = (*I)->getType(); if (Ty->isReferenceType()) { Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit()); } Ty = Context->getBaseElementType(Ty); const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); if (Dtor->isNoReturn()) Block = createNoReturnBlock(); else autoCreateBlock(); appendAutomaticObjDtor(Block, *I, S); } } /// addImplicitDtorsForDestructor - Add implicit destructors generated for /// base and member objects in destructor. void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) { assert (BuildOpts.AddImplicitDtors && "Can be called only when dtors should be added"); const CXXRecordDecl *RD = DD->getParent(); // At the end destroy virtual base objects. for (const auto &VI : RD->vbases()) { const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl(); if (!CD->hasTrivialDestructor()) { autoCreateBlock(); appendBaseDtor(Block, &VI); } } // Before virtual bases destroy direct base objects. for (const auto &BI : RD->bases()) { if (!BI.isVirtual()) { const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl(); if (!CD->hasTrivialDestructor()) { autoCreateBlock(); appendBaseDtor(Block, &BI); } } } // First destroy member objects. for (auto *FI : RD->fields()) { // Check for constant size array. Set type to array element type. QualType QT = FI->getType(); if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) { if (AT->getSize() == 0) continue; QT = AT->getElementType(); } if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) if (!CD->hasTrivialDestructor()) { autoCreateBlock(); appendMemberDtor(Block, FI); } } } /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either /// way return valid LocalScope object. LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) { if (!Scope) { llvm::BumpPtrAllocator &alloc = cfg->getAllocator(); Scope = alloc.Allocate<LocalScope>(); BumpVectorContext ctx(alloc); new (Scope) LocalScope(ctx, ScopePos); } return Scope; } /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement /// that should create implicit scope (e.g. if/else substatements). void CFGBuilder::addLocalScopeForStmt(Stmt *S) { if (!BuildOpts.AddImplicitDtors) return; LocalScope *Scope = nullptr; // For compound statement we will be creating explicit scope. if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { for (auto *BI : CS->body()) { Stmt *SI = BI->stripLabelLikeStatements(); if (DeclStmt *DS = dyn_cast<DeclStmt>(SI)) Scope = addLocalScopeForDeclStmt(DS, Scope); } return; } // For any other statement scope will be implicit and as such will be // interesting only for DeclStmt. if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements())) addLocalScopeForDeclStmt(DS); } /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will /// reuse Scope if not NULL. LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope) { if (!BuildOpts.AddImplicitDtors) return Scope; for (auto *DI : DS->decls()) if (VarDecl *VD = dyn_cast<VarDecl>(DI)) Scope = addLocalScopeForVarDecl(VD, Scope); return Scope; } /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will /// create add scope for automatic objects and temporary objects bound to /// const reference. Will reuse Scope if not NULL. LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope) { if (!BuildOpts.AddImplicitDtors) return Scope; // Check if variable is local. switch (VD->getStorageClass()) { case SC_None: case SC_Auto: case SC_Register: break; default: return Scope; } // Check for const references bound to temporary. Set type to pointee. QualType QT = VD->getType(); if (QT.getTypePtr()->isReferenceType()) { // Attempt to determine whether this declaration lifetime-extends a // temporary. // // FIXME: This is incorrect. Non-reference declarations can lifetime-extend // temporaries, and a single declaration can extend multiple temporaries. // We should look at the storage duration on each nested // MaterializeTemporaryExpr instead. const Expr *Init = VD->getInit(); if (!Init) return Scope; if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) Init = EWC->getSubExpr(); if (!isa<MaterializeTemporaryExpr>(Init)) return Scope; // Lifetime-extending a temporary. QT = getReferenceInitTemporaryType(*Context, Init); } // Check for constant size array. Set type to array element type. while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) { if (AT->getSize() == 0) return Scope; QT = AT->getElementType(); } // Check if type is a C++ class with non-trivial destructor. if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) if (!CD->hasTrivialDestructor()) { // Add the variable to scope Scope = createOrReuseLocalScope(Scope); Scope->addVar(VD); ScopePos = Scope->begin(); } return Scope; } /// addLocalScopeAndDtors - For given statement add local scope for it and /// add destructors that will cleanup the scope. Will reuse Scope if not NULL. void CFGBuilder::addLocalScopeAndDtors(Stmt *S) { if (!BuildOpts.AddImplicitDtors) return; LocalScope::const_iterator scopeBeginPos = ScopePos; addLocalScopeForStmt(S); addAutomaticObjDtors(ScopePos, scopeBeginPos, S); } /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for /// variables with automatic storage duration to CFGBlock's elements vector. /// Elements will be prepended to physical beginning of the vector which /// happens to be logical end. Use blocks terminator as statement that specifies /// destructors call site. /// FIXME: This mechanism for adding automatic destructors doesn't handle /// no-return destructors properly. void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) { BumpVectorContext &C = cfg->getBumpVectorContext(); CFGBlock::iterator InsertPos = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C); for (LocalScope::const_iterator I = B; I != E; ++I) InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I, Blk->getTerminator()); } /// Visit - Walk the subtree of a statement and add extra /// blocks for ternary operators, &&, and ||. We also process "," and /// DeclStmts (which may contain nested control-flow). CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) { if (!S) { badCFG = true; return nullptr; } if (Expr *E = dyn_cast<Expr>(S)) S = E->IgnoreParens(); switch (S->getStmtClass()) { default: return VisitStmt(S, asc); case Stmt::AddrLabelExprClass: return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc); case Stmt::BinaryConditionalOperatorClass: return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc); case Stmt::BinaryOperatorClass: return VisitBinaryOperator(cast<BinaryOperator>(S), asc); case Stmt::BlockExprClass: return VisitNoRecurse(cast<Expr>(S), asc); case Stmt::BreakStmtClass: return VisitBreakStmt(cast<BreakStmt>(S)); case Stmt::CallExprClass: case Stmt::CXXOperatorCallExprClass: case Stmt::CXXMemberCallExprClass: case Stmt::UserDefinedLiteralClass: return VisitCallExpr(cast<CallExpr>(S), asc); case Stmt::CaseStmtClass: return VisitCaseStmt(cast<CaseStmt>(S)); case Stmt::ChooseExprClass: return VisitChooseExpr(cast<ChooseExpr>(S), asc); case Stmt::CompoundStmtClass: return VisitCompoundStmt(cast<CompoundStmt>(S)); case Stmt::ConditionalOperatorClass: return VisitConditionalOperator(cast<ConditionalOperator>(S), asc); case Stmt::ContinueStmtClass: return VisitContinueStmt(cast<ContinueStmt>(S)); case Stmt::CXXCatchStmtClass: return VisitCXXCatchStmt(cast<CXXCatchStmt>(S)); case Stmt::ExprWithCleanupsClass: return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc); case Stmt::CXXDefaultArgExprClass: case Stmt::CXXDefaultInitExprClass: // FIXME: The expression inside a CXXDefaultArgExpr is owned by the // called function's declaration, not by the caller. If we simply add // this expression to the CFG, we could end up with the same Expr // appearing multiple times. // PR13385 / <rdar://problem/12156507> // // It's likewise possible for multiple CXXDefaultInitExprs for the same // expression to be used in the same function (through aggregate // initialization). return VisitStmt(S, asc); case Stmt::CXXBindTemporaryExprClass: return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc); case Stmt::CXXConstructExprClass: return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc); case Stmt::CXXNewExprClass: return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc); case Stmt::CXXDeleteExprClass: return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc); case Stmt::CXXFunctionalCastExprClass: return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc); case Stmt::CXXTemporaryObjectExprClass: return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc); case Stmt::CXXThrowExprClass: return VisitCXXThrowExpr(cast<CXXThrowExpr>(S)); case Stmt::CXXTryStmtClass: return VisitCXXTryStmt(cast<CXXTryStmt>(S)); case Stmt::CXXForRangeStmtClass: return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); case Stmt::DeclStmtClass: return VisitDeclStmt(cast<DeclStmt>(S)); case Stmt::DefaultStmtClass: return VisitDefaultStmt(cast<DefaultStmt>(S)); case Stmt::DoStmtClass: return VisitDoStmt(cast<DoStmt>(S)); case Stmt::ForStmtClass: return VisitForStmt(cast<ForStmt>(S)); case Stmt::GotoStmtClass: return VisitGotoStmt(cast<GotoStmt>(S)); case Stmt::IfStmtClass: return VisitIfStmt(cast<IfStmt>(S)); case Stmt::ImplicitCastExprClass: return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc); case Stmt::IndirectGotoStmtClass: return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S)); case Stmt::LabelStmtClass: return VisitLabelStmt(cast<LabelStmt>(S)); case Stmt::LambdaExprClass: return VisitLambdaExpr(cast<LambdaExpr>(S), asc); case Stmt::MemberExprClass: return VisitMemberExpr(cast<MemberExpr>(S), asc); case Stmt::NullStmtClass: return Block; case Stmt::ObjCAtCatchStmtClass: return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S)); case Stmt::ObjCAutoreleasePoolStmtClass: return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S)); case Stmt::ObjCAtSynchronizedStmtClass: return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S)); case Stmt::ObjCAtThrowStmtClass: return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S)); case Stmt::ObjCAtTryStmtClass: return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S)); case Stmt::ObjCForCollectionStmtClass: return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S)); case Stmt::OpaqueValueExprClass: return Block; case Stmt::PseudoObjectExprClass: return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S)); case Stmt::ReturnStmtClass: return VisitReturnStmt(cast<ReturnStmt>(S)); case Stmt::UnaryExprOrTypeTraitExprClass: return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S), asc); case Stmt::StmtExprClass: return VisitStmtExpr(cast<StmtExpr>(S), asc); case Stmt::SwitchStmtClass: return VisitSwitchStmt(cast<SwitchStmt>(S)); case Stmt::UnaryOperatorClass: return VisitUnaryOperator(cast<UnaryOperator>(S), asc); case Stmt::WhileStmtClass: return VisitWhileStmt(cast<WhileStmt>(S)); } } CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) { if (asc.alwaysAdd(*this, S)) { autoCreateBlock(); appendStmt(Block, S); } return VisitChildren(S); } /// VisitChildren - Visit the children of a Stmt. CFGBlock *CFGBuilder::VisitChildren(Stmt *S) { CFGBlock *B = Block; // Visit the children in their reverse order so that they appear in // left-to-right (natural) order in the CFG. reverse_children RChildren(S); for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end(); I != E; ++I) { if (Stmt *Child = *I) if (CFGBlock *R = Visit(Child)) B = R; } return B; } CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc) { AddressTakenLabels.insert(A->getLabel()); if (asc.alwaysAdd(*this, A)) { autoCreateBlock(); appendStmt(Block, A); } return Block; } CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) { if (asc.alwaysAdd(*this, U)) { autoCreateBlock(); appendStmt(Block, U); } return Visit(U->getSubExpr(), AddStmtChoice()); } CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) { CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); appendStmt(ConfluenceBlock, B); if (badCFG) return nullptr; return VisitLogicalOperator(B, nullptr, ConfluenceBlock, ConfluenceBlock).first; } std::pair<CFGBlock*, CFGBlock*> CFGBuilder::VisitLogicalOperator(BinaryOperator *B, Stmt *Term, CFGBlock *TrueBlock, CFGBlock *FalseBlock) { // Introspect the RHS. If it is a nested logical operation, we recursively // build the CFG using this function. Otherwise, resort to default // CFG construction behavior. Expr *RHS = B->getRHS()->IgnoreParens(); CFGBlock *RHSBlock, *ExitBlock; do { if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS)) if (B_RHS->isLogicalOp()) { std::tie(RHSBlock, ExitBlock) = VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock); break; } // The RHS is not a nested logical operation. Don't push the terminator // down further, but instead visit RHS and construct the respective // pieces of the CFG, and link up the RHSBlock with the terminator // we have been provided. ExitBlock = RHSBlock = createBlock(false); if (!Term) { assert(TrueBlock == FalseBlock); addSuccessor(RHSBlock, TrueBlock); } else { RHSBlock->setTerminator(Term); TryResult KnownVal = tryEvaluateBool(RHS); if (!KnownVal.isKnown()) KnownVal = tryEvaluateBool(B); addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse()); addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue()); } Block = RHSBlock; RHSBlock = addStmt(RHS); } while (false); if (badCFG) return std::make_pair(nullptr, nullptr); // Generate the blocks for evaluating the LHS. Expr *LHS = B->getLHS()->IgnoreParens(); if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS)) if (B_LHS->isLogicalOp()) { if (B->getOpcode() == BO_LOr) FalseBlock = RHSBlock; else TrueBlock = RHSBlock; // For the LHS, treat 'B' as the terminator that we want to sink // into the nested branch. The RHS always gets the top-most // terminator. return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock); } // Create the block evaluating the LHS. // This contains the '&&' or '||' as the terminator. CFGBlock *LHSBlock = createBlock(false); LHSBlock->setTerminator(B); Block = LHSBlock; CFGBlock *EntryLHSBlock = addStmt(LHS); if (badCFG) return std::make_pair(nullptr, nullptr); // See if this is a known constant. TryResult KnownVal = tryEvaluateBool(LHS); // Now link the LHSBlock with RHSBlock. if (B->getOpcode() == BO_LOr) { addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse()); addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue()); } else { assert(B->getOpcode() == BO_LAnd); addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse()); addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue()); } return std::make_pair(EntryLHSBlock, ExitBlock); } CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc) { // && or || if (B->isLogicalOp()) return VisitLogicalOperator(B); if (B->getOpcode() == BO_Comma) { // , autoCreateBlock(); appendStmt(Block, B); addStmt(B->getRHS()); return addStmt(B->getLHS()); } if (B->isAssignmentOp()) { if (asc.alwaysAdd(*this, B)) { autoCreateBlock(); appendStmt(Block, B); } Visit(B->getLHS()); return Visit(B->getRHS()); } if (asc.alwaysAdd(*this, B)) { autoCreateBlock(); appendStmt(Block, B); } CFGBlock *RBlock = Visit(B->getRHS()); CFGBlock *LBlock = Visit(B->getLHS()); // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr // containing a DoStmt, and the LHS doesn't create a new block, then we should // return RBlock. Otherwise we'll incorrectly return NULL. return (LBlock ? LBlock : RBlock); } CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) { if (asc.alwaysAdd(*this, E)) { autoCreateBlock(); appendStmt(Block, E); } return Block; } CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) { // "break" is a control-flow statement. Thus we stop processing the current // block. if (badCFG) return nullptr; // Now create a new block that ends with the break statement. Block = createBlock(false); Block->setTerminator(B); // If there is no target for the break, then we are looking at an incomplete // AST. This means that the CFG cannot be constructed. if (BreakJumpTarget.block) { addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B); addSuccessor(Block, BreakJumpTarget.block); } else badCFG = true; return Block; } static bool CanThrow(Expr *E, ASTContext &Ctx) { QualType Ty = E->getType(); if (Ty->isFunctionPointerType()) Ty = Ty->getAs<PointerType>()->getPointeeType(); else if (Ty->isBlockPointerType()) Ty = Ty->getAs<BlockPointerType>()->getPointeeType(); const FunctionType *FT = Ty->getAs<FunctionType>(); if (FT) { if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) && Proto->isNothrow(Ctx)) return false; } return true; } CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) { // Compute the callee type. QualType calleeType = C->getCallee()->getType(); if (calleeType == Context->BoundMemberTy) { QualType boundType = Expr::findBoundMemberType(C->getCallee()); // We should only get a null bound type if processing a dependent // CFG. Recover by assuming nothing. if (!boundType.isNull()) calleeType = boundType; } // If this is a call to a no-return function, this stops the block here. bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn(); bool AddEHEdge = false; // Languages without exceptions are assumed to not throw. if (Context->getLangOpts().Exceptions) { if (BuildOpts.AddEHEdges) AddEHEdge = true; } // If this is a call to a builtin function, it might not actually evaluate // its arguments. Don't add them to the CFG if this is the case. bool OmitArguments = false; if (FunctionDecl *FD = C->getDirectCallee()) { if (FD->isNoReturn()) NoReturn = true; if (FD->hasAttr<NoThrowAttr>()) AddEHEdge = false; if (FD->getBuiltinID() == Builtin::BI__builtin_object_size) OmitArguments = true; } if (!CanThrow(C->getCallee(), *Context)) AddEHEdge = false; if (OmitArguments) { assert(!NoReturn && "noreturn calls with unevaluated args not implemented"); assert(!AddEHEdge && "EH calls with unevaluated args not implemented"); autoCreateBlock(); appendStmt(Block, C); return Visit(C->getCallee()); } if (!NoReturn && !AddEHEdge) { return VisitStmt(C, asc.withAlwaysAdd(true)); } if (Block) { Succ = Block; if (badCFG) return nullptr; } if (NoReturn) Block = createNoReturnBlock(); else Block = createBlock(); appendStmt(Block, C); if (AddEHEdge) { // Add exceptional edges. if (TryTerminatedBlock) addSuccessor(Block, TryTerminatedBlock); else addSuccessor(Block, &cfg->getExit()); } return VisitChildren(C); } CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc) { CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); appendStmt(ConfluenceBlock, C); if (badCFG) return nullptr; AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true); Succ = ConfluenceBlock; Block = nullptr; CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd); if (badCFG) return nullptr; Succ = ConfluenceBlock; Block = nullptr; CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd); if (badCFG) return nullptr; Block = createBlock(false); // See if this is a known constant. const TryResult& KnownVal = tryEvaluateBool(C->getCond()); addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock); addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock); Block->setTerminator(C); return addStmt(C->getCond()); } CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) { addLocalScopeAndDtors(C); CFGBlock *LastBlock = Block; for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend(); I != E; ++I ) { // If we hit a segment of code just containing ';' (NullStmts), we can // get a null block back. In such cases, just use the LastBlock if (CFGBlock *newBlock = addStmt(*I)) LastBlock = newBlock; if (badCFG) return nullptr; } return LastBlock; } CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C, AddStmtChoice asc) { const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C); const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr); // Create the confluence block that will "merge" the results of the ternary // expression. CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); appendStmt(ConfluenceBlock, C); if (badCFG) return nullptr; AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true); // Create a block for the LHS expression if there is an LHS expression. A // GCC extension allows LHS to be NULL, causing the condition to be the // value that is returned instead. // e.g: x ?: y is shorthand for: x ? x : y; Succ = ConfluenceBlock; Block = nullptr; CFGBlock *LHSBlock = nullptr; const Expr *trueExpr = C->getTrueExpr(); if (trueExpr != opaqueValue) { LHSBlock = Visit(C->getTrueExpr(), alwaysAdd); if (badCFG) return nullptr; Block = nullptr; } else LHSBlock = ConfluenceBlock; // Create the block for the RHS expression. Succ = ConfluenceBlock; CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd); if (badCFG) return nullptr; // If the condition is a logical '&&' or '||', build a more accurate CFG. if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens())) if (Cond->isLogicalOp()) return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first; // Create the block that will contain the condition. Block = createBlock(false); // See if this is a known constant. const TryResult& KnownVal = tryEvaluateBool(C->getCond()); addSuccessor(Block, LHSBlock, !KnownVal.isFalse()); addSuccessor(Block, RHSBlock, !KnownVal.isTrue()); Block->setTerminator(C); Expr *condExpr = C->getCond(); if (opaqueValue) { // Run the condition expression if it's not trivially expressed in // terms of the opaque value (or if there is no opaque value). if (condExpr != opaqueValue) addStmt(condExpr); // Before that, run the common subexpression if there was one. // At least one of this or the above will be run. return addStmt(BCO->getCommon()); } return addStmt(condExpr); } CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) { // Check if the Decl is for an __label__. If so, elide it from the // CFG entirely. if (isa<LabelDecl>(*DS->decl_begin())) return Block; // This case also handles static_asserts. if (DS->isSingleDecl()) return VisitDeclSubExpr(DS); CFGBlock *B = nullptr; // Build an individual DeclStmt for each decl. for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(), E = DS->decl_rend(); I != E; ++I) { // Get the alignment of the new DeclStmt, padding out to >=8 bytes. unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8 ? 8 : llvm::AlignOf<DeclStmt>::Alignment; // Allocate the DeclStmt using the BumpPtrAllocator. It will get // automatically freed with the CFG. DeclGroupRef DG(*I); Decl *D = *I; void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A); DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D)); cfg->addSyntheticDeclStmt(DSNew, DS); // Append the fake DeclStmt to block. B = VisitDeclSubExpr(DSNew); } return B; } /// VisitDeclSubExpr - Utility method to add block-level expressions for /// DeclStmts and initializers in them. CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) { assert(DS->isSingleDecl() && "Can handle single declarations only."); VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl()); if (!VD) { // Of everything that can be declared in a DeclStmt, only VarDecls impact // runtime semantics. return Block; } bool IsReference = false; bool HasTemporaries = false; // Guard static initializers under a branch. CFGBlock *blockAfterStaticInit = nullptr; if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) { // For static variables, we need to create a branch to track // whether or not they are initialized. if (Block) { Succ = Block; Block = nullptr; if (badCFG) return nullptr; } blockAfterStaticInit = Succ; } // Destructors of temporaries in initialization expression should be called // after initialization finishes. Expr *Init = VD->getInit(); if (Init) { IsReference = VD->getType()->isReferenceType(); HasTemporaries = isa<ExprWithCleanups>(Init); if (BuildOpts.AddTemporaryDtors && HasTemporaries) { // Generate destructors for temporaries in initialization expression. VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(), IsReference); } } autoCreateBlock(); appendStmt(Block, DS); // Keep track of the last non-null block, as 'Block' can be nulled out // if the initializer expression is something like a 'while' in a // statement-expression. CFGBlock *LastBlock = Block; if (Init) { if (HasTemporaries) { // For expression with temporaries go directly to subexpression to omit // generating destructors for the second time. ExprWithCleanups *EC = cast<ExprWithCleanups>(Init); if (CFGBlock *newBlock = Visit(EC->getSubExpr())) LastBlock = newBlock; } else { if (CFGBlock *newBlock = Visit(Init)) LastBlock = newBlock; } } // If the type of VD is a VLA, then we must process its size expressions. for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) { if (CFGBlock *newBlock = addStmt(VA->getSizeExpr())) LastBlock = newBlock; } // Remove variable from local scope. if (ScopePos && VD == *ScopePos) ++ScopePos; CFGBlock *B = LastBlock; if (blockAfterStaticInit) { Succ = B; Block = createBlock(false); Block->setTerminator(DS); addSuccessor(Block, blockAfterStaticInit); addSuccessor(Block, B); B = Block; } return B; } CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) { // We may see an if statement in the middle of a basic block, or it may be the // first statement we are processing. In either case, we create a new basic // block. First, we create the blocks for the then...else statements, and // then we create the block containing the if statement. If we were in the // middle of a block, we stop processing that block. That block is then the // implicit successor for the "then" and "else" clauses. // Save local scope position because in case of condition variable ScopePos // won't be restored when traversing AST. SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); // Create local scope for possible condition variable. // Store scope position. Add implicit destructor. if (VarDecl *VD = I->getConditionVariable()) { LocalScope::const_iterator BeginScopePos = ScopePos; addLocalScopeForVarDecl(VD); addAutomaticObjDtors(ScopePos, BeginScopePos, I); } // The block we were processing is now finished. Make it the successor // block. if (Block) { Succ = Block; if (badCFG) return nullptr; } // Process the false branch. CFGBlock *ElseBlock = Succ; if (Stmt *Else = I->getElse()) { SaveAndRestore<CFGBlock*> sv(Succ); // NULL out Block so that the recursive call to Visit will // create a new basic block. Block = nullptr; // If branch is not a compound statement create implicit scope // and add destructors. if (!isa<CompoundStmt>(Else)) addLocalScopeAndDtors(Else); ElseBlock = addStmt(Else); if (!ElseBlock) // Can occur when the Else body has all NullStmts. ElseBlock = sv.get(); else if (Block) { if (badCFG) return nullptr; } } // Process the true branch. CFGBlock *ThenBlock; { Stmt *Then = I->getThen(); assert(Then); SaveAndRestore<CFGBlock*> sv(Succ); Block = nullptr; // If branch is not a compound statement create implicit scope // and add destructors. if (!isa<CompoundStmt>(Then)) addLocalScopeAndDtors(Then); ThenBlock = addStmt(Then); if (!ThenBlock) { // We can reach here if the "then" body has all NullStmts. // Create an empty block so we can distinguish between true and false // branches in path-sensitive analyses. ThenBlock = createBlock(false); addSuccessor(ThenBlock, sv.get()); } else if (Block) { if (badCFG) return nullptr; } } // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by // having these handle the actual control-flow jump. Note that // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)" // we resort to the old control-flow behavior. This special handling // removes infeasible paths from the control-flow graph by having the // control-flow transfer of '&&' or '||' go directly into the then/else // blocks directly. if (!I->getConditionVariable()) if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens())) if (Cond->isLogicalOp()) return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first; // Now create a new block containing the if statement. Block = createBlock(false); // Set the terminator of the new block to the If statement. Block->setTerminator(I); // See if this is a known constant. const TryResult &KnownVal = tryEvaluateBool(I->getCond()); // Add the successors. If we know that specific branches are // unreachable, inform addSuccessor() of that knowledge. addSuccessor(Block, ThenBlock, /* isReachable = */ !KnownVal.isFalse()); addSuccessor(Block, ElseBlock, /* isReachable = */ !KnownVal.isTrue()); // Add the condition as the last statement in the new block. This may create // new blocks as the condition may contain control-flow. Any newly created // blocks will be pointed to be "Block". CFGBlock *LastBlock = addStmt(I->getCond()); // Finally, if the IfStmt contains a condition variable, add it and its // initializer to the CFG. if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) { autoCreateBlock(); LastBlock = addStmt(const_cast<DeclStmt *>(DS)); } return LastBlock; } CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) { // If we were in the middle of a block we stop processing that block. // // NOTE: If a "return" appears in the middle of a block, this means that the // code afterwards is DEAD (unreachable). We still keep a basic block // for that code; a simple "mark-and-sweep" from the entry block will be // able to report such dead blocks. // Create the new block. Block = createBlock(false); addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R); // If the one of the destructors does not return, we already have the Exit // block as a successor. if (!Block->hasNoReturnElement()) addSuccessor(Block, &cfg->getExit()); // Add the return statement to the block. This may create new blocks if R // contains control-flow (short-circuit operations). return VisitStmt(R, AddStmtChoice::AlwaysAdd); } CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) { // Get the block of the labeled statement. Add it to our map. addStmt(L->getSubStmt()); CFGBlock *LabelBlock = Block; if (!LabelBlock) // This can happen when the body is empty, i.e. LabelBlock = createBlock(); // scopes that only contains NullStmts. assert(LabelMap.find(L->getDecl()) == LabelMap.end() && "label already in map"); LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos); // Labels partition blocks, so this is the end of the basic block we were // processing (L is the block's label). Because this is label (and we have // already processed the substatement) there is no extra control-flow to worry // about. LabelBlock->setLabel(L); if (badCFG) return nullptr; // We set Block to NULL to allow lazy creation of a new block (if necessary); Block = nullptr; // This block is now the implicit successor of other blocks. Succ = LabelBlock; return LabelBlock; } CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) { CFGBlock *LastBlock = VisitNoRecurse(E, asc); for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(), et = E->capture_init_end(); it != et; ++it) { if (Expr *Init = *it) { CFGBlock *Tmp = Visit(Init); if (Tmp) LastBlock = Tmp; } } return LastBlock; } CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) { // Goto is a control-flow statement. Thus we stop processing the current // block and create a new one. Block = createBlock(false); Block->setTerminator(G); // If we already know the mapping to the label block add the successor now. LabelMapTy::iterator I = LabelMap.find(G->getLabel()); if (I == LabelMap.end()) // We will need to backpatch this block later. BackpatchBlocks.push_back(JumpSource(Block, ScopePos)); else { JumpTarget JT = I->second; addAutomaticObjDtors(ScopePos, JT.scopePosition, G); addSuccessor(Block, JT.block); } return Block; } CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) { CFGBlock *LoopSuccessor = nullptr; // Save local scope position because in case of condition variable ScopePos // won't be restored when traversing AST. SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); // Create local scope for init statement and possible condition variable. // Add destructor for init statement and condition variable. // Store scope position for continue statement. if (Stmt *Init = F->getInit()) addLocalScopeForStmt(Init); LocalScope::const_iterator LoopBeginScopePos = ScopePos; if (VarDecl *VD = F->getConditionVariable()) addLocalScopeForVarDecl(VD); LocalScope::const_iterator ContinueScopePos = ScopePos; addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F); // "for" is a control-flow statement. Thus we stop processing the current // block. if (Block) { if (badCFG) return nullptr; LoopSuccessor = Block; } else LoopSuccessor = Succ; // Save the current value for the break targets. // All breaks should go to the code following the loop. SaveAndRestore<JumpTarget> save_break(BreakJumpTarget); BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; // Now create the loop body. { assert(F->getBody()); // Save the current values for Block, Succ, continue and break targets. SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget); // Create an empty block to represent the transition block for looping back // to the head of the loop. If we have increment code, it will // go in this block as well. Block = Succ = TransitionBlock = createBlock(false); TransitionBlock->setLoopTarget(F); if (Stmt *I = F->getInc()) { // Generate increment code in its own basic block. This is the target of // continue statements. Succ = addStmt(I); } // Finish up the increment (or empty) block if it hasn't been already. if (Block) { assert(Block == Succ); if (badCFG) return nullptr; Block = nullptr; } // The starting block for the loop increment is the block that should // represent the 'loop target' for looping back to the start of the loop. ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); ContinueJumpTarget.block->setLoopTarget(F); // Loop body should end with destructor of Condition variable (if any). addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F); // If body is not a compound statement create implicit scope // and add destructors. if (!isa<CompoundStmt>(F->getBody())) addLocalScopeAndDtors(F->getBody()); // Now populate the body block, and in the process create new blocks as we // walk the body of the loop. BodyBlock = addStmt(F->getBody()); if (!BodyBlock) { // In the case of "for (...;...;...);" we can have a null BodyBlock. // Use the continue jump target as the proxy for the body. BodyBlock = ContinueJumpTarget.block; } else if (badCFG) return nullptr; } // Because of short-circuit evaluation, the condition of the loop can span // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that // evaluate the condition. CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; do { Expr *C = F->getCond(); // Specially handle logical operators, which have a slightly // more optimal CFG representation. if (BinaryOperator *Cond = dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr)) if (Cond->isLogicalOp()) { std::tie(EntryConditionBlock, ExitConditionBlock) = VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor); break; } // The default case when not handling logical operators. EntryConditionBlock = ExitConditionBlock = createBlock(false); ExitConditionBlock->setTerminator(F); // See if this is a known constant. TryResult KnownVal(true); if (C) { // Now add the actual condition to the condition block. // Because the condition itself may contain control-flow, new blocks may // be created. Thus we update "Succ" after adding the condition. Block = ExitConditionBlock; EntryConditionBlock = addStmt(C); // If this block contains a condition variable, add both the condition // variable and initializer to the CFG. if (VarDecl *VD = F->getConditionVariable()) { if (Expr *Init = VD->getInit()) { autoCreateBlock(); appendStmt(Block, F->getConditionVariableDeclStmt()); EntryConditionBlock = addStmt(Init); assert(Block == EntryConditionBlock); } } if (Block && badCFG) return nullptr; KnownVal = tryEvaluateBool(C); } // Add the loop body entry as a successor to the condition. addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock); // Link up the condition block with the code that follows the loop. (the // false branch). addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); } while (false); // Link up the loop-back block to the entry condition block. addSuccessor(TransitionBlock, EntryConditionBlock); // The condition block is the implicit successor for any code above the loop. Succ = EntryConditionBlock; // If the loop contains initialization, create a new block for those // statements. This block can also contain statements that precede the loop. if (Stmt *I = F->getInit()) { Block = createBlock(); return addStmt(I); } // There is no loop initialization. We are thus basically a while loop. // NULL out Block to force lazy block construction. Block = nullptr; Succ = EntryConditionBlock; return EntryConditionBlock; } CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) { if (asc.alwaysAdd(*this, M)) { autoCreateBlock(); appendStmt(Block, M); } return Visit(M->getBase()); } CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) { // Objective-C fast enumeration 'for' statements: // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC // // for ( Type newVariable in collection_expression ) { statements } // // becomes: // // prologue: // 1. collection_expression // T. jump to loop_entry // loop_entry: // 1. side-effects of element expression // 1. ObjCForCollectionStmt [performs binding to newVariable] // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil] // TB: // statements // T. jump to loop_entry // FB: // what comes after // // and // // Type existingItem; // for ( existingItem in expression ) { statements } // // becomes: // // the same with newVariable replaced with existingItem; the binding works // the same except that for one ObjCForCollectionStmt::getElement() returns // a DeclStmt and the other returns a DeclRefExpr. // CFGBlock *LoopSuccessor = nullptr; if (Block) { if (badCFG) return nullptr; LoopSuccessor = Block; Block = nullptr; } else LoopSuccessor = Succ; // Build the condition blocks. CFGBlock *ExitConditionBlock = createBlock(false); // Set the terminator for the "exit" condition block. ExitConditionBlock->setTerminator(S); // The last statement in the block should be the ObjCForCollectionStmt, which // performs the actual binding to 'element' and determines if there are any // more items in the collection. appendStmt(ExitConditionBlock, S); Block = ExitConditionBlock; // Walk the 'element' expression to see if there are any side-effects. We // generate new blocks as necessary. We DON'T add the statement by default to // the CFG unless it contains control-flow. CFGBlock *EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd); if (Block) { if (badCFG) return nullptr; Block = nullptr; } // The condition block is the implicit successor for the loop body as well as // any code above the loop. Succ = EntryConditionBlock; // Now create the true branch. { // Save the current values for Succ, continue and break targets. SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget), save_break(BreakJumpTarget); // Add an intermediate block between the BodyBlock and the // EntryConditionBlock to represent the "loop back" transition, for looping // back to the head of the loop. CFGBlock *LoopBackBlock = nullptr; Succ = LoopBackBlock = createBlock(); LoopBackBlock->setLoopTarget(S); BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); ContinueJumpTarget = JumpTarget(Succ, ScopePos); CFGBlock *BodyBlock = addStmt(S->getBody()); if (!BodyBlock) BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;" else if (Block) { if (badCFG) return nullptr; } // This new body block is a successor to our "exit" condition block. addSuccessor(ExitConditionBlock, BodyBlock); } // Link up the condition block with the code that follows the loop. // (the false branch). addSuccessor(ExitConditionBlock, LoopSuccessor); // Now create a prologue block to contain the collection expression. Block = createBlock(); return addStmt(S->getCollection()); } CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) { // Inline the body. return addStmt(S->getSubStmt()); // TODO: consider adding cleanups for the end of @autoreleasepool scope. } CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) { // FIXME: Add locking 'primitives' to CFG for @synchronized. // Inline the body. CFGBlock *SyncBlock = addStmt(S->getSynchBody()); // The sync body starts its own basic block. This makes it a little easier // for diagnostic clients. if (SyncBlock) { if (badCFG) return nullptr; Block = nullptr; Succ = SyncBlock; } // Add the @synchronized to the CFG. autoCreateBlock(); appendStmt(Block, S); // Inline the sync expression. return addStmt(S->getSynchExpr()); } CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) { // FIXME return NYS(); } CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) { autoCreateBlock(); // Add the PseudoObject as the last thing. appendStmt(Block, E); CFGBlock *lastBlock = Block; // Before that, evaluate all of the semantics in order. In // CFG-land, that means appending them in reverse order. for (unsigned i = E->getNumSemanticExprs(); i != 0; ) { Expr *Semantic = E->getSemanticExpr(--i); // If the semantic is an opaque value, we're being asked to bind // it to its source expression. if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic)) Semantic = OVE->getSourceExpr(); if (CFGBlock *B = Visit(Semantic)) lastBlock = B; } return lastBlock; } CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) { CFGBlock *LoopSuccessor = nullptr; // Save local scope position because in case of condition variable ScopePos // won't be restored when traversing AST. SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); // Create local scope for possible condition variable. // Store scope position for continue statement. LocalScope::const_iterator LoopBeginScopePos = ScopePos; if (VarDecl *VD = W->getConditionVariable()) { addLocalScopeForVarDecl(VD); addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W); } // "while" is a control-flow statement. Thus we stop processing the current // block. if (Block) { if (badCFG) return nullptr; LoopSuccessor = Block; Block = nullptr; } else { LoopSuccessor = Succ; } CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; // Process the loop body. { assert(W->getBody()); // Save the current values for Block, Succ, continue and break targets. SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget), save_break(BreakJumpTarget); // Create an empty block to represent the transition block for looping back // to the head of the loop. Succ = TransitionBlock = createBlock(false); TransitionBlock->setLoopTarget(W); ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos); // All breaks should go to the code following the loop. BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); // Loop body should end with destructor of Condition variable (if any). addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W); // If body is not a compound statement create implicit scope // and add destructors. if (!isa<CompoundStmt>(W->getBody())) addLocalScopeAndDtors(W->getBody()); // Create the body. The returned block is the entry to the loop body. BodyBlock = addStmt(W->getBody()); if (!BodyBlock) BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;" else if (Block && badCFG) return nullptr; } // Because of short-circuit evaluation, the condition of the loop can span // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that // evaluate the condition. CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; do { Expr *C = W->getCond(); // Specially handle logical operators, which have a slightly // more optimal CFG representation. if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens())) if (Cond->isLogicalOp()) { std::tie(EntryConditionBlock, ExitConditionBlock) = VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor); break; } // The default case when not handling logical operators. ExitConditionBlock = createBlock(false); ExitConditionBlock->setTerminator(W); // Now add the actual condition to the condition block. // Because the condition itself may contain control-flow, new blocks may // be created. Thus we update "Succ" after adding the condition. Block = ExitConditionBlock; Block = EntryConditionBlock = addStmt(C); // If this block contains a condition variable, add both the condition // variable and initializer to the CFG. if (VarDecl *VD = W->getConditionVariable()) { if (Expr *Init = VD->getInit()) { autoCreateBlock(); appendStmt(Block, W->getConditionVariableDeclStmt()); EntryConditionBlock = addStmt(Init); assert(Block == EntryConditionBlock); } } if (Block && badCFG) return nullptr; // See if this is a known constant. const TryResult& KnownVal = tryEvaluateBool(C); // Add the loop body entry as a successor to the condition. addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock); // Link up the condition block with the code that follows the loop. (the // false branch). addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); } while(false); // Link up the loop-back block to the entry condition block. addSuccessor(TransitionBlock, EntryConditionBlock); // There can be no more statements in the condition block since we loop back // to this block. NULL out Block to force lazy creation of another block. Block = nullptr; // Return the condition block, which is the dominating block for the loop. Succ = EntryConditionBlock; return EntryConditionBlock; } CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) { // FIXME: For now we pretend that @catch and the code it contains does not // exit. return Block; } CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) { // FIXME: This isn't complete. We basically treat @throw like a return // statement. // If we were in the middle of a block we stop processing that block. if (badCFG) return nullptr; // Create the new block. Block = createBlock(false); // The Exit block is the only successor. addSuccessor(Block, &cfg->getExit()); // Add the statement to the block. This may create new blocks if S contains // control-flow (short-circuit operations). return VisitStmt(S, AddStmtChoice::AlwaysAdd); } CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) { // If we were in the middle of a block we stop processing that block. if (badCFG) return nullptr; // Create the new block. Block = createBlock(false); if (TryTerminatedBlock) // The current try statement is the only successor. addSuccessor(Block, TryTerminatedBlock); else // otherwise the Exit block is the only successor. addSuccessor(Block, &cfg->getExit()); // Add the statement to the block. This may create new blocks if S contains // control-flow (short-circuit operations). return VisitStmt(T, AddStmtChoice::AlwaysAdd); } CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) { CFGBlock *LoopSuccessor = nullptr; // "do...while" is a control-flow statement. Thus we stop processing the // current block. if (Block) { if (badCFG) return nullptr; LoopSuccessor = Block; } else LoopSuccessor = Succ; // Because of short-circuit evaluation, the condition of the loop can span // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that // evaluate the condition. CFGBlock *ExitConditionBlock = createBlock(false); CFGBlock *EntryConditionBlock = ExitConditionBlock; // Set the terminator for the "exit" condition block. ExitConditionBlock->setTerminator(D); // Now add the actual condition to the condition block. Because the condition // itself may contain control-flow, new blocks may be created. if (Stmt *C = D->getCond()) { Block = ExitConditionBlock; EntryConditionBlock = addStmt(C); if (Block) { if (badCFG) return nullptr; } } // The condition block is the implicit successor for the loop body. Succ = EntryConditionBlock; // See if this is a known constant. const TryResult &KnownVal = tryEvaluateBool(D->getCond()); // Process the loop body. CFGBlock *BodyBlock = nullptr; { assert(D->getBody()); // Save the current values for Block, Succ, and continue and break targets SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget), save_break(BreakJumpTarget); // All continues within this loop should go to the condition block ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos); // All breaks should go to the code following the loop. BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); // NULL out Block to force lazy instantiation of blocks for the body. Block = nullptr; // If body is not a compound statement create implicit scope // and add destructors. if (!isa<CompoundStmt>(D->getBody())) addLocalScopeAndDtors(D->getBody()); // Create the body. The returned block is the entry to the loop body. BodyBlock = addStmt(D->getBody()); if (!BodyBlock) BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)" else if (Block) { if (badCFG) return nullptr; } if (!KnownVal.isFalse()) { // Add an intermediate block between the BodyBlock and the // ExitConditionBlock to represent the "loop back" transition. Create an // empty block to represent the transition block for looping back to the // head of the loop. // FIXME: Can we do this more efficiently without adding another block? Block = nullptr; Succ = BodyBlock; CFGBlock *LoopBackBlock = createBlock(); LoopBackBlock->setLoopTarget(D); // Add the loop body entry as a successor to the condition. addSuccessor(ExitConditionBlock, LoopBackBlock); } else addSuccessor(ExitConditionBlock, nullptr); } // Link up the condition block with the code that follows the loop. // (the false branch). addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); // There can be no more statements in the body block(s) since we loop back to // the body. NULL out Block to force lazy creation of another block. Block = nullptr; // Return the loop body, which is the dominating block for the loop. Succ = BodyBlock; return BodyBlock; } CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) { // "continue" is a control-flow statement. Thus we stop processing the // current block. if (badCFG) return nullptr; // Now create a new block that ends with the continue statement. Block = createBlock(false); Block->setTerminator(C); // If there is no target for the continue, then we are looking at an // incomplete AST. This means the CFG cannot be constructed. if (ContinueJumpTarget.block) { addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C); addSuccessor(Block, ContinueJumpTarget.block); } else badCFG = true; return Block; } CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, AddStmtChoice asc) { if (asc.alwaysAdd(*this, E)) { autoCreateBlock(); appendStmt(Block, E); } // VLA types have expressions that must be evaluated. CFGBlock *lastBlock = Block; if (E->isArgumentType()) { for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr()); VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) lastBlock = addStmt(VA->getSizeExpr()); } return lastBlock; } /// VisitStmtExpr - Utility method to handle (nested) statement /// expressions (a GCC extension). CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) { if (asc.alwaysAdd(*this, SE)) { autoCreateBlock(); appendStmt(Block, SE); } return VisitCompoundStmt(SE->getSubStmt()); } CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) { // "switch" is a control-flow statement. Thus we stop processing the current // block. CFGBlock *SwitchSuccessor = nullptr; // Save local scope position because in case of condition variable ScopePos // won't be restored when traversing AST. SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); // Create local scope for possible condition variable. // Store scope position. Add implicit destructor. if (VarDecl *VD = Terminator->getConditionVariable()) { LocalScope::const_iterator SwitchBeginScopePos = ScopePos; addLocalScopeForVarDecl(VD); addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator); } if (Block) { if (badCFG) return nullptr; SwitchSuccessor = Block; } else SwitchSuccessor = Succ; // Save the current "switch" context. SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock), save_default(DefaultCaseBlock); SaveAndRestore<JumpTarget> save_break(BreakJumpTarget); // Set the "default" case to be the block after the switch statement. If the // switch statement contains a "default:", this value will be overwritten with // the block for that code. DefaultCaseBlock = SwitchSuccessor; // Create a new block that will contain the switch statement. SwitchTerminatedBlock = createBlock(false); // Now process the switch body. The code after the switch is the implicit // successor. Succ = SwitchSuccessor; BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos); // When visiting the body, the case statements should automatically get linked // up to the switch. We also don't keep a pointer to the body, since all // control-flow from the switch goes to case/default statements. assert(Terminator->getBody() && "switch must contain a non-NULL body"); Block = nullptr; // For pruning unreachable case statements, save the current state // for tracking the condition value. SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered, false); // Determine if the switch condition can be explicitly evaluated. assert(Terminator->getCond() && "switch condition must be non-NULL"); Expr::EvalResult result; bool b = tryEvaluate(Terminator->getCond(), result); SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond, b ? &result : nullptr); // If body is not a compound statement create implicit scope // and add destructors. if (!isa<CompoundStmt>(Terminator->getBody())) addLocalScopeAndDtors(Terminator->getBody()); addStmt(Terminator->getBody()); if (Block) { if (badCFG) return nullptr; } // If we have no "default:" case, the default transition is to the code // following the switch body. Moreover, take into account if all the // cases of a switch are covered (e.g., switching on an enum value). // // Note: We add a successor to a switch that is considered covered yet has no // case statements if the enumeration has no enumerators. bool SwitchAlwaysHasSuccessor = false; SwitchAlwaysHasSuccessor |= switchExclusivelyCovered; SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() && Terminator->getSwitchCaseList(); addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock, !SwitchAlwaysHasSuccessor); // Add the terminator and condition in the switch block. SwitchTerminatedBlock->setTerminator(Terminator); Block = SwitchTerminatedBlock; CFGBlock *LastBlock = addStmt(Terminator->getCond()); // Finally, if the SwitchStmt contains a condition variable, add both the // SwitchStmt and the condition variable initialization to the CFG. if (VarDecl *VD = Terminator->getConditionVariable()) { if (Expr *Init = VD->getInit()) { autoCreateBlock(); appendStmt(Block, Terminator->getConditionVariableDeclStmt()); LastBlock = addStmt(Init); } } return LastBlock; } static bool shouldAddCase(bool &switchExclusivelyCovered, const Expr::EvalResult *switchCond, const CaseStmt *CS, ASTContext &Ctx) { if (!switchCond) return true; bool addCase = false; if (!switchExclusivelyCovered) { if (switchCond->Val.isInt()) { // Evaluate the LHS of the case value. const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx); const llvm::APSInt &condInt = switchCond->Val.getInt(); if (condInt == lhsInt) { addCase = true; switchExclusivelyCovered = true; } else if (condInt < lhsInt) { if (const Expr *RHS = CS->getRHS()) { // Evaluate the RHS of the case value. const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx); if (V2 <= condInt) { addCase = true; switchExclusivelyCovered = true; } } } } else addCase = true; } return addCase; } CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) { // CaseStmts are essentially labels, so they are the first statement in a // block. CFGBlock *TopBlock = nullptr, *LastBlock = nullptr; if (Stmt *Sub = CS->getSubStmt()) { // For deeply nested chains of CaseStmts, instead of doing a recursion // (which can blow out the stack), manually unroll and create blocks // along the way. while (isa<CaseStmt>(Sub)) { CFGBlock *currentBlock = createBlock(false); currentBlock->setLabel(CS); if (TopBlock) addSuccessor(LastBlock, currentBlock); else TopBlock = currentBlock; addSuccessor(SwitchTerminatedBlock, shouldAddCase(switchExclusivelyCovered, switchCond, CS, *Context) ? currentBlock : nullptr); LastBlock = currentBlock; CS = cast<CaseStmt>(Sub); Sub = CS->getSubStmt(); } addStmt(Sub); } CFGBlock *CaseBlock = Block; if (!CaseBlock) CaseBlock = createBlock(); // Cases statements partition blocks, so this is the top of the basic block we // were processing (the "case XXX:" is the label). CaseBlock->setLabel(CS); if (badCFG) return nullptr; // Add this block to the list of successors for the block with the switch // statement. assert(SwitchTerminatedBlock); addSuccessor(SwitchTerminatedBlock, CaseBlock, shouldAddCase(switchExclusivelyCovered, switchCond, CS, *Context)); // We set Block to NULL to allow lazy creation of a new block (if necessary) Block = nullptr; if (TopBlock) { addSuccessor(LastBlock, CaseBlock); Succ = TopBlock; } else { // This block is now the implicit successor of other blocks. Succ = CaseBlock; } return Succ; } CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) { if (Terminator->getSubStmt()) addStmt(Terminator->getSubStmt()); DefaultCaseBlock = Block; if (!DefaultCaseBlock) DefaultCaseBlock = createBlock(); // Default statements partition blocks, so this is the top of the basic block // we were processing (the "default:" is the label). DefaultCaseBlock->setLabel(Terminator); if (badCFG) return nullptr; // Unlike case statements, we don't add the default block to the successors // for the switch statement immediately. This is done when we finish // processing the switch statement. This allows for the default case // (including a fall-through to the code after the switch statement) to always // be the last successor of a switch-terminated block. // We set Block to NULL to allow lazy creation of a new block (if necessary) Block = nullptr; // This block is now the implicit successor of other blocks. Succ = DefaultCaseBlock; return DefaultCaseBlock; } CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) { // "try"/"catch" is a control-flow statement. Thus we stop processing the // current block. CFGBlock *TrySuccessor = nullptr; if (Block) { if (badCFG) return nullptr; TrySuccessor = Block; } else TrySuccessor = Succ; CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; // Create a new block that will contain the try statement. CFGBlock *NewTryTerminatedBlock = createBlock(false); // Add the terminator in the try block. NewTryTerminatedBlock->setTerminator(Terminator); bool HasCatchAll = false; for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) { // The code after the try is the implicit successor. Succ = TrySuccessor; CXXCatchStmt *CS = Terminator->getHandler(h); if (CS->getExceptionDecl() == nullptr) { HasCatchAll = true; } Block = nullptr; CFGBlock *CatchBlock = VisitCXXCatchStmt(CS); if (!CatchBlock) return nullptr; // Add this block to the list of successors for the block with the try // statement. addSuccessor(NewTryTerminatedBlock, CatchBlock); } if (!HasCatchAll) { if (PrevTryTerminatedBlock) addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock); else addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); } // The code after the try is the implicit successor. Succ = TrySuccessor; // Save the current "try" context. SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock); cfg->addTryDispatchBlock(TryTerminatedBlock); assert(Terminator->getTryBlock() && "try must contain a non-NULL body"); Block = nullptr; return addStmt(Terminator->getTryBlock()); } CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) { // CXXCatchStmt are treated like labels, so they are the first statement in a // block. // Save local scope position because in case of exception variable ScopePos // won't be restored when traversing AST. SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); // Create local scope for possible exception variable. // Store scope position. Add implicit destructor. if (VarDecl *VD = CS->getExceptionDecl()) { LocalScope::const_iterator BeginScopePos = ScopePos; addLocalScopeForVarDecl(VD); addAutomaticObjDtors(ScopePos, BeginScopePos, CS); } if (CS->getHandlerBlock()) addStmt(CS->getHandlerBlock()); CFGBlock *CatchBlock = Block; if (!CatchBlock) CatchBlock = createBlock(); // CXXCatchStmt is more than just a label. They have semantic meaning // as well, as they implicitly "initialize" the catch variable. Add // it to the CFG as a CFGElement so that the control-flow of these // semantics gets captured. appendStmt(CatchBlock, CS); // Also add the CXXCatchStmt as a label, to mirror handling of regular // labels. CatchBlock->setLabel(CS); // Bail out if the CFG is bad. if (badCFG) return nullptr; // We set Block to NULL to allow lazy creation of a new block (if necessary) Block = nullptr; return CatchBlock; } CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) { // C++0x for-range statements are specified as [stmt.ranged]: // // { // auto && __range = range-init; // for ( auto __begin = begin-expr, // __end = end-expr; // __begin != __end; // ++__begin ) { // for-range-declaration = *__begin; // statement // } // } // Save local scope position before the addition of the implicit variables. SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); // Create local scopes and destructors for range, begin and end variables. if (Stmt *Range = S->getRangeStmt()) addLocalScopeForStmt(Range); if (Stmt *BeginEnd = S->getBeginEndStmt()) addLocalScopeForStmt(BeginEnd); addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S); LocalScope::const_iterator ContinueScopePos = ScopePos; // "for" is a control-flow statement. Thus we stop processing the current // block. CFGBlock *LoopSuccessor = nullptr; if (Block) { if (badCFG) return nullptr; LoopSuccessor = Block; } else LoopSuccessor = Succ; // Save the current value for the break targets. // All breaks should go to the code following the loop. SaveAndRestore<JumpTarget> save_break(BreakJumpTarget); BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); // The block for the __begin != __end expression. CFGBlock *ConditionBlock = createBlock(false); ConditionBlock->setTerminator(S); // Now add the actual condition to the condition block. if (Expr *C = S->getCond()) { Block = ConditionBlock; CFGBlock *BeginConditionBlock = addStmt(C); if (badCFG) return nullptr; assert(BeginConditionBlock == ConditionBlock && "condition block in for-range was unexpectedly complex"); (void)BeginConditionBlock; } // The condition block is the implicit successor for the loop body as well as // any code above the loop. Succ = ConditionBlock; // See if this is a known constant. TryResult KnownVal(true); if (S->getCond()) KnownVal = tryEvaluateBool(S->getCond()); // Now create the loop body. { assert(S->getBody()); // Save the current values for Block, Succ, and continue targets. SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget); // Generate increment code in its own basic block. This is the target of // continue statements. Block = nullptr; Succ = addStmt(S->getInc()); ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); // The starting block for the loop increment is the block that should // represent the 'loop target' for looping back to the start of the loop. ContinueJumpTarget.block->setLoopTarget(S); // Finish up the increment block and prepare to start the loop body. assert(Block); if (badCFG) return nullptr; Block = nullptr; // Add implicit scope and dtors for loop variable. addLocalScopeAndDtors(S->getLoopVarStmt()); // Populate a new block to contain the loop body and loop variable. addStmt(S->getBody()); if (badCFG) return nullptr; CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt()); if (badCFG) return nullptr; // This new body block is a successor to our condition block. addSuccessor(ConditionBlock, KnownVal.isFalse() ? nullptr : LoopVarStmtBlock); } // Link up the condition block with the code that follows the loop (the // false branch). addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); // Add the initialization statements. Block = createBlock(); addStmt(S->getBeginEndStmt()); return addStmt(S->getRangeStmt()); } CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc) { if (BuildOpts.AddTemporaryDtors) { // If adding implicit destructors visit the full expression for adding // destructors of temporaries. VisitForTemporaryDtors(E->getSubExpr()); // Full expression has to be added as CFGStmt so it will be sequenced // before destructors of it's temporaries. asc = asc.withAlwaysAdd(true); } return Visit(E->getSubExpr(), asc); } CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, AddStmtChoice asc) { if (asc.alwaysAdd(*this, E)) { autoCreateBlock(); appendStmt(Block, E); // We do not want to propagate the AlwaysAdd property. asc = asc.withAlwaysAdd(false); } return Visit(E->getSubExpr(), asc); } CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc) { autoCreateBlock(); appendStmt(Block, C); return VisitChildren(C); } CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE, AddStmtChoice asc) { autoCreateBlock(); appendStmt(Block, NE); if (NE->getInitializer()) Block = Visit(NE->getInitializer()); if (BuildOpts.AddCXXNewAllocator) appendNewAllocator(Block, NE); if (NE->isArray()) Block = Visit(NE->getArraySize()); for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(), E = NE->placement_arg_end(); I != E; ++I) Block = Visit(*I); return Block; } CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc) { autoCreateBlock(); appendStmt(Block, DE); QualType DTy = DE->getDestroyedType(); DTy = DTy.getNonReferenceType(); CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl(); if (RD) { if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor()) appendDeleteDtor(Block, RD, DE); } return VisitChildren(DE); } CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, AddStmtChoice asc) { if (asc.alwaysAdd(*this, E)) { autoCreateBlock(); appendStmt(Block, E); // We do not want to propagate the AlwaysAdd property. asc = asc.withAlwaysAdd(false); } return Visit(E->getSubExpr(), asc); } CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, AddStmtChoice asc) { autoCreateBlock(); appendStmt(Block, C); return VisitChildren(C); } CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc) { if (asc.alwaysAdd(*this, E)) { autoCreateBlock(); appendStmt(Block, E); } return Visit(E->getSubExpr(), AddStmtChoice()); } CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) { // Lazily create the indirect-goto dispatch block if there isn't one already. CFGBlock *IBlock = cfg->getIndirectGotoBlock(); if (!IBlock) { IBlock = createBlock(false); cfg->setIndirectGotoBlock(IBlock); } // IndirectGoto is a control-flow statement. Thus we stop processing the // current block and create a new one. if (badCFG) return nullptr; Block = createBlock(false); Block->setTerminator(I); addSuccessor(Block, IBlock); return addStmt(I->getTarget()); } CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) { assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors); tryAgain: if (!E) { badCFG = true; return nullptr; } switch (E->getStmtClass()) { default: return VisitChildrenForTemporaryDtors(E); case Stmt::BinaryOperatorClass: return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E)); case Stmt::CXXBindTemporaryExprClass: return VisitCXXBindTemporaryExprForTemporaryDtors( cast<CXXBindTemporaryExpr>(E), BindToTemporary); case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: return VisitConditionalOperatorForTemporaryDtors( cast<AbstractConditionalOperator>(E), BindToTemporary); case Stmt::ImplicitCastExprClass: // For implicit cast we want BindToTemporary to be passed further. E = cast<CastExpr>(E)->getSubExpr(); goto tryAgain; case Stmt::ParenExprClass: E = cast<ParenExpr>(E)->getSubExpr(); goto tryAgain; case Stmt::MaterializeTemporaryExprClass: E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(); goto tryAgain; } } CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) { // When visiting children for destructors we want to visit them in reverse // order that they will appear in the CFG. Because the CFG is built // bottom-up, this means we visit them in their natural order, which // reverses them in the CFG. CFGBlock *B = Block; for (Stmt::child_range I = E->children(); I; ++I) { if (Stmt *Child = *I) if (CFGBlock *R = VisitForTemporaryDtors(Child)) B = R; } return B; } CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) { if (E->isLogicalOp()) { // Destructors for temporaries in LHS expression should be called after // those for RHS expression. Even if this will unnecessarily create a block, // this block will be used at least by the full expression. autoCreateBlock(); CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS()); if (badCFG) return nullptr; Succ = ConfluenceBlock; Block = nullptr; CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS()); if (RHSBlock) { if (badCFG) return nullptr; // If RHS expression did produce destructors we need to connect created // blocks to CFG in same manner as for binary operator itself. CFGBlock *LHSBlock = createBlock(false); LHSBlock->setTerminator(CFGTerminator(E, true)); // For binary operator LHS block is before RHS in list of predecessors // of ConfluenceBlock. std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end()); // See if this is a known constant. TryResult KnownVal = tryEvaluateBool(E->getLHS()); if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr)) KnownVal.negate(); // Link LHSBlock with RHSBlock exactly the same way as for binary operator // itself. if (E->getOpcode() == BO_LOr) { addSuccessor(LHSBlock, KnownVal.isTrue() ? nullptr : ConfluenceBlock); addSuccessor(LHSBlock, KnownVal.isFalse() ? nullptr : RHSBlock); } else { assert (E->getOpcode() == BO_LAnd); addSuccessor(LHSBlock, KnownVal.isFalse() ? nullptr : RHSBlock); addSuccessor(LHSBlock, KnownVal.isTrue() ? nullptr : ConfluenceBlock); } Block = LHSBlock; return LHSBlock; } Block = ConfluenceBlock; return ConfluenceBlock; } if (E->isAssignmentOp()) { // For assignment operator (=) LHS expression is visited // before RHS expression. For destructors visit them in reverse order. CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS()); CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS()); return LHSBlock ? LHSBlock : RHSBlock; } // For any other binary operator RHS expression is visited before // LHS expression (order of children). For destructors visit them in reverse // order. CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS()); CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS()); return RHSBlock ? RHSBlock : LHSBlock; } CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors( CXXBindTemporaryExpr *E, bool BindToTemporary) { // First add destructors for temporaries in subexpression. CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr()); if (!BindToTemporary) { // If lifetime of temporary is not prolonged (by assigning to constant // reference) add destructor for it. // If the destructor is marked as a no-return destructor, we need to create // a new block for the destructor which does not have as a successor // anything built thus far. Control won't flow out of this block. const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor(); if (Dtor->isNoReturn()) { Succ = B; Block = createNoReturnBlock(); } else { autoCreateBlock(); } appendTemporaryDtor(Block, E); B = Block; } return B; } CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors( AbstractConditionalOperator *E, bool BindToTemporary) { // First add destructors for condition expression. Even if this will // unnecessarily create a block, this block will be used at least by the full // expression. autoCreateBlock(); CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond()); if (badCFG) return nullptr; if (BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(E)) { ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon()); if (badCFG) return nullptr; } // Try to add block with destructors for LHS expression. CFGBlock *LHSBlock = nullptr; Succ = ConfluenceBlock; Block = nullptr; LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary); if (badCFG) return nullptr; // Try to add block with destructors for RHS expression; Succ = ConfluenceBlock; Block = nullptr; CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(), BindToTemporary); if (badCFG) return nullptr; if (!RHSBlock && !LHSBlock) { // If neither LHS nor RHS expression had temporaries to destroy don't create // more blocks. Block = ConfluenceBlock; return Block; } Block = createBlock(false); Block->setTerminator(CFGTerminator(E, true)); assert(Block->getTerminator().isTemporaryDtorsBranch()); // See if this is a known constant. const TryResult &KnownVal = tryEvaluateBool(E->getCond()); if (LHSBlock) { addSuccessor(Block, LHSBlock, !KnownVal.isFalse()); } else if (KnownVal.isFalse()) { addSuccessor(Block, nullptr); } else { addSuccessor(Block, ConfluenceBlock); std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end()); } if (!RHSBlock) RHSBlock = ConfluenceBlock; addSuccessor(Block, RHSBlock, !KnownVal.isTrue()); return Block; } } // end anonymous namespace /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has /// no successors or predecessors. If this is the first block created in the /// CFG, it is automatically set to be the Entry and Exit of the CFG. CFGBlock *CFG::createBlock() { bool first_block = begin() == end(); // Create the block. CFGBlock *Mem = getAllocator().Allocate<CFGBlock>(); new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this); Blocks.push_back(Mem, BlkBVC); // If this is the first block, set it as the Entry and Exit. if (first_block) Entry = Exit = &back(); // Return the block. return &back(); } /// buildCFG - Constructs a CFG from an AST. Ownership of the returned /// CFG is returned to the caller. CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C, const BuildOptions &BO) { CFGBuilder Builder(C, BO); return Builder.buildCFG(D, Statement); } const CXXDestructorDecl * CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const { switch (getKind()) { case CFGElement::Statement: case CFGElement::Initializer: case CFGElement::NewAllocator: llvm_unreachable("getDestructorDecl should only be used with " "ImplicitDtors"); case CFGElement::AutomaticObjectDtor: { const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl(); QualType ty = var->getType(); ty = ty.getNonReferenceType(); while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) { ty = arrayType->getElementType(); } const RecordType *recordType = ty->getAs<RecordType>(); const CXXRecordDecl *classDecl = cast<CXXRecordDecl>(recordType->getDecl()); return classDecl->getDestructor(); } case CFGElement::DeleteDtor: { const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr(); QualType DTy = DE->getDestroyedType(); DTy = DTy.getNonReferenceType(); const CXXRecordDecl *classDecl = astContext.getBaseElementType(DTy)->getAsCXXRecordDecl(); return classDecl->getDestructor(); } case CFGElement::TemporaryDtor: { const CXXBindTemporaryExpr *bindExpr = castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); const CXXTemporary *temp = bindExpr->getTemporary(); return temp->getDestructor(); } case CFGElement::BaseDtor: case CFGElement::MemberDtor: // Not yet supported. return nullptr; } llvm_unreachable("getKind() returned bogus value"); } bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const { if (const CXXDestructorDecl *DD = getDestructorDecl(astContext)) return DD->isNoReturn(); return false; } //===----------------------------------------------------------------------===// // CFGBlock operations. //===----------------------------------------------------------------------===// CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable) : ReachableBlock(IsReachable ? B : nullptr), UnreachableBlock(!IsReachable ? B : nullptr, B && IsReachable ? AB_Normal : AB_Unreachable) {} CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock) : ReachableBlock(B), UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock, B == AlternateBlock ? AB_Alternate : AB_Normal) {} void CFGBlock::addSuccessor(AdjacentBlock Succ, BumpVectorContext &C) { if (CFGBlock *B = Succ.getReachableBlock()) B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C); if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock()) UnreachableB->Preds.push_back(AdjacentBlock(this, false), C); Succs.push_back(Succ, C); } bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F, const CFGBlock *From, const CFGBlock *To) { if (F.IgnoreNullPredecessors && !From) return true; if (To && From && F.IgnoreDefaultsWithCoveredEnums) { // If the 'To' has no label or is labeled but the label isn't a // CaseStmt then filter this edge. if (const SwitchStmt *S = dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) { if (S->isAllEnumCasesCovered()) { const Stmt *L = To->getLabel(); if (!L || !isa<CaseStmt>(L)) return true; } } } return false; } //===----------------------------------------------------------------------===// // CFG pretty printing //===----------------------------------------------------------------------===// namespace { class StmtPrinterHelper : public PrinterHelper { typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy; typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy; StmtMapTy StmtMap; DeclMapTy DeclMap; signed currentBlock; unsigned currStmt; const LangOptions &LangOpts; public: StmtPrinterHelper(const CFG* cfg, const LangOptions &LO) : currentBlock(0), currStmt(0), LangOpts(LO) { for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) { unsigned j = 1; for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ; BI != BEnd; ++BI, ++j ) { if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) { const Stmt *stmt= SE->getStmt(); std::pair<unsigned, unsigned> P((*I)->getBlockID(), j); StmtMap[stmt] = P; switch (stmt->getStmtClass()) { case Stmt::DeclStmtClass: DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P; break; case Stmt::IfStmtClass: { const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable(); if (var) DeclMap[var] = P; break; } case Stmt::ForStmtClass: { const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable(); if (var) DeclMap[var] = P; break; } case Stmt::WhileStmtClass: { const VarDecl *var = cast<WhileStmt>(stmt)->getConditionVariable(); if (var) DeclMap[var] = P; break; } case Stmt::SwitchStmtClass: { const VarDecl *var = cast<SwitchStmt>(stmt)->getConditionVariable(); if (var) DeclMap[var] = P; break; } case Stmt::CXXCatchStmtClass: { const VarDecl *var = cast<CXXCatchStmt>(stmt)->getExceptionDecl(); if (var) DeclMap[var] = P; break; } default: break; } } } } } virtual ~StmtPrinterHelper() {} const LangOptions &getLangOpts() const { return LangOpts; } void setBlockID(signed i) { currentBlock = i; } void setStmtID(unsigned i) { currStmt = i; } bool handledStmt(Stmt *S, raw_ostream &OS) override { StmtMapTy::iterator I = StmtMap.find(S); if (I == StmtMap.end()) return false; if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock && I->second.second == currStmt) { return false; } OS << "[B" << I->second.first << "." << I->second.second << "]"; return true; } bool handleDecl(const Decl *D, raw_ostream &OS) { DeclMapTy::iterator I = DeclMap.find(D); if (I == DeclMap.end()) return false; if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock && I->second.second == currStmt) { return false; } OS << "[B" << I->second.first << "." << I->second.second << "]"; return true; } }; } // end anonymous namespace namespace { class CFGBlockTerminatorPrint : public StmtVisitor<CFGBlockTerminatorPrint,void> { raw_ostream &OS; StmtPrinterHelper* Helper; PrintingPolicy Policy; public: CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper, const PrintingPolicy &Policy) : OS(os), Helper(helper), Policy(Policy) { this->Policy.IncludeNewlines = false; } void VisitIfStmt(IfStmt *I) { OS << "if "; if (Stmt *C = I->getCond()) C->printPretty(OS, Helper, Policy); } // Default case. void VisitStmt(Stmt *Terminator) { Terminator->printPretty(OS, Helper, Policy); } void VisitDeclStmt(DeclStmt *DS) { VarDecl *VD = cast<VarDecl>(DS->getSingleDecl()); OS << "static init " << VD->getName(); } void VisitForStmt(ForStmt *F) { OS << "for (" ; if (F->getInit()) OS << "..."; OS << "; "; if (Stmt *C = F->getCond()) C->printPretty(OS, Helper, Policy); OS << "; "; if (F->getInc()) OS << "..."; OS << ")"; } void VisitWhileStmt(WhileStmt *W) { OS << "while " ; if (Stmt *C = W->getCond()) C->printPretty(OS, Helper, Policy); } void VisitDoStmt(DoStmt *D) { OS << "do ... while "; if (Stmt *C = D->getCond()) C->printPretty(OS, Helper, Policy); } void VisitSwitchStmt(SwitchStmt *Terminator) { OS << "switch "; Terminator->getCond()->printPretty(OS, Helper, Policy); } void VisitCXXTryStmt(CXXTryStmt *CS) { OS << "try ..."; } void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) { if (Stmt *Cond = C->getCond()) Cond->printPretty(OS, Helper, Policy); OS << " ? ... : ..."; } void VisitChooseExpr(ChooseExpr *C) { OS << "__builtin_choose_expr( "; if (Stmt *Cond = C->getCond()) Cond->printPretty(OS, Helper, Policy); OS << " )"; } void VisitIndirectGotoStmt(IndirectGotoStmt *I) { OS << "goto *"; if (Stmt *T = I->getTarget()) T->printPretty(OS, Helper, Policy); } void VisitBinaryOperator(BinaryOperator* B) { if (!B->isLogicalOp()) { VisitExpr(B); return; } if (B->getLHS()) B->getLHS()->printPretty(OS, Helper, Policy); switch (B->getOpcode()) { case BO_LOr: OS << " || ..."; return; case BO_LAnd: OS << " && ..."; return; default: llvm_unreachable("Invalid logical operator."); } } void VisitExpr(Expr *E) { E->printPretty(OS, Helper, Policy); } public: void print(CFGTerminator T) { if (T.isTemporaryDtorsBranch()) OS << "(Temp Dtor) "; Visit(T.getStmt()); } }; } // end anonymous namespace static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, const CFGElement &E) { if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) { const Stmt *S = CS->getStmt(); assert(S != nullptr && "Expecting non-null Stmt"); // special printing for statement-expressions. if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) { const CompoundStmt *Sub = SE->getSubStmt(); if (Sub->children()) { OS << "({ ... ; "; Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS); OS << " })\n"; return; } } // special printing for comma expressions. if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) { if (B->getOpcode() == BO_Comma) { OS << "... , "; Helper.handledStmt(B->getRHS(),OS); OS << '\n'; return; } } S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); if (isa<CXXOperatorCallExpr>(S)) { OS << " (OperatorCall)"; } else if (isa<CXXBindTemporaryExpr>(S)) { OS << " (BindTemporary)"; } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) { OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")"; } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) { OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName() << ", " << CE->getType().getAsString() << ")"; } // Expressions need a newline. if (isa<Expr>(S)) OS << '\n'; } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) { const CXXCtorInitializer *I = IE->getInitializer(); if (I->isBaseInitializer()) OS << I->getBaseClass()->getAsCXXRecordDecl()->getName(); else if (I->isDelegatingInitializer()) OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName(); else OS << I->getAnyMember()->getName(); OS << "("; if (Expr *IE = I->getInit()) IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); OS << ")"; if (I->isBaseInitializer()) OS << " (Base initializer)\n"; else if (I->isDelegatingInitializer()) OS << " (Delegating initializer)\n"; else OS << " (Member initializer)\n"; } else if (Optional<CFGAutomaticObjDtor> DE = E.getAs<CFGAutomaticObjDtor>()) { const VarDecl *VD = DE->getVarDecl(); Helper.handleDecl(VD, OS); const Type* T = VD->getType().getTypePtr(); if (const ReferenceType* RT = T->getAs<ReferenceType>()) T = RT->getPointeeType().getTypePtr(); T = T->getBaseElementTypeUnsafe(); OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()"; OS << " (Implicit destructor)\n"; } else if (Optional<CFGNewAllocator> NE = E.getAs<CFGNewAllocator>()) { OS << "CFGNewAllocator("; if (const CXXNewExpr *AllocExpr = NE->getAllocatorExpr()) AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts())); OS << ")\n"; } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) { const CXXRecordDecl *RD = DE->getCXXRecordDecl(); if (!RD) return; CXXDeleteExpr *DelExpr = const_cast<CXXDeleteExpr*>(DE->getDeleteExpr()); Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS); OS << "->~" << RD->getName().str() << "()"; OS << " (Implicit destructor)\n"; } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) { const CXXBaseSpecifier *BS = BE->getBaseSpecifier(); OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()"; OS << " (Base object destructor)\n"; } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) { const FieldDecl *FD = ME->getFieldDecl(); const Type *T = FD->getType()->getBaseElementTypeUnsafe(); OS << "this->" << FD->getName(); OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()"; OS << " (Member object destructor)\n"; } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) { const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr(); OS << "~"; BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts())); OS << "() (Temporary object destructor)\n"; } } static void print_block(raw_ostream &OS, const CFG* cfg, const CFGBlock &B, StmtPrinterHelper &Helper, bool print_edges, bool ShowColors) { Helper.setBlockID(B.getBlockID()); // Print the header. if (ShowColors) OS.changeColor(raw_ostream::YELLOW, true); OS << "\n [B" << B.getBlockID(); if (&B == &cfg->getEntry()) OS << " (ENTRY)]\n"; else if (&B == &cfg->getExit()) OS << " (EXIT)]\n"; else if (&B == cfg->getIndirectGotoBlock()) OS << " (INDIRECT GOTO DISPATCH)]\n"; else if (B.hasNoReturnElement()) OS << " (NORETURN)]\n"; else OS << "]\n"; if (ShowColors) OS.resetColor(); // Print the label of this block. if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) { if (print_edges) OS << " "; if (LabelStmt *L = dyn_cast<LabelStmt>(Label)) OS << L->getName(); else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) { OS << "case "; if (C->getLHS()) C->getLHS()->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); if (C->getRHS()) { OS << " ... "; C->getRHS()->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); } } else if (isa<DefaultStmt>(Label)) OS << "default"; else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) { OS << "catch ("; if (CS->getExceptionDecl()) CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()), 0); else OS << "..."; OS << ")"; } else llvm_unreachable("Invalid label statement in CFGBlock."); OS << ":\n"; } // Iterate through the statements in the block and print them. unsigned j = 1; for (CFGBlock::const_iterator I = B.begin(), E = B.end() ; I != E ; ++I, ++j ) { // Print the statement # in the basic block and the statement itself. if (print_edges) OS << " "; OS << llvm::format("%3d", j) << ": "; Helper.setStmtID(j); print_elem(OS, Helper, *I); } // Print the terminator of this block. if (B.getTerminator()) { if (ShowColors) OS.changeColor(raw_ostream::GREEN); OS << " T: "; Helper.setBlockID(-1); PrintingPolicy PP(Helper.getLangOpts()); CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP); TPrinter.print(B.getTerminator()); OS << '\n'; if (ShowColors) OS.resetColor(); } if (print_edges) { // Print the predecessors of this block. if (!B.pred_empty()) { const raw_ostream::Colors Color = raw_ostream::BLUE; if (ShowColors) OS.changeColor(Color); OS << " Preds " ; if (ShowColors) OS.resetColor(); OS << '(' << B.pred_size() << "):"; unsigned i = 0; if (ShowColors) OS.changeColor(Color); for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end(); I != E; ++I, ++i) { if (i % 10 == 8) OS << "\n "; CFGBlock *B = *I; bool Reachable = true; if (!B) { Reachable = false; B = I->getPossiblyUnreachableBlock(); } OS << " B" << B->getBlockID(); if (!Reachable) OS << "(Unreachable)"; } if (ShowColors) OS.resetColor(); OS << '\n'; } // Print the successors of this block. if (!B.succ_empty()) { const raw_ostream::Colors Color = raw_ostream::MAGENTA; if (ShowColors) OS.changeColor(Color); OS << " Succs "; if (ShowColors) OS.resetColor(); OS << '(' << B.succ_size() << "):"; unsigned i = 0; if (ShowColors) OS.changeColor(Color); for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I, ++i) { if (i % 10 == 8) OS << "\n "; CFGBlock *B = *I; bool Reachable = true; if (!B) { Reachable = false; B = I->getPossiblyUnreachableBlock(); } if (B) { OS << " B" << B->getBlockID(); if (!Reachable) OS << "(Unreachable)"; } else { OS << " NULL"; } } if (ShowColors) OS.resetColor(); OS << '\n'; } } } /// dump - A simple pretty printer of a CFG that outputs to stderr. void CFG::dump(const LangOptions &LO, bool ShowColors) const { print(llvm::errs(), LO, ShowColors); } /// print - A simple pretty printer of a CFG that outputs to an ostream. void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const { StmtPrinterHelper Helper(this, LO); // Print the entry block. print_block(OS, this, getEntry(), Helper, true, ShowColors); // Iterate through the CFGBlocks and print them one by one. for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { // Skip the entry block, because we already printed it. if (&(**I) == &getEntry() || &(**I) == &getExit()) continue; print_block(OS, this, **I, Helper, true, ShowColors); } // Print the exit block. print_block(OS, this, getExit(), Helper, true, ShowColors); OS << '\n'; OS.flush(); } /// dump - A simply pretty printer of a CFGBlock that outputs to stderr. void CFGBlock::dump(const CFG* cfg, const LangOptions &LO, bool ShowColors) const { print(llvm::errs(), cfg, LO, ShowColors); } void CFGBlock::dump() const { dump(getParent(), LangOptions(), false); } /// print - A simple pretty printer of a CFGBlock that outputs to an ostream. /// Generally this will only be called from CFG::print. void CFGBlock::print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO, bool ShowColors) const { StmtPrinterHelper Helper(cfg, LO); print_block(OS, cfg, *this, Helper, true, ShowColors); OS << '\n'; } /// printTerminator - A simple pretty printer of the terminator of a CFGBlock. void CFGBlock::printTerminator(raw_ostream &OS, const LangOptions &LO) const { CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO)); TPrinter.print(getTerminator()); } Stmt *CFGBlock::getTerminatorCondition(bool StripParens) { Stmt *Terminator = this->Terminator; if (!Terminator) return nullptr; Expr *E = nullptr; switch (Terminator->getStmtClass()) { default: break; case Stmt::CXXForRangeStmtClass: E = cast<CXXForRangeStmt>(Terminator)->getCond(); break; case Stmt::ForStmtClass: E = cast<ForStmt>(Terminator)->getCond(); break; case Stmt::WhileStmtClass: E = cast<WhileStmt>(Terminator)->getCond(); break; case Stmt::DoStmtClass: E = cast<DoStmt>(Terminator)->getCond(); break; case Stmt::IfStmtClass: E = cast<IfStmt>(Terminator)->getCond(); break; case Stmt::ChooseExprClass: E = cast<ChooseExpr>(Terminator)->getCond(); break; case Stmt::IndirectGotoStmtClass: E = cast<IndirectGotoStmt>(Terminator)->getTarget(); break; case Stmt::SwitchStmtClass: E = cast<SwitchStmt>(Terminator)->getCond(); break; case Stmt::BinaryConditionalOperatorClass: E = cast<BinaryConditionalOperator>(Terminator)->getCond(); break; case Stmt::ConditionalOperatorClass: E = cast<ConditionalOperator>(Terminator)->getCond(); break; case Stmt::BinaryOperatorClass: // '&&' and '||' E = cast<BinaryOperator>(Terminator)->getLHS(); break; case Stmt::ObjCForCollectionStmtClass: return Terminator; } if (!StripParens) return E; return E ? E->IgnoreParens() : nullptr; } //===----------------------------------------------------------------------===// // CFG Graphviz Visualization //===----------------------------------------------------------------------===// #ifndef NDEBUG static StmtPrinterHelper* GraphHelper; #endif void CFG::viewCFG(const LangOptions &LO) const { #ifndef NDEBUG StmtPrinterHelper H(this, LO); GraphHelper = &H; llvm::ViewGraph(this,"CFG"); GraphHelper = nullptr; #endif } namespace llvm { template<> struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits { DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) { #ifndef NDEBUG std::string OutSStr; llvm::raw_string_ostream Out(OutSStr); print_block(Out,Graph, *Node, *GraphHelper, false, false); std::string& OutStr = Out.str(); if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); // Process string output to make it nicer... for (unsigned i = 0; i != OutStr.length(); ++i) if (OutStr[i] == '\n') { // Left justify OutStr[i] = '\\'; OutStr.insert(OutStr.begin()+i+1, 'l'); } return OutStr; #else return ""; #endif } }; } // end namespace llvm