/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAddIntersections.h" #include "SkPathOpsBounds.h" #if DEBUG_ADD_INTERSECTING_TS static void debugShowLineIntersection(int pts, const SkIntersectionHelper& wt, const SkIntersectionHelper& wn, const SkIntersections& i) { SkASSERT(i.used() == pts); if (!pts) { SkDebugf("%s no intersect " LINE_DEBUG_STR " " LINE_DEBUG_STR "\n", __FUNCTION__, LINE_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); return; } SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " LINE_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, i[0][0], LINE_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); if (pts == 2) { SkDebugf(" " T_DEBUG_STR(wtTs, 1) " " PT_DEBUG_STR, i[0][1], PT_DEBUG_DATA(i, 1)); } SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i[1][0], LINE_DEBUG_DATA(wn.pts())); if (pts == 2) { SkDebugf(" " T_DEBUG_STR(wnTs, 1), i[1][1]); } SkDebugf("\n"); } static void debugShowQuadLineIntersection(int pts, const SkIntersectionHelper& wt, const SkIntersectionHelper& wn, const SkIntersections& i) { SkASSERT(i.used() == pts); if (!pts) { SkDebugf("%s no intersect " QUAD_DEBUG_STR " " LINE_DEBUG_STR "\n", __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); return; } SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, i[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i[0][n], PT_DEBUG_DATA(i, n)); } SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i[1][0], LINE_DEBUG_DATA(wn.pts())); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wnTs), n, i[1][n]); } SkDebugf("\n"); } static void debugShowQuadIntersection(int pts, const SkIntersectionHelper& wt, const SkIntersectionHelper& wn, const SkIntersections& i) { SkASSERT(i.used() == pts); if (!pts) { SkDebugf("%s no intersect " QUAD_DEBUG_STR " " QUAD_DEBUG_STR "\n", __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts())); return; } SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, i[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i[0][n], PT_DEBUG_DATA(i, n)); } SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i[1][0], QUAD_DEBUG_DATA(wn.pts())); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wnTs), n, i[1][n]); } SkDebugf("\n"); } static void debugShowCubicLineIntersection(int pts, const SkIntersectionHelper& wt, const SkIntersectionHelper& wn, const SkIntersections& i) { SkASSERT(i.used() == pts); if (!pts) { SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " LINE_DEBUG_STR "\n", __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); return; } SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, i[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i[0][n], PT_DEBUG_DATA(i, n)); } SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i[1][0], LINE_DEBUG_DATA(wn.pts())); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wnTs), n, i[1][n]); } SkDebugf("\n"); } static void debugShowCubicQuadIntersection(int pts, const SkIntersectionHelper& wt, const SkIntersectionHelper& wn, const SkIntersections& i) { SkASSERT(i.used() == pts); if (!pts) { SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " QUAD_DEBUG_STR "\n", __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts())); return; } SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, i[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i[0][n], PT_DEBUG_DATA(i, n)); } SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i[1][0], QUAD_DEBUG_DATA(wn.pts())); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wnTs), n, i[1][n]); } SkDebugf("\n"); } static void debugShowCubicIntersection(int pts, const SkIntersectionHelper& wt, const SkIntersectionHelper& wn, const SkIntersections& i) { SkASSERT(i.used() == pts); if (!pts) { SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " CUBIC_DEBUG_STR "\n", __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), CUBIC_DEBUG_DATA(wn.pts())); return; } SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, i[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i[0][n], PT_DEBUG_DATA(i, n)); } SkDebugf(" wnTs[0]=%g " CUBIC_DEBUG_STR, i[1][0], CUBIC_DEBUG_DATA(wn.pts())); for (int n = 1; n < pts; ++n) { SkDebugf(" " TX_DEBUG_STR(wnTs), n, i[1][n]); } SkDebugf("\n"); } static void debugShowCubicIntersection(int pts, const SkIntersectionHelper& wt, const SkIntersections& i) { SkASSERT(i.used() == pts); if (!pts) { SkDebugf("%s no self intersect " CUBIC_DEBUG_STR "\n", __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts())); return; } SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, i[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); SkDebugf(" " T_DEBUG_STR(wtTs, 1), i[1][0]); SkDebugf("\n"); } #else static void debugShowLineIntersection(int , const SkIntersectionHelper& , const SkIntersectionHelper& , const SkIntersections& ) { } static void debugShowQuadLineIntersection(int , const SkIntersectionHelper& , const SkIntersectionHelper& , const SkIntersections& ) { } static void debugShowQuadIntersection(int , const SkIntersectionHelper& , const SkIntersectionHelper& , const SkIntersections& ) { } static void debugShowCubicLineIntersection(int , const SkIntersectionHelper& , const SkIntersectionHelper& , const SkIntersections& ) { } static void debugShowCubicQuadIntersection(int , const SkIntersectionHelper& , const SkIntersectionHelper& , const SkIntersections& ) { } static void debugShowCubicIntersection(int , const SkIntersectionHelper& , const SkIntersectionHelper& , const SkIntersections& ) { } static void debugShowCubicIntersection(int , const SkIntersectionHelper& , const SkIntersections& ) { } #endif bool AddIntersectTs(SkOpContour* test, SkOpContour* next) { if (test != next) { if (AlmostLessUlps(test->bounds().fBottom, next->bounds().fTop)) { return false; } // OPTIMIZATION: outset contour bounds a smidgen instead? if (!SkPathOpsBounds::Intersects(test->bounds(), next->bounds())) { return true; } } SkIntersectionHelper wt; wt.init(test); bool foundCommonContour = test == next; do { SkIntersectionHelper wn; wn.init(next); if (test == next && !wn.startAfter(wt)) { continue; } do { if (!SkPathOpsBounds::Intersects(wt.bounds(), wn.bounds())) { continue; } int pts = 0; SkIntersections ts; bool swap = false; switch (wt.segmentType()) { case SkIntersectionHelper::kHorizontalLine_Segment: swap = true; switch (wn.segmentType()) { case SkIntersectionHelper::kHorizontalLine_Segment: case SkIntersectionHelper::kVerticalLine_Segment: case SkIntersectionHelper::kLine_Segment: { pts = ts.lineHorizontal(wn.pts(), wt.left(), wt.right(), wt.y(), wt.xFlipped()); debugShowLineIntersection(pts, wn, wt, ts); break; } case SkIntersectionHelper::kQuad_Segment: { pts = ts.quadHorizontal(wn.pts(), wt.left(), wt.right(), wt.y(), wt.xFlipped()); debugShowQuadLineIntersection(pts, wn, wt, ts); break; } case SkIntersectionHelper::kCubic_Segment: { pts = ts.cubicHorizontal(wn.pts(), wt.left(), wt.right(), wt.y(), wt.xFlipped()); debugShowCubicLineIntersection(pts, wn, wt, ts); break; } default: SkASSERT(0); } break; case SkIntersectionHelper::kVerticalLine_Segment: swap = true; switch (wn.segmentType()) { case SkIntersectionHelper::kHorizontalLine_Segment: case SkIntersectionHelper::kVerticalLine_Segment: case SkIntersectionHelper::kLine_Segment: { pts = ts.lineVertical(wn.pts(), wt.top(), wt.bottom(), wt.x(), wt.yFlipped()); debugShowLineIntersection(pts, wn, wt, ts); break; } case SkIntersectionHelper::kQuad_Segment: { pts = ts.quadVertical(wn.pts(), wt.top(), wt.bottom(), wt.x(), wt.yFlipped()); debugShowQuadLineIntersection(pts, wn, wt, ts); break; } case SkIntersectionHelper::kCubic_Segment: { pts = ts.cubicVertical(wn.pts(), wt.top(), wt.bottom(), wt.x(), wt.yFlipped()); debugShowCubicLineIntersection(pts, wn, wt, ts); break; } default: SkASSERT(0); } break; case SkIntersectionHelper::kLine_Segment: switch (wn.segmentType()) { case SkIntersectionHelper::kHorizontalLine_Segment: pts = ts.lineHorizontal(wt.pts(), wn.left(), wn.right(), wn.y(), wn.xFlipped()); debugShowLineIntersection(pts, wt, wn, ts); break; case SkIntersectionHelper::kVerticalLine_Segment: pts = ts.lineVertical(wt.pts(), wn.top(), wn.bottom(), wn.x(), wn.yFlipped()); debugShowLineIntersection(pts, wt, wn, ts); break; case SkIntersectionHelper::kLine_Segment: { pts = ts.lineLine(wt.pts(), wn.pts()); debugShowLineIntersection(pts, wt, wn, ts); break; } case SkIntersectionHelper::kQuad_Segment: { swap = true; pts = ts.quadLine(wn.pts(), wt.pts()); debugShowQuadLineIntersection(pts, wn, wt, ts); break; } case SkIntersectionHelper::kCubic_Segment: { swap = true; pts = ts.cubicLine(wn.pts(), wt.pts()); debugShowCubicLineIntersection(pts, wn, wt, ts); break; } default: SkASSERT(0); } break; case SkIntersectionHelper::kQuad_Segment: switch (wn.segmentType()) { case SkIntersectionHelper::kHorizontalLine_Segment: pts = ts.quadHorizontal(wt.pts(), wn.left(), wn.right(), wn.y(), wn.xFlipped()); debugShowQuadLineIntersection(pts, wt, wn, ts); break; case SkIntersectionHelper::kVerticalLine_Segment: pts = ts.quadVertical(wt.pts(), wn.top(), wn.bottom(), wn.x(), wn.yFlipped()); debugShowQuadLineIntersection(pts, wt, wn, ts); break; case SkIntersectionHelper::kLine_Segment: { pts = ts.quadLine(wt.pts(), wn.pts()); debugShowQuadLineIntersection(pts, wt, wn, ts); break; } case SkIntersectionHelper::kQuad_Segment: { pts = ts.quadQuad(wt.pts(), wn.pts()); debugShowQuadIntersection(pts, wt, wn, ts); break; } case SkIntersectionHelper::kCubic_Segment: { swap = true; pts = ts.cubicQuad(wn.pts(), wt.pts()); debugShowCubicQuadIntersection(pts, wn, wt, ts); break; } default: SkASSERT(0); } break; case SkIntersectionHelper::kCubic_Segment: switch (wn.segmentType()) { case SkIntersectionHelper::kHorizontalLine_Segment: pts = ts.cubicHorizontal(wt.pts(), wn.left(), wn.right(), wn.y(), wn.xFlipped()); debugShowCubicLineIntersection(pts, wt, wn, ts); break; case SkIntersectionHelper::kVerticalLine_Segment: pts = ts.cubicVertical(wt.pts(), wn.top(), wn.bottom(), wn.x(), wn.yFlipped()); debugShowCubicLineIntersection(pts, wt, wn, ts); break; case SkIntersectionHelper::kLine_Segment: { pts = ts.cubicLine(wt.pts(), wn.pts()); debugShowCubicLineIntersection(pts, wt, wn, ts); break; } case SkIntersectionHelper::kQuad_Segment: { pts = ts.cubicQuad(wt.pts(), wn.pts()); debugShowCubicQuadIntersection(pts, wt, wn, ts); break; } case SkIntersectionHelper::kCubic_Segment: { pts = ts.cubicCubic(wt.pts(), wn.pts()); debugShowCubicIntersection(pts, wt, wn, ts); break; } default: SkASSERT(0); } break; default: SkASSERT(0); } if (!foundCommonContour && pts > 0) { test->addCross(next); next->addCross(test); foundCommonContour = true; } // in addition to recording T values, record matching segment if (pts == 2) { if (wn.segmentType() <= SkIntersectionHelper::kLine_Segment && wt.segmentType() <= SkIntersectionHelper::kLine_Segment) { if (wt.addCoincident(wn, ts, swap)) { continue; } ts.cleanUpCoincidence(); // prefer (t == 0 or t == 1) pts = 1; } else if (wn.segmentType() >= SkIntersectionHelper::kQuad_Segment && wt.segmentType() >= SkIntersectionHelper::kQuad_Segment && ts.isCoincident(0)) { SkASSERT(ts.coincidentUsed() == 2); if (wt.addCoincident(wn, ts, swap)) { continue; } ts.cleanUpCoincidence(); // prefer (t == 0 or t == 1) pts = 1; } } if (pts >= 2) { for (int pt = 0; pt < pts - 1; ++pt) { const SkDPoint& point = ts.pt(pt); const SkDPoint& next = ts.pt(pt + 1); if (wt.isPartial(ts[swap][pt], ts[swap][pt + 1], point, next) && wn.isPartial(ts[!swap][pt], ts[!swap][pt + 1], point, next)) { if (!wt.addPartialCoincident(wn, ts, pt, swap)) { // remove extra point if two map to same float values ts.cleanUpCoincidence(); // prefer (t == 0 or t == 1) pts = 1; } } } } for (int pt = 0; pt < pts; ++pt) { SkASSERT(ts[0][pt] >= 0 && ts[0][pt] <= 1); SkASSERT(ts[1][pt] >= 0 && ts[1][pt] <= 1); SkPoint point = ts.pt(pt).asSkPoint(); wt.alignTPt(wn, swap, pt, &ts, &point); int testTAt = wt.addT(wn, point, ts[swap][pt]); int nextTAt = wn.addT(wt, point, ts[!swap][pt]); wt.addOtherT(testTAt, ts[!swap][pt], nextTAt); wn.addOtherT(nextTAt, ts[swap][pt], testTAt); } } while (wn.advance()); } while (wt.advance()); return true; } void AddSelfIntersectTs(SkOpContour* test) { SkIntersectionHelper wt; wt.init(test); do { if (wt.segmentType() != SkIntersectionHelper::kCubic_Segment) { continue; } SkIntersections ts; int pts = ts.cubic(wt.pts()); debugShowCubicIntersection(pts, wt, ts); if (!pts) { continue; } SkASSERT(pts == 1); SkASSERT(ts[0][0] >= 0 && ts[0][0] <= 1); SkASSERT(ts[1][0] >= 0 && ts[1][0] <= 1); SkPoint point = ts.pt(0).asSkPoint(); int testTAt = wt.addSelfT(point, ts[0][0]); int nextTAt = wt.addSelfT(point, ts[1][0]); wt.addOtherT(testTAt, ts[1][0], nextTAt); wt.addOtherT(nextTAt, ts[0][0], testTAt); } while (wt.advance()); } // resolve any coincident pairs found while intersecting, and // see if coincidence is formed by clipping non-concident segments bool CoincidenceCheck(SkTArray<SkOpContour*, true>* contourList, int total) { int contourCount = (*contourList).count(); for (int cIndex = 0; cIndex < contourCount; ++cIndex) { SkOpContour* contour = (*contourList)[cIndex]; contour->resolveNearCoincidence(); } for (int cIndex = 0; cIndex < contourCount; ++cIndex) { SkOpContour* contour = (*contourList)[cIndex]; contour->addCoincidentPoints(); } for (int cIndex = 0; cIndex < contourCount; ++cIndex) { SkOpContour* contour = (*contourList)[cIndex]; if (!contour->calcCoincidentWinding()) { return false; } } for (int cIndex = 0; cIndex < contourCount; ++cIndex) { SkOpContour* contour = (*contourList)[cIndex]; contour->calcPartialCoincidentWinding(); } return true; }